Skip to main content
Erschienen in: Seminars in Immunopathology 6/2018

10.10.2018 | Review

Macrophage-microbe interaction: lessons learned from the pathogen Mycobacterium tuberculosis

verfasst von: Somdeb BoseDasgupta, Jean Pieters

Erschienen in: Seminars in Immunopathology | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

Macrophages, being the cornerstone of the immune system, have adapted the ancient nutrient acquisition mechanism of phagocytosis to engulf various infectious organisms thereby helping to orchestrate an appropriate host response. Phagocytosis refers to the process of internalization and degradation of particulate material, damaged and senescent cells and microorganisms by specialized cells, after which the vesicle containing the ingested particle, the phagosome, matures into acidic phagolysosomes upon fusion with hydrolytic enzyme-containing lysosomes. The destructive power of the macrophage is further exacerbated through the induction of macrophage activation upon a variety of inflammatory stimuli. Despite being the end-point for many phagocytosed microbes, the macrophage can also serve as an intracellular survival niche for a number of intracellular microorganisms. One microbe that is particularly successful at surviving within macrophages is the pathogen Mycobacterium tuberculosis, which can efficiently manipulate the macrophage at several levels, including modulation of the phagocytic pathway as well as interfering with a number of immune activation pathways that normally would lead to eradication of the internalized bacilli. M. tuberculosis excels at circumventing destruction within macrophages, thus establishing itself successfully for prolonged times within the macrophage. In this contribution, we describe a number of general features of macrophages in the context of their function to clear an infection, and highlight the strategies employed by M. tuberculosis to counter macrophage attack. Interestingly, research on the evasion tactics employed by M. tuberculosis within macrophages not only helps to design strategies to curb tuberculosis, but also allows a better understanding of host cell biology.
Literatur
1.
Zurück zum Zitat Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17(1):593–623PubMedCrossRef Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17(1):593–623PubMedCrossRef
3.
Zurück zum Zitat Snelgrove RJ, Goulding J, Didierlaurent AM, Lyonga D, Vekaria S, Edwards L, Gwyer E, Sedgwick JD, Barclay AN, Hussell T (2008) A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat Immunol 9(9):1074–1083PubMedCrossRef Snelgrove RJ, Goulding J, Didierlaurent AM, Lyonga D, Vekaria S, Edwards L, Gwyer E, Sedgwick JD, Barclay AN, Hussell T (2008) A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat Immunol 9(9):1074–1083PubMedCrossRef
4.
Zurück zum Zitat Wert SE, Yoshida M, LeVine AM, Ikegami M, Jones T, Ross GF, Fisher JH, Korfhagen TR, Whitsett JA (2000) Increased metalloproteinase activity, oxidant production, and emphysema in surfactant protein D gene-inactivated mice. Proc Natl Acad Sci U S A 97(11):5972–5977PubMedPubMedCentralCrossRef Wert SE, Yoshida M, LeVine AM, Ikegami M, Jones T, Ross GF, Fisher JH, Korfhagen TR, Whitsett JA (2000) Increased metalloproteinase activity, oxidant production, and emphysema in surfactant protein D gene-inactivated mice. Proc Natl Acad Sci U S A 97(11):5972–5977PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE (2013) Kupffer cells in the liver, comprehensive physiology, Wiley Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE (2013) Kupffer cells in the liver, comprehensive physiology, Wiley
6.
Zurück zum Zitat Klei TRL, Meinderts SM, van den Berg TK, van Bruggen R (2017) From the cradle to the grave: the role of macrophages in erythropoiesis and erythrophagocytosis. Front Immunol 8:73PubMedPubMedCentralCrossRef Klei TRL, Meinderts SM, van den Berg TK, van Bruggen R (2017) From the cradle to the grave: the role of macrophages in erythropoiesis and erythrophagocytosis. Front Immunol 8:73PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Ruggiero MG, Ferretti L, Glomski C, Pica A (2013) Erythrophagocytosis in circulating blood of loggerhead turtles Caretta caretta: the pitting of Heinz bodies. J Exp Zool A Ecol Genet Physiol 321(3):144–150PubMedCrossRef Ruggiero MG, Ferretti L, Glomski C, Pica A (2013) Erythrophagocytosis in circulating blood of loggerhead turtles Caretta caretta: the pitting of Heinz bodies. J Exp Zool A Ecol Genet Physiol 321(3):144–150PubMedCrossRef
8.
Zurück zum Zitat de Back DZ, Kostova EB, van Kraaij M, van den Berg TK, van Bruggen R (2014) Of macrophages and red blood cells; a complex love story. Front Physiol 5:9PubMedPubMedCentral de Back DZ, Kostova EB, van Kraaij M, van den Berg TK, van Bruggen R (2014) Of macrophages and red blood cells; a complex love story. Front Physiol 5:9PubMedPubMedCentral
9.
Zurück zum Zitat Manwani D, Bieker JJ (2008) Chapter 2 the erythroblastic island. Red cell development. Elsevier, pp 23–53 Manwani D, Bieker JJ (2008) Chapter 2 the erythroblastic island. Red cell development. Elsevier, pp 23–53
11.
Zurück zum Zitat Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2012) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229(2):176–185PubMedCrossRef Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2012) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229(2):176–185PubMedCrossRef
12.
