Skip to main content
Erschienen in: Inflammation Research 9/2019

21.06.2019 | Original Research Paper

Macrophage lipid accumulation in the presence of immunosuppressive drugs mycophenolate mofetil and cyclosporin A

verfasst von: Iryna Voloshyna, Isaac Teboul, Lora J. Kasselman, Michael Salama, Steven E. Carsons, Joshua DeLeon, Joseph Mattana, Nobuyuki Miyawaki, Allison B. Reiss

Erschienen in: Inflammation Research | Ausgabe 9/2019

Einloggen, um Zugang zu erhalten

Abstract

Objective

Mycophenolate (MPA) and cyclosporin A (CsA) are two immunosuppressive agents currently used for the treatment of autoimmune diseases. However, reports regarding their effects on inflammation and lipid handling are controversial. Here, we compare the effect of these two drugs on the expression of proteins involved in cholesterol handling and lipid accumulation in a macrophage cell system utilizing M0, M1 and M2 human macrophages and in murine bone marrow-derived macrophages (BMDM).

Methods

Differentiated M0, M1 and M2 subsets of THP-1 human macrophages were subjected to various concentrations of either MPA or CsA. Expression of proteins involved in reverse cholesterol transport (ABCA1 and 27-hydroxylase) and scavenger receptors, responsible for uptake of modified lipids (CD36, ScR-A1, CXCL16 and LOX-1), were evaluated by real-time PCR and confirmed with Western blot. DiI-oxidized LDL internalization assay was used to assess foam cell formation. The influence of MPA was also evaluated in BMDM obtained from atherosclerosis-prone transgenic mice, ApoE−/− and ApoE−/−Fas−/−.

Results

In M0 macrophages, MPA increased expression of ABCA1 and CXCL16 in a concentration-dependent manner. In M1 THP-1 macrophages, MPA caused a significant increase of 27-hydroxylase mRNA and CD36 and SR-A1 receptor mRNAs. Exposure of M2 macrophages to MPA also stimulated expression of 27-hydroxylase, while downregulating all evaluated scavenger receptors. In contrast, CsA had no impact on cholesterol efflux in M0 and M1 macrophages, but significantly augmented expression of ABCA1 and 27-hydroxylase in M2 macrophages. CsA significantly increased expression of the LOX1 receptor in naïve macrophages, downregulated expression of CD36 and SR-A1 in the M1 subpopulation and upregulated expression of all evaluated scavenger receptors. However, CsA enhanced foam cell transformation in M0 and M2 macrophages, while MPA had no effect on foam cell formation unless used at a high concentration in the M2 subtype.