Zurück zum Zitat Rabinovitch M (1995) Professional and non-professional phagocytes: an introduction. Trends Cell Biol 5(3):85–87PubMedCrossRef Rabinovitch M (1995) Professional and non-professional phagocytes: an introduction. Trends Cell Biol 5(3):85–87PubMedCrossRef
13.
Zurück zum Zitat Dersch P (2002) Molecular and cellular mechanisms of bacterial entry into host cells, contributions to microbiology. KARGER, pp 183–209 Dersch P (2002) Molecular and cellular mechanisms of bacterial entry into host cells, contributions to microbiology. KARGER, pp 183–209
14.
Zurück zum Zitat Kaufmann SHE, Dorhoi A (2016) Molecular determinants in phagocyte-bacteria interactions. Immunity 44(3):476–491PubMedCrossRef Kaufmann SHE, Dorhoi A (2016) Molecular determinants in phagocyte-bacteria interactions. Immunity 44(3):476–491PubMedCrossRef
15.
Zurück zum Zitat Sarantis H, Grinstein S (2012) Subversion of phagocytosis for pathogen survival. Cell Host Microbe 12(4):419–431PubMedCrossRef Sarantis H, Grinstein S (2012) Subversion of phagocytosis for pathogen survival. Cell Host Microbe 12(4):419–431PubMedCrossRef
16.
Zurück zum Zitat Mitchell G, Chen C, Portnoy DA (2016) Strategies used by bacteria to grow in macrophages. Microbiol Spectr 4(3)MCHD-0012-2015 Mitchell G, Chen C, Portnoy DA (2016) Strategies used by bacteria to grow in macrophages. Microbiol Spectr 4(3)MCHD-0012-2015
17.
Zurück zum Zitat Woolard MD, Frelinger JA (2008) Outsmarting the host: bacteria modulating the immune response. Immunol Res 41(3):188–202PubMedCrossRef Woolard MD, Frelinger JA (2008) Outsmarting the host: bacteria modulating the immune response. Immunol Res 41(3):188–202PubMedCrossRef
18.
Zurück zum Zitat Andersson K, Carballeira N, Magnusson K-E, Persson C, Stendahl O, Wolf-Watz H, Fällman M (1996) YopH of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis. Mol Microbiol 20(5):1057–1069PubMedCrossRef Andersson K, Carballeira N, Magnusson K-E, Persson C, Stendahl O, Wolf-Watz H, Fällman M (1996) YopH of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis. Mol Microbiol 20(5):1057–1069PubMedCrossRef
19.
Zurück zum Zitat McGhie EJ, Brawn LC, Hume PJ, Humphreys D, Koronakis V (2009) Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol 12(1):117–124PubMedPubMedCentralCrossRef McGhie EJ, Brawn LC, Hume PJ, Humphreys D, Koronakis V (2009) Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol 12(1):117–124PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Kaniga K, Uralil J, Bliska JB, Galán JE (1996) A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurlum. Mol Microbiol 21(3):633–641PubMedCrossRef Kaniga K, Uralil J, Bliska JB, Galán JE (1996) A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurlum. Mol Microbiol 21(3):633–641PubMedCrossRef
21.
Zurück zum Zitat Fu Y, Galan JE (1999) A salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401(6750):293–297PubMedCrossRef Fu Y, Galan JE (1999) A salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401(6750):293–297PubMedCrossRef
22.
Zurück zum Zitat Johnson R, Byrne A, Berger CN, Klemm E, Crepin VF, Dougan G, Frankel G (2017) The type III secretion system effector SptP of Salmonella enterica Serovar Typhi. J Bacteriol 199(4) Johnson R, Byrne A, Berger CN, Klemm E, Crepin VF, Dougan G, Frankel G (2017) The type III secretion system effector SptP of Salmonella enterica Serovar Typhi. J Bacteriol 199(4)
23.
Zurück zum Zitat Bakowski MA, Braun V, Lam GY, Yeung T, Do Heo W, Meyer T, Finlay BB, Grinstein S, Brumell JH (2010) The phosphoinositide phosphatase SopB manipulates membrane surface charge and trafficking of the Salmonella-containing vacuole. Cell Host Microbe 7(6):453–462PubMedCrossRef Bakowski MA, Braun V, Lam GY, Yeung T, Do Heo W, Meyer T, Finlay BB, Grinstein S, Brumell JH (2010) The phosphoinositide phosphatase SopB manipulates membrane surface charge and trafficking of the Salmonella-containing vacuole. Cell Host Microbe 7(6):453–462PubMedCrossRef
24.
Zurück zum Zitat Konradt C, Frigimelica E, Nothelfer K, Puhar A, Salgado-Pabon W, di Bartolo V, Scott-Algara D, Cristina D, Rodrigues PJ, Sansonetti AP (2011) The Shigella flexneri type three secretion system effector IpgD inhibits T cell migration by manipulating host phosphoinositide metabolism. Cell Host Microbe 9(4):263–272PubMedCrossRef Konradt C, Frigimelica E, Nothelfer K, Puhar A, Salgado-Pabon W, di Bartolo V, Scott-Algara D, Cristina D, Rodrigues PJ, Sansonetti AP (2011) The Shigella flexneri type three secretion system effector IpgD inhibits T cell migration by manipulating host phosphoinositide metabolism. Cell Host Microbe 9(4):263–272PubMedCrossRef
25.
Zurück zum Zitat Hsu F, Mao Y (2015) The structure of phosphoinositide phosphatases: insights into substrate specificity and catalysis. Biochim Biophys Acta Mol Cell Biol Lipids 1851(6):698–710CrossRef Hsu F, Mao Y (2015) The structure of phosphoinositide phosphatases: insights into substrate specificity and catalysis. Biochim Biophys Acta Mol Cell Biol Lipids 1851(6):698–710CrossRef
26.
Zurück zum Zitat Ibarra JA, Steele-Mortimer O (2009) Salmonella- the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell Microbiol 11(11):1579–1586PubMedPubMedCentralCrossRef Ibarra JA, Steele-Mortimer O (2009) Salmonella- the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell Microbiol 11(11):1579–1586PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Haraga A, West TE, Brittnacher MJ, Skerrett SJ, Miller SI (2008) Burkholderia thailandensis as a model system for the study of the virulence-associated type III secretion system of Burkholderia pseudomallei. Infect Immun 76(11):5402–5411PubMedPubMedCentralCrossRef Haraga A, West TE, Brittnacher MJ, Skerrett SJ, Miller SI (2008) Burkholderia thailandensis as a model system for the study of the virulence-associated type III secretion system of Burkholderia pseudomallei. Infect Immun 76(11):5402–5411PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Castro-Gomes T, Cardoso MS, DaRocha WD, Laibida LA, Nascimento AMA, Zuccherato LW, Horta MF, Bemquerer MP, Teixeira SMR (2014) Identification of secreted virulence factors of Chromobacterium violaceum. J Microbiol 52(4):350–353PubMedCrossRef Castro-Gomes T, Cardoso MS, DaRocha WD, Laibida LA, Nascimento AMA, Zuccherato LW, Horta MF, Bemquerer MP, Teixeira SMR (2014) Identification of secreted virulence factors of Chromobacterium violaceum. J Microbiol 52(4):350–353PubMedCrossRef
29.
Zurück zum Zitat Theriot JA (1995) The cell biology of infection by intracellular bacterial pathogens. Annu Rev Cell Dev Biol 11:213PubMedCrossRef Theriot JA (1995) The cell biology of infection by intracellular bacterial pathogens. Annu Rev Cell Dev Biol 11:213PubMedCrossRef
30.
Zurück zum Zitat Radoshevich L, Cossart P (2018) Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol 16(1):32–46PubMedCrossRef Radoshevich L, Cossart P (2018) Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol 16(1):32–46PubMedCrossRef
31.
Zurück zum Zitat Okagaki LH, Strain AK, Nielsen JN, Charlier C, Baltes NJ, Chretien F, Heitman J, Dromer F, Nielsen K (2010) Cryptococcal cell morphology affects host cell interactions and pathogenicity. PLoS Pathog 6(6):e1000953PubMedPubMedCentralCrossRef Okagaki LH, Strain AK, Nielsen JN, Charlier C, Baltes NJ, Chretien F, Heitman J, Dromer F, Nielsen K (2010) Cryptococcal cell morphology affects host cell interactions and pathogenicity. PLoS Pathog 6(6):e1000953PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Zaragoza O, Garcia-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodriguez-Tudela JL, Casadevall A (2010) Fungal cell gigantism during mammalian infection. PLoS Pathog 6(6):e1000945PubMedPubMedCentralCrossRef Zaragoza O, Garcia-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodriguez-Tudela JL, Casadevall A (2010) Fungal cell gigantism during mammalian infection. PLoS Pathog 6(6):e1000945PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Dorhoi A, Kaufmann SH (2016) Pathology and immune reactivity: understanding multidimensionality in pulmonary tuberculosis. Semin Immunopathol 38(2):153–166PubMedCrossRef Dorhoi A, Kaufmann SH (2016) Pathology and immune reactivity: understanding multidimensionality in pulmonary tuberculosis. Semin Immunopathol 38(2):153–166PubMedCrossRef
35.
Zurück zum Zitat Stutz MD, Clark MP, Doerflinger M, Pellegrini M (2017) Mycobacterium tuberculosis : rewiring host cell signaling to promote infection. J Leukoc Biol 103(2):259–268PubMedCrossRef Stutz MD, Clark MP, Doerflinger M, Pellegrini M (2017) Mycobacterium tuberculosis : rewiring host cell signaling to promote infection. J Leukoc Biol 103(2):259–268PubMedCrossRef
36.
Zurück zum Zitat Henderson HJ, Dannenberg AM Jr, Lurie MB (1963) Phagocytosis of tubercle bacilli by rabbit pulmonary alveolar macrophages and its relation to native resistance to tuberculosis. J Immunol (91):553–556 Henderson HJ, Dannenberg AM Jr, Lurie MB (1963) Phagocytosis of tubercle bacilli by rabbit pulmonary alveolar macrophages and its relation to native resistance to tuberculosis. J Immunol (91):553–556
37.
Zurück zum Zitat Teitelbaum R, Schubert W, Gunther L, Kress Y, Macaluso F, Pollard JW, McMurray DN, Bloom BR (1999) The M cell as a portal of entry to the lung for the bacterial pathogen Mycobacterium tuberculosis. Immunity 10(6):641–650PubMedCrossRef Teitelbaum R, Schubert W, Gunther L, Kress Y, Macaluso F, Pollard JW, McMurray DN, Bloom BR (1999) The M cell as a portal of entry to the lung for the bacterial pathogen Mycobacterium tuberculosis. Immunity 10(6):641–650PubMedCrossRef
38.