Conclusions

Our results clearly underline the importance of further evaluation of the effects of these drugs when used in atherosclerosis-prone patients with autoimmune or renal disease.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Frostegård J. SLE, atherosclerosis and cardiovascular disease. J Intern Med. 2005;257(6):485–95.CrossRef Frostegård J. SLE, atherosclerosis and cardiovascular disease. J Intern Med. 2005;257(6):485–95.CrossRef
2.
Zurück zum Zitat Iaccarino L, Bettio S, Zen M, Nalotto L, Gatto M, Ramonda R, Punzi L, Doria A. Premature coronary heart disease in SLE: can we prevent progression? Lupus. 2013;22(12):1232–42.CrossRef Iaccarino L, Bettio S, Zen M, Nalotto L, Gatto M, Ramonda R, Punzi L, Doria A. Premature coronary heart disease in SLE: can we prevent progression? Lupus. 2013;22(12):1232–42.CrossRef
3.
Zurück zum Zitat Manger K, Kalden JR, Manger B. Cyclosporin A in the treatment of systemic lupus erythematosus: results of an open clinical study. Br J Rheumatol. 1996;35:669–75.CrossRef Manger K, Kalden JR, Manger B. Cyclosporin A in the treatment of systemic lupus erythematosus: results of an open clinical study. Br J Rheumatol. 1996;35:669–75.CrossRef
4.
Zurück zum Zitat Sahin A. Mycophenolate mofetil in the treatment of systemic lupus erythematosus. Eurasian J Med. 2009;41:180–5.PubMedPubMedCentral Sahin A. Mycophenolate mofetil in the treatment of systemic lupus erythematosus. Eurasian J Med. 2009;41:180–5.PubMedPubMedCentral
5.
Zurück zum Zitat Glomsda BA, Blaheta RA, Hailer NP. Inhibition of monocyte/endothelial cell interactions and monocyte adhesion molecule expression by the immunosuppressant mycophenolate mofetil. Spinal Cord. 2003;41(11):610–9.CrossRef Glomsda BA, Blaheta RA, Hailer NP. Inhibition of monocyte/endothelial cell interactions and monocyte adhesion molecule expression by the immunosuppressant mycophenolate mofetil. Spinal Cord. 2003;41(11):610–9.CrossRef
6.
Zurück zum Zitat Senda M, DeLustro B, Eugui E, Natsumeda Y. Mycophenolic acid, an inhibitor of IMP dehydrogenase that is also an immunosuppressive agent, suppresses the cytokine-induced nitric oxide production in mouse and rat vascular endothelial cells. Transplantation. 1995;60(10):1143–8.CrossRef Senda M, DeLustro B, Eugui E, Natsumeda Y. Mycophenolic acid, an inhibitor of IMP dehydrogenase that is also an immunosuppressive agent, suppresses the cytokine-induced nitric oxide production in mouse and rat vascular endothelial cells. Transplantation. 1995;60(10):1143–8.CrossRef
7.
Zurück zum Zitat Xu Y, Lai F, Xu Y, Wu Y, Liu Q, Li N, Wei Y, Feng T, Zheng Z, Jiang W, Yu L, Hong B, Si S. Mycophenolic acid induces ATP-binding cassette transporter A1 (ABCA1) expression through the PPARc-LXRa-ABCA1 pathway. Biochem Biophys Res Commun. 2011;414(4):779–82.CrossRef Xu Y, Lai F, Xu Y, Wu Y, Liu Q, Li N, Wei Y, Feng T, Zheng Z, Jiang W, Yu L, Hong B, Si S. Mycophenolic acid induces ATP-binding cassette transporter A1 (ABCA1) expression through the PPARc-LXRa-ABCA1 pathway. Biochem Biophys Res Commun. 2011;414(4):779–82.CrossRef
8.
Zurück zum Zitat von Vietinghoff S, Koltsova EK, Mestas J, Diehl CJ, Witztum JL, Ley K. Mycophenolate mofetil decreases atherosclerotic lesion size by depression of aortic T-lymphocyte and interleukin-17-mediated macrophage accumulation. J Am Coll Cardiol. 2011;57(21):2194–204.CrossRef von Vietinghoff S, Koltsova EK, Mestas J, Diehl CJ, Witztum JL, Ley K. Mycophenolate mofetil decreases atherosclerotic lesion size by depression of aortic T-lymphocyte and interleukin-17-mediated macrophage accumulation. J Am Coll Cardiol. 2011;57(21):2194–204.CrossRef