Zurück zum Zitat Cambier CJ, O’Leary SM, O’Sullivan MP, Keane J, Ramakrishnan L (2017) Phenolic glycolipid facilitates mycobacterial escape from microbicidal tissue-resident macrophages. Immunity 47(3):552–565PubMedPubMedCentralCrossRef Cambier CJ, O’Leary SM, O’Sullivan MP, Keane J, Ramakrishnan L (2017) Phenolic glycolipid facilitates mycobacterial escape from microbicidal tissue-resident macrophages. Immunity 47(3):552–565PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Pieters J (2008) Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe 3(6):399–407PubMedCrossRef Pieters J (2008) Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe 3(6):399–407PubMedCrossRef
41.
Zurück zum Zitat Talaue MT, Venketaraman V, Hazbon MH, Peteroy-Kelly M, Seth A, Colangeli R, Alland D, Connell ND (2006) Arginine homeostasis in J774.1 macrophages in the context of Mycobacterium bovis BCG infection. J Bacteriol 188(13):4830–4840PubMedPubMedCentralCrossRef Talaue MT, Venketaraman V, Hazbon MH, Peteroy-Kelly M, Seth A, Colangeli R, Alland D, Connell ND (2006) Arginine homeostasis in J774.1 macrophages in the context of Mycobacterium bovis BCG infection. J Bacteriol 188(13):4830–4840PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Das P, Lahiri A, Lahiri A, Chakravortty D (2010) Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator. PLoS Pathog 6(6):e1000899PubMedPubMedCentralCrossRef Das P, Lahiri A, Lahiri A, Chakravortty D (2010) Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator. PLoS Pathog 6(6):e1000899PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A 97(16):8841–8848PubMedPubMedCentralCrossRef Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A 97(16):8841–8848PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Reiling N, Blumenthal A, Flad HD, Ernst M, Ehlers S (2001) Mycobacteria-induced TNF- and IL-10 formation by human macrophages is differentially regulated at the level of mitogen-activated protein kinase activity. J Immunol 167(6):3339–3345PubMedCrossRef Reiling N, Blumenthal A, Flad HD, Ernst M, Ehlers S (2001) Mycobacteria-induced TNF- and IL-10 formation by human macrophages is differentially regulated at the level of mitogen-activated protein kinase activity. J Immunol 167(6):3339–3345PubMedCrossRef
45.
46.
Zurück zum Zitat Peranzoni E, Marigo I, Dolcetti L, Ugel S, Sonda N, Taschin E, Mantelli B, Bronte V, Zanovello P (2007) Role of arginine metabolism in immunity and immunopathology. Immunobiology 212(9–10):795–812PubMed Peranzoni E, Marigo I, Dolcetti L, Ugel S, Sonda N, Taschin E, Mantelli B, Bronte V, Zanovello P (2007) Role of arginine metabolism in immunity and immunopathology. Immunobiology 212(9–10):795–812PubMed
47.
Zurück zum Zitat McClean CM, Tobin DM (2016) Macrophage form, function, and phenotype in mycobacterial infection: lessons from tuberculosis and other diseases. Pathog Dis 74(7):ftw068PubMedPubMedCentralCrossRef McClean CM, Tobin DM (2016) Macrophage form, function, and phenotype in mycobacterial infection: lessons from tuberculosis and other diseases. Pathog Dis 74(7):ftw068PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Fratazzi C, Arbeit RD, Carini C, Balcewicz-Sablinska MK, Keane J, Kornfeld H, Remold HG (1999) Macrophage apoptosis in mycobacterial infections. J Leukoc Biol 66(5):763–764PubMedCrossRef Fratazzi C, Arbeit RD, Carini C, Balcewicz-Sablinska MK, Keane J, Kornfeld H, Remold HG (1999) Macrophage apoptosis in mycobacterial infections. J Leukoc Biol 66(5):763–764PubMedCrossRef
49.
Zurück zum Zitat van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, Brenner M, Peters PJ (2007) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129(7):1287–1298PubMedCrossRef van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, Brenner M, Peters PJ (2007) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129(7):1287–1298PubMedCrossRef
50.
Zurück zum Zitat Sundaramurthy V, Korf H, Singla A, Scherr N, Nguyen L, Ferrari G, Landmann R, Huygen K, Pieters J (2017) Survival of Mycobacterium tuberculosis and Mycobacterium bovis BCG in lysosomes in vivo. Microbes Infect 19(11):515–526PubMedCrossRef Sundaramurthy V, Korf H, Singla A, Scherr N, Nguyen L, Ferrari G, Landmann R, Huygen K, Pieters J (2017) Survival of Mycobacterium tuberculosis and Mycobacterium bovis BCG in lysosomes in vivo. Microbes Infect 19(11):515–526PubMedCrossRef
51.