9.
Zurück zum Zitat van Leuven SI, Mendez-Fernandez YV, Wilhelm AJ, Wade NS, Gabriel CL, Kastelein JJ, Stroes ES, Tak PP, Major AS. Mycophenolate mofetil but not atorvastatin attenuates atherosclerosis in lupus-prone LDLr−/− mice. Ann Rheum Dis. 2012;71:408–14.CrossRef van Leuven SI, Mendez-Fernandez YV, Wilhelm AJ, Wade NS, Gabriel CL, Kastelein JJ, Stroes ES, Tak PP, Major AS. Mycophenolate mofetil but not atorvastatin attenuates atherosclerosis in lupus-prone LDLr−/− mice. Ann Rheum Dis. 2012;71:408–14.CrossRef
10.
Zurück zum Zitat Richez C, Richards RJ, Duffau P, Weitzner Z, Andry CD, Rifkin IR, Aprahamian T. The effect of mycophenolate mofetil on disease development in the gldapoE(−/−) mouse model of accelerated atherosclerosis and systemic lupus erythematosus. PLoS One. 2013;8(4):e61042.CrossRef Richez C, Richards RJ, Duffau P, Weitzner Z, Andry CD, Rifkin IR, Aprahamian T. The effect of mycophenolate mofetil on disease development in the gldapoE(−/−) mouse model of accelerated atherosclerosis and systemic lupus erythematosus. PLoS One. 2013;8(4):e61042.CrossRef
11.
Zurück zum Zitat Romero F, Rodriguez-Iturbe B, Pons H, Parra G, Quiroz Y, Rincon J, Gonzalez L. Mycophenolate mofetil treatment reduces cholesterol-induced atherosclerosis in the rabbit. Atherosclerosis. 2000;152(1):127–33.CrossRef Romero F, Rodriguez-Iturbe B, Pons H, Parra G, Quiroz Y, Rincon J, Gonzalez L. Mycophenolate mofetil treatment reduces cholesterol-induced atherosclerosis in the rabbit. Atherosclerosis. 2000;152(1):127–33.CrossRef
12.
Zurück zum Zitat Drew AF, Tipping PG. Cyclosporine treatment reduces early atherosclerosis in the cholesterol-fed rabbit. Atherosclerosis. 1995;116(2):181–9.CrossRef Drew AF, Tipping PG. Cyclosporine treatment reduces early atherosclerosis in the cholesterol-fed rabbit. Atherosclerosis. 1995;116(2):181–9.CrossRef
13.
Zurück zum Zitat Zanotti I, Greco D, Lusardi G, Zimetti F, Potì F, Arnaboldi L, et al. Cyclosporine A impairs the macrophage reverse cholesterol transport in mice by reducing sterol fecal excretion. PLoS One. 2013;8(8):e71572.CrossRef Zanotti I, Greco D, Lusardi G, Zimetti F, Potì F, Arnaboldi L, et al. Cyclosporine A impairs the macrophage reverse cholesterol transport in mice by reducing sterol fecal excretion. PLoS One. 2013;8(8):e71572.CrossRef
14.
Zurück zum Zitat Zahr N, Arnaud L, Marquet P, Haroche J, Costedoat-Chalumeau N, Hulot JS, Funck-Brentano C, Piette JC, Amoura Z. Mycophenolic acid area under the curve correlates with disease activity in lupus patients treated with mycophenolate mofetil. Arthritis Rheum. 2010;62(7):2047–54. https://doi.org/10.1002/art.27495.CrossRefPubMed Zahr N, Arnaud L, Marquet P, Haroche J, Costedoat-Chalumeau N, Hulot JS, Funck-Brentano C, Piette JC, Amoura Z. Mycophenolic acid area under the curve correlates with disease activity in lupus patients treated with mycophenolate mofetil. Arthritis Rheum. 2010;62(7):2047–54. https://​doi.​org/​10.​1002/​art.​27495.CrossRefPubMed
18.
Zurück zum Zitat Kockx M, Jessup W, Kritharides L. Cyclosporin A and atherosclerosis—cellular pathways in atherogenesis. Pharmacol Ther. 2010;128:106–18.CrossRef Kockx M, Jessup W, Kritharides L. Cyclosporin A and atherosclerosis—cellular pathways in atherogenesis. Pharmacol Ther. 2010;128:106–18.CrossRef