Zurück zum Zitat Levitte S, Adams KN, Berg RD, Cosma CL, Urdahl KB, Ramakrishnan L (2016) Mycobacterial acid tolerance enables phagolysosomal survival and establishment of tuberculous infection in vivo. Cell Host Microbe 20(2):250–258PubMedPubMedCentralCrossRef Levitte S, Adams KN, Berg RD, Cosma CL, Urdahl KB, Ramakrishnan L (2016) Mycobacterial acid tolerance enables phagolysosomal survival and establishment of tuberculous infection in vivo. Cell Host Microbe 20(2):250–258PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Kim M-J, Wainwright HC, Locketz M, Bekker L-G, Walther GB, Dittrich C, Visser A, Wang W, Hsu F-F, Wiehart U, Tsenova L, Kaplan G, Russell DG (2010) Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med 2(7):258–274PubMedPubMedCentralCrossRef Kim M-J, Wainwright HC, Locketz M, Bekker L-G, Walther GB, Dittrich C, Visser A, Wang W, Hsu F-F, Wiehart U, Tsenova L, Kaplan G, Russell DG (2010) Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med 2(7):258–274PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Ramakrishnan L (2012) Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol 12(5):352–366PubMedCrossRef Ramakrishnan L (2012) Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol 12(5):352–366PubMedCrossRef
54.
Zurück zum Zitat Russell DG, Cardona P-J, Kim M-J, Allain S, Altare F (2009) Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol 10(9):943–948PubMedPubMedCentralCrossRef Russell DG, Cardona P-J, Kim M-J, Allain S, Altare F (2009) Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol 10(9):943–948PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Ferguson JS, Weis JJ, Martin JL, Schlesinger LS (2004) Complement protein C3 binding to Mycobacterium tuberculosis is initiated by the classical pathway in human Bronchoalveolar lavage fluid. Infect Immun 72(5):2564–2573PubMedPubMedCentralCrossRef Ferguson JS, Weis JJ, Martin JL, Schlesinger LS (2004) Complement protein C3 binding to Mycobacterium tuberculosis is initiated by the classical pathway in human Bronchoalveolar lavage fluid. Infect Immun 72(5):2564–2573PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Kang PB, Azad AK, Torrelles JB, Kaufman TM, Beharka A, Tibesar E, DesJardin LE, Schlesinger LS (2005) The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J Exp Med 202(7):987–999PubMedPubMedCentralCrossRef Kang PB, Azad AK, Torrelles JB, Kaufman TM, Beharka A, Tibesar E, DesJardin LE, Schlesinger LS (2005) The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J Exp Med 202(7):987–999PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Pasula R, Downing JF, Wright JR, Kachel DL, Davis TE, Martin WJ (1997) Surfactant protein a (SP-A) mediates attachment of Mycobacterium tuberculosis to murine alveolar macrophages. Am J Respir Cell Mol Biol 17(2):209–217PubMedCrossRef Pasula R, Downing JF, Wright JR, Kachel DL, Davis TE, Martin WJ (1997) Surfactant protein a (SP-A) mediates attachment of Mycobacterium tuberculosis to murine alveolar macrophages. Am J Respir Cell Mol Biol 17(2):209–217PubMedCrossRef
58.
Zurück zum Zitat Dunne DW, Resnick D, Greenberg J, Krieger M, Joiner KA (1994) The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci 91(5):1863–1867PubMedCrossRefPubMedCentral Dunne DW, Resnick D, Greenberg J, Krieger M, Joiner KA (1994) The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci 91(5):1863–1867PubMedCrossRefPubMedCentral
59.
Zurück zum Zitat Kumar SK, Singh P, Sinha S (2015) Naturally produced opsonizing antibodies restrict the survival of Mycobacterium tuberculosisin human macrophages by augmenting phagosome maturation. Open Biology 5(12):150171PubMedPubMedCentralCrossRef Kumar SK, Singh P, Sinha S (2015) Naturally produced opsonizing antibodies restrict the survival of Mycobacterium tuberculosisin human macrophages by augmenting phagosome maturation. Open Biology 5(12):150171PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Casadevall A (2016) To be or not be a (functional) antibody against TB. Cell 167(2):306–307PubMedCrossRef Casadevall A (2016) To be or not be a (functional) antibody against TB. Cell 167(2):306–307PubMedCrossRef
61.
Zurück zum Zitat Lu LL, Chung AW, Rosebrock TR, Ghebremichael M, Yu WH, Grace PS, Schoen MK, Tafesse F, Martin C, Leung V, Mahan AE, Sips M, Kumar MP, Tedesco J, Robinson H, Tkachenko E, Draghi M, Freedberg KJ, Streeck H, Suscovich TJ, Lauffenburger DA, Restrepo BI, Day C, Fortune SM, Alter G (2016) A functional role for antibodies in tuberculosis. Cell 167(2):433–443PubMedPubMedCentralCrossRef Lu LL, Chung AW, Rosebrock TR, Ghebremichael M, Yu WH, Grace PS, Schoen MK, Tafesse F, Martin C, Leung V, Mahan AE, Sips M, Kumar MP, Tedesco J, Robinson H, Tkachenko E, Draghi M, Freedberg KJ, Streeck H, Suscovich TJ, Lauffenburger DA, Restrepo BI, Day C, Fortune SM, Alter G (2016) A functional role for antibodies in tuberculosis. Cell 167(2):433–443PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13PubMedCrossRef Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13PubMedCrossRef
63.
Zurück zum Zitat Ferrandon D, Imler J-L, Hoffmann JA (2004) Sensing infection in Drosophila: toll and beyond. Semin Immunol 16(1):43–53PubMedCrossRef Ferrandon D, Imler J-L, Hoffmann JA (2004) Sensing infection in Drosophila: toll and beyond. Semin Immunol 16(1):43–53PubMedCrossRef
65.
Zurück zum Zitat Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7(2):131–137PubMedCrossRef Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7(2):131–137PubMedCrossRef
66.
Zurück zum Zitat Tailleux L, Schwartz O, Herrmann JL, Pivert E, Jackson M, Amara A, Legres L, Dreher D, Nicod LP, Gluckman JC, Lagrange PH, Gicquel B, Neyrolles O (2003) DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197(1):121–127PubMedPubMedCentralCrossRef Tailleux L, Schwartz O, Herrmann JL, Pivert E, Jackson M, Amara A, Legres L, Dreher D, Nicod LP, Gluckman JC, Lagrange PH, Gicquel B, Neyrolles O (2003) DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197(1):121–127PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Geijtenbeek TB, Van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CM, Appelmelk B, Van Kooyk Y (2003) Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 197(1):7–17PubMedPubMedCentralCrossRef Geijtenbeek TB, Van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CM, Appelmelk B, Van Kooyk Y (2003) Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 197(1):7–17PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Shams H, Wizel B, Lakey DL, Samten B, Vankayalapati R, Valdivia RH, Kitchens RL, Griffith DE, Barnes PF (2003) The CD14 receptor does not mediate entry of Mycobacterium tuberculosis into human mononuclear phagocytes. FEMS Immunology & Medical Microbiology 36(1–2):63–69CrossRef Shams H, Wizel B, Lakey DL, Samten B, Vankayalapati R, Valdivia RH, Kitchens RL, Griffith DE, Barnes PF (2003) The CD14 receptor does not mediate entry of Mycobacterium tuberculosis into human mononuclear phagocytes. FEMS Immunology & Medical Microbiology 36(1–2):63–69CrossRef
70.
Zurück zum Zitat Yamashiro LH, Oliveira SC, Báfica A (2014) Innate immune sensing of nucleic acids from mycobacteria. Microbes Infect 16(12):991–997PubMedCrossRef Yamashiro LH, Oliveira SC, Báfica A (2014) Innate immune sensing of nucleic acids from mycobacteria. Microbes Infect 16(12):991–997PubMedCrossRef
71.
Zurück zum Zitat Yadav M, Schorey JS (2006) The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 108(9):3168–3175PubMedPubMedCentralCrossRef Yadav M, Schorey JS (2006) The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 108(9):3168–3175PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Armstrong JA, Hart PD (1971) Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 134(3 Pt 1):713–740PubMedPubMedCentralCrossRef Armstrong JA, Hart PD (1971) Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 134(3 Pt 1):713–740PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Russell DG (2001) Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2(8):569–577PubMedCrossRef Russell DG (2001) Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2(8):569–577PubMedCrossRef
74.
Zurück zum Zitat Nguyen L, Pieters J (2009) Mycobacterial subversion of chemotherapeutic reagents and host defense tactics: challenges in tuberculosis drug development. Annu Rev Pharmacol Toxicol 49:427–453PubMedCrossRef Nguyen L, Pieters J (2009) Mycobacterial subversion of chemotherapeutic reagents and host defense tactics: challenges in tuberculosis drug development. Annu Rev Pharmacol Toxicol 49:427–453PubMedCrossRef
75.
Zurück zum Zitat Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, Allen RD, Gluck SL, Heuser J, Russell DG (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263:678–681PubMedCrossRef Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, Allen RD, Gluck SL, Heuser J, Russell DG (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263:678–681PubMedCrossRef
76.
Zurück zum Zitat Warner DF, Mizrahi V (2007) The survival kit of Mycobacterium tuberculosis. Nat Med 13(3):282–284PubMedCrossRef Warner DF, Mizrahi V (2007) The survival kit of Mycobacterium tuberculosis. Nat Med 13(3):282–284PubMedCrossRef
77.
Zurück zum Zitat Ferrari G, Langen H, Naito M, Pieters J (1999) A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97(4):435–447PubMedCrossRef Ferrari G, Langen H, Naito M, Pieters J (1999) A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97(4):435–447PubMedCrossRef
78.
Zurück zum Zitat Gatfield J, Pieters J (2000) Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288(5471):1647–1651PubMedCrossRef Gatfield J, Pieters J (2000) Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288(5471):1647–1651PubMedCrossRef
79.
Zurück zum Zitat Jayachandran R, Sundaramurthy V, Combaluzier B, Mueller P, Korf H, Huygen K, Miyazaki T, Albrecht I, Massner J, Pieters J (2007) Survival of mycobacteria in macrophages is mediated by Coronin 1-dependent activation of calcineurin. Cell 130(1):37–50PubMedCrossRef Jayachandran R, Sundaramurthy V, Combaluzier B, Mueller P, Korf H, Huygen K, Miyazaki T, Albrecht I, Massner J, Pieters J (2007) Survival of mycobacteria in macrophages is mediated by Coronin 1-dependent activation of calcineurin. Cell 130(1):37–50PubMedCrossRef
80.