20.
Zurück zum Zitat Wang X, Hu YC, Zhang RY, Jin DX, Jiang Y, Zhang HN, Cong HL. Effect of cyclosporin A intervention on the immunological mechanisms of coronary heart disease and restenosis. Exp Ther Med. 2016;12(5):3242–8.CrossRef Wang X, Hu YC, Zhang RY, Jin DX, Jiang Y, Zhang HN, Cong HL. Effect of cyclosporin A intervention on the immunological mechanisms of coronary heart disease and restenosis. Exp Ther Med. 2016;12(5):3242–8.CrossRef
21.
Zurück zum Zitat Oryoji K, Kiyohara C, Horiuchi T, et al. Reduced carotid intima-media thickness in systemic lupus erythematosus patients treated with cyclosporine A. Mod Rheumatol. 2014;24(1):86–92.CrossRef Oryoji K, Kiyohara C, Horiuchi T, et al. Reduced carotid intima-media thickness in systemic lupus erythematosus patients treated with cyclosporine A. Mod Rheumatol. 2014;24(1):86–92.CrossRef
22.
Zurück zum Zitat Qin Z. The use of THP-1 cells as a model for mimicking the function and regulation of monocytes and macrophages in the vasculature. Atherosclerosis. 2012;221(1):2–11.CrossRef Qin Z. The use of THP-1 cells as a model for mimicking the function and regulation of monocytes and macrophages in the vasculature. Atherosclerosis. 2012;221(1):2–11.CrossRef
23.
Zurück zum Zitat Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. J Immunity. 2014;06:008. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. J Immunity. 2014;06:008.
24.
Zurück zum Zitat Feng X, Li H, Rumbin AA, Wang X, La Cava A, Brechtelsbauer K, Castellani LW, Witztum JL, Lusis AJ, Tsao BP. ApoE−/−Fas−/− C57BL/6 mice: a novel murine model simultaneously exhibits lupus nephritis, atherosclerosis, and osteopenia. J Lipid Res. 2007;48(4):794–805.CrossRef Feng X, Li H, Rumbin AA, Wang X, La Cava A, Brechtelsbauer K, Castellani LW, Witztum JL, Lusis AJ, Tsao BP. ApoE−/−Fas−/− C57BL/6 mice: a novel murine model simultaneously exhibits lupus nephritis, atherosclerosis, and osteopenia. J Lipid Res. 2007;48(4):794–805.CrossRef
25.
Zurück zum Zitat Engström A, Erlandsson A, Delbro D, Wijkander J. Conditioned media from macrophages of M1, but not M2 phenotype, inhibit the proliferation of the colon cancer cell lines HT-29 and CACO-2. Int J Oncol. 2014;44(2):385–92.CrossRef Engström A, Erlandsson A, Delbro D, Wijkander J. Conditioned media from macrophages of M1, but not M2 phenotype, inhibit the proliferation of the colon cancer cell lines HT-29 and CACO-2. Int J Oncol. 2014;44(2):385–92.CrossRef
26.
Zurück zum Zitat Martinez FO, Helming L, Milde R, Varin A, Melgert BN, Draijer C, Thomas B, et al. Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood. 2013;9:121. Martinez FO, Helming L, Milde R, Varin A, Melgert BN, Draijer C, Thomas B, et al. Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood. 2013;9:121.
27.
Zurück zum Zitat Jager N, Teteloshvili N, Zeebregts C, Westra J, Bijl M. Macrophage folate receptor-β (FR- β) expression in auto-immune inflammatory rheumatic diseases: a forthcoming marker for cardiovascular risk? Autoimmun Rev. 2012;11(9):621–6.CrossRef Jager N, Teteloshvili N, Zeebregts C, Westra J, Bijl M. Macrophage folate receptor-β (FR- β) expression in auto-immune inflammatory rheumatic diseases: a forthcoming marker for cardiovascular risk? Autoimmun Rev. 2012;11(9):621–6.CrossRef
28.