Zurück zum Zitat Pieters J, Müller P, Jayachandran R (2013) On guard: coronin proteins in innate and adaptive immunity. Nat Rev Immunol 13(7):510–518PubMedCrossRef Pieters J, Müller P, Jayachandran R (2013) On guard: coronin proteins in innate and adaptive immunity. Nat Rev Immunol 13(7):510–518PubMedCrossRef
81.
Zurück zum Zitat BoseDasgupta S, Pieters J (2014) Coronin 1 trimerization is essential to protect pathogenic mycobacteria within macrophages from lysosomal delivery. FEBS Lett 588(21):3898–3905PubMedCrossRef BoseDasgupta S, Pieters J (2014) Coronin 1 trimerization is essential to protect pathogenic mycobacteria within macrophages from lysosomal delivery. FEBS Lett 588(21):3898–3905PubMedCrossRef
82.
Zurück zum Zitat Kumar D, Nath L, Kamal MA, Varshney A, Jain A, Singh S, Rao KVS (2010) Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. Cell 140(5):731–743PubMedCrossRef Kumar D, Nath L, Kamal MA, Varshney A, Jain A, Singh S, Rao KVS (2010) Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. Cell 140(5):731–743PubMedCrossRef
83.
Zurück zum Zitat Mueller P, Massner J, Jayachandran R, Combaluzier B, Albrecht I, Gatfield J, Blum C, Ceredig R, Rodewald H-R, Rolink AG, Pieters J (2008) Regulation of T cell survival through coronin-1–mediated generation of inositol-1,4,5-trisphosphate and calcium mobilization after T cell receptor triggering. Nat Immunol 9(4):424–431PubMedCrossRef Mueller P, Massner J, Jayachandran R, Combaluzier B, Albrecht I, Gatfield J, Blum C, Ceredig R, Rodewald H-R, Rolink AG, Pieters J (2008) Regulation of T cell survival through coronin-1–mediated generation of inositol-1,4,5-trisphosphate and calcium mobilization after T cell receptor triggering. Nat Immunol 9(4):424–431PubMedCrossRef
84.
Zurück zum Zitat Shiow LR, Roadcap DW, Paris K, Watson SR, Grigorova IL, Lebet T, An J, Xu Y, Jenne CN, Föger N, Sorensen RU, Goodnow CC, Bear JE, Puck JM, Cyster JG (2008) The actin regulator coronin 1A is mutant in a thymic egress–deficient mouse strain and in a patient with severe combined immunodeficiency. Nat Immunol 9(11):1307–1315PubMedPubMedCentralCrossRef Shiow LR, Roadcap DW, Paris K, Watson SR, Grigorova IL, Lebet T, An J, Xu Y, Jenne CN, Föger N, Sorensen RU, Goodnow CC, Bear JE, Puck JM, Cyster JG (2008) The actin regulator coronin 1A is mutant in a thymic egress–deficient mouse strain and in a patient with severe combined immunodeficiency. Nat Immunol 9(11):1307–1315PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Haraldsson MK, Louis-Dit-Sully CA, Lawson BR, Sternik G, Santiago-Raber ML, Gascoigne NR, Theofilopoulos AN, Kono DH (2008) The lupus-related Lmb3 locus contains a disease-suppressing Coronin-1A gene mutation. Immunity 28(1):40–51PubMedPubMedCentralCrossRef Haraldsson MK, Louis-Dit-Sully CA, Lawson BR, Sternik G, Santiago-Raber ML, Gascoigne NR, Theofilopoulos AN, Kono DH (2008) The lupus-related Lmb3 locus contains a disease-suppressing Coronin-1A gene mutation. Immunity 28(1):40–51PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Lang MJ, Mori M, Ruer-Laventie J, Pieters J (2017) A Coronin 1–dependent decision switch in juvenile mice determines the population of the peripheral naive T cell compartment. J Immunol 199(7):2421–2431PubMedCrossRef Lang MJ, Mori M, Ruer-Laventie J, Pieters J (2017) A Coronin 1–dependent decision switch in juvenile mice determines the population of the peripheral naive T cell compartment. J Immunol 199(7):2421–2431PubMedCrossRef
87.
Zurück zum Zitat Jayachandran R, Gatfield J, Massner J, Albrecht I, Zanolari B, Pieters J (2008) RNA interference in J774 macrophages reveals a role for Coronin 1 in mycobacterial trafficking but not in actin-dependent processes. Mol Biol Cell 19(3):1241–1251PubMedPubMedCentralCrossRef Jayachandran R, Gatfield J, Massner J, Albrecht I, Zanolari B, Pieters J (2008) RNA interference in J774 macrophages reveals a role for Coronin 1 in mycobacterial trafficking but not in actin-dependent processes. Mol Biol Cell 19(3):1241–1251PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat BoseDasgupta S, Pieters J (2014) Inflammatory stimuli reprogram macrophage phagocytosis to macropinocytosis for the rapid elimination of pathogens. PLoS Pathog 10(1):e1003879PubMedPubMedCentralCrossRef BoseDasgupta S, Pieters J (2014) Inflammatory stimuli reprogram macrophage phagocytosis to macropinocytosis for the rapid elimination of pathogens. PLoS Pathog 10(1):e1003879PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Jeschke A, Haas A (2016) Deciphering the roles of phosphoinositide lipids in phagolysosome biogenesis. Communicative & integrative biology 9(3):e1174798CrossRef Jeschke A, Haas A (2016) Deciphering the roles of phosphoinositide lipids in phagolysosome biogenesis. Communicative & integrative biology 9(3):e1174798CrossRef
90.