Zurück zum Zitat Voloshyna I, Teboul I, Littlefield MJ, Siegart NM, et al. Resveratrol counters systemic lupus erythematosus-associated atherogenicity by normalizing cholesterol efflux. Exp Biol Med. 2016;241(14):1611–9.CrossRef Voloshyna I, Teboul I, Littlefield MJ, Siegart NM, et al. Resveratrol counters systemic lupus erythematosus-associated atherogenicity by normalizing cholesterol efflux. Exp Biol Med. 2016;241(14):1611–9.CrossRef
29.
Zurück zum Zitat Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) Method. Methods. 2001;25(4):402–8.CrossRef Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) Method. Methods. 2001;25(4):402–8.CrossRef
30.
Zurück zum Zitat Cali JJ, Hsieh C, Francke U, Russell DW. Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis. J Biol Chem. 1991;266:7779–83.PubMedPubMedCentral Cali JJ, Hsieh C, Francke U, Russell DW. Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis. J Biol Chem. 1991;266:7779–83.PubMedPubMedCentral
31.
Zurück zum Zitat Teixeira V, Tam L. Novel insights in systemic lupus erythematosus and atherosclerosis. Front Med. 2018;4:262.CrossRef Teixeira V, Tam L. Novel insights in systemic lupus erythematosus and atherosclerosis. Front Med. 2018;4:262.CrossRef
32.
Zurück zum Zitat Reiss AB, Anwar K, Merrill JT, Chan ES, Awadallah NW, Cronstein BN, Michael Belmont H, Belilos E, Rosenblum G, Belostocki K, Bonetti L, Hasneen K, Carsons SE. Plasma from systemic lupus patients compromises cholesterol homeostasis: a potential mechanism linking autoimmunity to atherosclerotic cardiovascular disease. Rheumatol Int. 2010;30:591–8.CrossRef Reiss AB, Anwar K, Merrill JT, Chan ES, Awadallah NW, Cronstein BN, Michael Belmont H, Belilos E, Rosenblum G, Belostocki K, Bonetti L, Hasneen K, Carsons SE. Plasma from systemic lupus patients compromises cholesterol homeostasis: a potential mechanism linking autoimmunity to atherosclerotic cardiovascular disease. Rheumatol Int. 2010;30:591–8.CrossRef
33.
Zurück zum Zitat Voloshyna I, Modayil S, Littlefield MJ, Belilos E, Belostocki K, Bonetti L, Rosenblum G, Carsons SE, Reiss AB. Plasma from rheumatoid arthritis patients promotes pro-atherogenic cholesterol transport gene expression in THP-1 human macrophages. Exp Biol Med (Maywood). 2013;238(10):1192–7. https://doi.org/10.1177/1535370213503262.CrossRefPubMed Voloshyna I, Modayil S, Littlefield MJ, Belilos E, Belostocki K, Bonetti L, Rosenblum G, Carsons SE, Reiss AB. Plasma from rheumatoid arthritis patients promotes pro-atherogenic cholesterol transport gene expression in THP-1 human macrophages. Exp Biol Med (Maywood). 2013;238(10):1192–7. https://​doi.​org/​10.​1177/​1535370213503262​.CrossRefPubMed
34.
Zurück zum Zitat Orme J, Mohan C. Macrophage subpopulations in systemic lupus erythematosus. Discov Med. 2012;13(69):151–8.PubMed Orme J, Mohan C. Macrophage subpopulations in systemic lupus erythematosus. Discov Med. 2012;13(69):151–8.PubMed
36.
Zurück zum Zitat Han S, Zhuang H, Shumyak S, Wu J, Xie C, Li H, Yang LJ, Reeves WH. Liver X receptor agonist therapy prevents diffuse alveolar hemorrhage in murine lupus by repolarizing macrophages. Front Immunol. 2018;9:135.CrossRef Han S, Zhuang H, Shumyak S, Wu J, Xie C, Li H, Yang LJ, Reeves WH. Liver X receptor agonist therapy prevents diffuse alveolar hemorrhage in murine lupus by repolarizing macrophages. Front Immunol. 2018;9:135.CrossRef
37.
Zurück zum Zitat Reiss AB, Anwar K, Merrill JT, Chan ES, Awadallah NW, Cronstein BN, Michael Belmont H, Belilos E, Rosenblum G, Belostocki K, Bonetti L, Hasneen K, Carsons SE. Plasma from systemic lupus patients compromises cholesterol homeostasis: a potential mechanism linking autoimmunity to atherosclerotic cardiovascular disease. Rheumatol Int. 2010;30(5):591–8.CrossRef Reiss AB, Anwar K, Merrill JT, Chan ES, Awadallah NW, Cronstein BN, Michael Belmont H, Belilos E, Rosenblum G, Belostocki K, Bonetti L, Hasneen K, Carsons SE. Plasma from systemic lupus patients compromises cholesterol homeostasis: a potential mechanism linking autoimmunity to atherosclerotic cardiovascular disease. Rheumatol Int. 2010;30(5):591–8.CrossRef
38.
Zurück zum Zitat Steinbrecher UP. Receptors for oxidized low density lipoprotein. Biochim Biophys Acta. 1999;1436:279–98.CrossRef Steinbrecher UP. Receptors for oxidized low density lipoprotein. Biochim Biophys Acta. 1999;1436:279–98.CrossRef
39.
Zurück zum Zitat Pirillo A, Catapano AL. Soluble lectin-like oxidized low density lipoprotein receptor-1 as a biochemical marker for atherosclerosis-related diseases. Dis Markers. 2013;35(5):413–8.CrossRef Pirillo A, Catapano AL. Soluble lectin-like oxidized low density lipoprotein receptor-1 as a biochemical marker for atherosclerosis-related diseases. Dis Markers. 2013;35(5):413–8.CrossRef
40.
Zurück zum Zitat Lehrke M, Millington SC, Lefterova M, Cumaranatunge RG, Szapary P, Wilensky R, Rader DJ, Lazar MA, Reilly MP. CXCL16 is a marker of inflammation, atherosclerosis, and acute coronary syndromes in humans. J Am Coll Cardiol. 2007;49(4):442–9.CrossRef Lehrke M, Millington SC, Lefterova M, Cumaranatunge RG, Szapary P, Wilensky R, Rader DJ, Lazar MA, Reilly MP. CXCL16 is a marker of inflammation, atherosclerosis, and acute coronary syndromes in humans. J Am Coll Cardiol. 2007;49(4):442–9.CrossRef
41.
Zurück zum Zitat Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13(10):709–21.CrossRef Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13(10):709–21.CrossRef
42.
Zurück zum Zitat Voloshyna I, Reiss AB. The ABC transporters in lipid flux and atherosclerosis. Prog Lipid Res. 2011;50:213–24.CrossRef Voloshyna I, Reiss AB. The ABC transporters in lipid flux and atherosclerosis. Prog Lipid Res. 2011;50:213–24.CrossRef
43.
Zurück zum Zitat Quinn CM, Jessup W, Wong J, Kritharides L, Brown AJ. Expression and regulation of sterol 27-hydroxylase (CYP27A1) in human macrophages: a role for RXR and PPAR gamma ligands. Biochem J. 2005;385(Pt 3):823–30.CrossRef Quinn CM, Jessup W, Wong J, Kritharides L, Brown AJ. Expression and regulation of sterol 27-hydroxylase (CYP27A1) in human macrophages: a role for RXR and PPAR gamma ligands. Biochem J. 2005;385(Pt 3):823–30.CrossRef
44.
Zurück zum Zitat Navaneethan SD, Viswanathan G, Strippoli GFM. Treatment options for proliferative lupus nephritis: an update of clinical trial evidence. Drugs. 2008;68:2095–104.CrossRef Navaneethan SD, Viswanathan G, Strippoli GFM. Treatment options for proliferative lupus nephritis: an update of clinical trial evidence. Drugs. 2008;68:2095–104.CrossRef
45.
Zurück zum Zitat Chowdhary VR. Broad concepts in management of systemic lupus erythematosus. Mayo Clin Proc. 2017;92(5):744–61.CrossRef Chowdhary VR. Broad concepts in management of systemic lupus erythematosus. Mayo Clin Proc. 2017;92(5):744–61.CrossRef
46.
Zurück zum Zitat Germano V, Diamanti AP, Ferlito C, Podestà E, Salemi S, Migliore A, D’Amelio R, Laganà B. Cyclosporine A in the long-term management of systemic lupus erythematosus. J Biol Regul Homeost Agents. 2011;25(3):397–403.PubMed Germano V, Diamanti AP, Ferlito C, Podestà E, Salemi S, Migliore A, D’Amelio R, Laganà B. Cyclosporine A in the long-term management of systemic lupus erythematosus. J Biol Regul Homeost Agents. 2011;25(3):397–403.PubMed
47.
Zurück zum Zitat Chighizola CB, Ong VH, Meroni PL. The use of cyclosporine A in rheumatology: a 2016 comprehensive review. Clin Rev Allergy Immunol. 2017;52(3):401–23.CrossRef Chighizola CB, Ong VH, Meroni PL. The use of cyclosporine A in rheumatology: a 2016 comprehensive review. Clin Rev Allergy Immunol. 2017;52(3):401–23.CrossRef
48.
Zurück zum Zitat Yang TH, Wu TH, Chang YL, Liao HT, Hsu CC, Tsai CY, Chou YC. Cyclosporine for the treatment of lupus nephritis in patients with systemic lupus erythematosus. Clin Nephrol. 2018;89(4):277–85.CrossRef Yang TH, Wu TH, Chang YL, Liao HT, Hsu CC, Tsai CY, Chou YC. Cyclosporine for the treatment of lupus nephritis in patients with systemic lupus erythematosus. Clin Nephrol. 2018;89(4):277–85.CrossRef
50.
Zurück zum Zitat Jesus D, Rodrigues M, da Silva JAP, Inês L. Multitarget therapy of mycophenolate mofetil and cyclosporine A for induction treatment of refractory lupus nephritis. Lupus. 2018;27(8):1358–62.CrossRef Jesus D, Rodrigues M, da Silva JAP, Inês L. Multitarget therapy of mycophenolate mofetil and cyclosporine A for induction treatment of refractory lupus nephritis. Lupus. 2018;27(8):1358–62.CrossRef
51.
Zurück zum Zitat Xu F, Chen ZL, Jin WJ, Xie QD, Shi XH. Ideal therapeutic range of cyclosporine in whole blood in kidney-transplanted patients. Int J Clin Pharmacol Res. 1993;13(4):221–4.PubMed Xu F, Chen ZL, Jin WJ, Xie QD, Shi XH. Ideal therapeutic range of cyclosporine in whole blood in kidney-transplanted patients. Int J Clin Pharmacol Res. 1993;13(4):221–4.PubMed
52.
Zurück zum Zitat Van Gelder T, Meur YL, Shaw LM, et al. Therapeutic drug monitoring of mycophenolate mofetil in transplantation. Ther Drug Monit. 2006;28(2):145–54.CrossRef Van Gelder T, Meur YL, Shaw LM, et al. Therapeutic drug monitoring of mycophenolate mofetil in transplantation. Ther Drug Monit. 2006;28(2):145–54.CrossRef
53.
Zurück zum Zitat van Leuven SI, Kastelein JJ, Allison AC, Hayden MR, Stroes ES. Mycophenolate mofetil (MMF): firing at the atherosclerotic plaque from different angles? Cardiovasc Res. 2006;69(2):341–7.CrossRef van Leuven SI, Kastelein JJ, Allison AC, Hayden MR, Stroes ES. Mycophenolate mofetil (MMF): firing at the atherosclerotic plaque from different angles? Cardiovasc Res. 2006;69(2):341–7.CrossRef
54.
Zurück zum Zitat Olejarz W, Bryk D, Zapolska-Downar D. Mycophenolate mofetil—a new atheropreventive drug? Acta Pol Pharm. 2014;71(3):353–61.PubMed Olejarz W, Bryk D, Zapolska-Downar D. Mycophenolate mofetil—a new atheropreventive drug? Acta Pol Pharm. 2014;71(3):353–61.PubMed
55.
Zurück zum Zitat Le Goff W, Peng DQ, Settle M, Brubaker G, Morton RE, Smith JD. Cyclosporin A traps ABCA1 at the plasma membrane and inhibits ABCA1-mediated lipid efflux to apolipoprotein A-I. Arterioscler Thromb Vasc Biol. 2004;24(11):2155–61.CrossRef Le Goff W, Peng DQ, Settle M, Brubaker G, Morton RE, Smith JD. Cyclosporin A traps ABCA1 at the plasma membrane and inhibits ABCA1-mediated lipid efflux to apolipoprotein A-I. Arterioscler Thromb Vasc Biol. 2004;24(11):2155–61.CrossRef
56.
Zurück zum Zitat Emeson EE, Shen ML. Accelerated atherosclerosis in hyperlipidemic C57BL/6 mice treated with cyclosporin A. Am J Pathol. 1993;142(6):1906–15.PubMedPubMedCentral Emeson EE, Shen ML. Accelerated atherosclerosis in hyperlipidemic C57BL/6 mice treated with cyclosporin A. Am J Pathol. 1993;142(6):1906–15.PubMedPubMedCentral
57.
Zurück zum Zitat Ditiatkovski M, Neelisetti VN, Cui HL, Malesevic M, Fischer G, Bukrinsky M, Sviridov D. Inhibition of extracellular cyclophilins with cyclosporine analog and development of atherosclerosis in apolipoprotein E-deficient mice. J Pharmacol Exp Ther. 2015;353(3):490–5.CrossRef Ditiatkovski M, Neelisetti VN, Cui HL, Malesevic M, Fischer G, Bukrinsky M, Sviridov D. Inhibition of extracellular cyclophilins with cyclosporine analog and development of atherosclerosis in apolipoprotein E-deficient mice. J Pharmacol Exp Ther. 2015;353(3):490–5.CrossRef
58.
Zurück zum Zitat Jin S, Mathis AS, Rosenblatt J, Minko T, Friedman GS, Gioia K, Serur DS, Knipp GT. Insights into cyclosporine A-induced atherosclerotic risk in transplant recipients: macrophage scavenger receptor regulation. Transplantation. 2004;77(4):497–504.CrossRef Jin S, Mathis AS, Rosenblatt J, Minko T, Friedman GS, Gioia K, Serur DS, Knipp GT. Insights into cyclosporine A-induced atherosclerotic risk in transplant recipients: macrophage scavenger receptor regulation. Transplantation. 2004;77(4):497–504.CrossRef
59.
Zurück zum Zitat Gueguen Y, Ferrari L, Souidi M, Batt AM, Lutton C, Siest G, Visvikis S. Compared effect of immunosuppressive drugs cyclosporine A and rapamycin on cholesterol homeostasis key enzymes CYP27A1 and HMG-CoA reductase. Basic Clin Pharmacol Toxicol. 2007;100(6):392–7.CrossRef Gueguen Y, Ferrari L, Souidi M, Batt AM, Lutton C, Siest G, Visvikis S. Compared effect of immunosuppressive drugs cyclosporine A and rapamycin on cholesterol homeostasis key enzymes CYP27A1 and HMG-CoA reductase. Basic Clin Pharmacol Toxicol. 2007;100(6):392–7.CrossRef
60.
Zurück zum Zitat Nagao K, Maeda M, Manucat NB, Ueda K. Cyclosporine A and PSC833 inhibit ABCA1 function via direct binding. Biochim Biophys Acta. 2013;1831:398–406.CrossRef Nagao K, Maeda M, Manucat NB, Ueda K. Cyclosporine A and PSC833 inhibit ABCA1 function via direct binding. Biochim Biophys Acta. 2013;1831:398–406.CrossRef
61.
Zurück zum Zitat Wong BX, Kyle RA, Myhill PC, Croft KD, Quinn CM, Jessup W, Yeap BB. Dyslipidemic diabetic serum increases lipid accumulation and expression of stearoyl-CoA desaturase in human macrophages. Lipids. 2011;46(10):931–41.CrossRef Wong BX, Kyle RA, Myhill PC, Croft KD, Quinn CM, Jessup W, Yeap BB. Dyslipidemic diabetic serum increases lipid accumulation and expression of stearoyl-CoA desaturase in human macrophages. Lipids. 2011;46(10):931–41.CrossRef
Metadaten
Titel
Macrophage lipid accumulation in the presence of immunosuppressive drugs mycophenolate mofetil and cyclosporin A
verfasst von
Iryna Voloshyna
Isaac Teboul
Lora J. Kasselman
Michael Salama
Steven E. Carsons
Joshua DeLeon
Joseph Mattana
Nobuyuki Miyawaki
Allison B. Reiss
Publikationsdatum
21.06.2019
Verlag
Springer International Publishing
Erschienen in
Inflammation Research / Ausgabe 9/2019
Print ISSN: 1023-3830
Elektronische ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-019-01262-8

Weitere Artikel der Ausgabe 9/2019

Inflammation Research 9/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.