Zurück zum Zitat Bohdanowicz M, Grinstein S (2013) Role of phospholipids in endocytosis, phagocytosis, and macropinocytosis. Physiol Rev 93(1):69–106PubMedCrossRef Bohdanowicz M, Grinstein S (2013) Role of phospholipids in endocytosis, phagocytosis, and macropinocytosis. Physiol Rev 93(1):69–106PubMedCrossRef
91.
Zurück zum Zitat Vieira OV, Harrison RE, Scott CC, Stenmark H, Alexander D, Liu J, Gruenberg J, Schreiber AD, Grinstein S (2004) Acquisition of Hrs, an essential component of phagosomal maturation is impaired by mycobacteria. Mol Cell Biol 24(10):4593–4604PubMedPubMedCentralCrossRef Vieira OV, Harrison RE, Scott CC, Stenmark H, Alexander D, Liu J, Gruenberg J, Schreiber AD, Grinstein S (2004) Acquisition of Hrs, an essential component of phagosomal maturation is impaired by mycobacteria. Mol Cell Biol 24(10):4593–4604PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Fratti RA, Backer JM, Gruenberg J, Corvera S, Deretic V (2001) Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 154(3):631–644PubMedPubMedCentralCrossRef Fratti RA, Backer JM, Gruenberg J, Corvera S, Deretic V (2001) Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 154(3):631–644PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Dickson EJ, Jensen JB, Hille B (2016) Regulation of calcium and phosphoinositides at endoplasmic reticulum–membrane junctions. Biochem Soc Trans 44(2):467–473PubMedPubMedCentralCrossRef Dickson EJ, Jensen JB, Hille B (2016) Regulation of calcium and phosphoinositides at endoplasmic reticulum–membrane junctions. Biochem Soc Trans 44(2):467–473PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Burman C, Ktistakis NT (2010) Regulation of autophagy by phosphatidylinositol 3-phosphate. FEBS Lett 584(7):1302–1312PubMedCrossRef Burman C, Ktistakis NT (2010) Regulation of autophagy by phosphatidylinositol 3-phosphate. FEBS Lett 584(7):1302–1312PubMedCrossRef
95.
Zurück zum Zitat Fairn GD, Grinstein S (2012) How nascent phagosomes mature to become phagolysosomes. Trends Immunol 33(8):397–405PubMedCrossRef Fairn GD, Grinstein S (2012) How nascent phagosomes mature to become phagolysosomes. Trends Immunol 33(8):397–405PubMedCrossRef
96.
Zurück zum Zitat Marat AL, Haucke V (2016) Phosphatidylinositol 3-phosphates—at the interface between cell signalling and membrane traffic. EMBO J 35(6):561–579PubMedPubMedCentralCrossRef Marat AL, Haucke V (2016) Phosphatidylinositol 3-phosphates—at the interface between cell signalling and membrane traffic. EMBO J 35(6):561–579PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Indrigo J, Hunter RL Jr, Actor JK (2003) Cord factor trehalose 6,6′-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages. Microbiology 149(Pt 8):2049–2059PubMedCrossRef Indrigo J, Hunter RL Jr, Actor JK (2003) Cord factor trehalose 6,6′-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages. Microbiology 149(Pt 8):2049–2059PubMedCrossRef
98.
Zurück zum Zitat Axelrod S, Oschkinat H, Enders J, Schlegel B, Brinkmann V, Kaufmann SHE, Haas A, Schaible UE (2008) Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide. Cell Microbiol 10(7):1530–1545PubMedCrossRef Axelrod S, Oschkinat H, Enders J, Schlegel B, Brinkmann V, Kaufmann SHE, Haas A, Schaible UE (2008) Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide. Cell Microbiol 10(7):1530–1545PubMedCrossRef
99.
Zurück zum Zitat Fratti RA et al (2003) Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc Natl Acad Sci U S A 100:5437PubMedPubMedCentralCrossRef Fratti RA et al (2003) Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc Natl Acad Sci U S A 100:5437PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Vergne I, Chua J, Deretic V (2003) Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J Exp Med 198(4):653–659PubMedPubMedCentralCrossRef Vergne I, Chua J, Deretic V (2003) Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J Exp Med 198(4):653–659PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Puri RV, Reddy PV, Tyagi AK (2013) Secreted acid phosphatase (SapM) of Mycobacterium tuberculosis is indispensable for arresting phagosomal maturation and growth of the pathogen in Guinea pig tissues. PLoS One 8(7):e70514PubMedPubMedCentralCrossRef Puri RV, Reddy PV, Tyagi AK (2013) Secreted acid phosphatase (SapM) of Mycobacterium tuberculosis is indispensable for arresting phagosomal maturation and growth of the pathogen in Guinea pig tissues. PLoS One 8(7):e70514PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Walburger A, Koul A, Ferrari G, Nguyen L, Prescianotto-Baschong C, Huygen K, Klebl B, Thompson C, Bacher G, Pieters J (2004) Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304(5678):1800–1804PubMedCrossRef Walburger A, Koul A, Ferrari G, Nguyen L, Prescianotto-Baschong C, Huygen K, Klebl B, Thompson C, Bacher G, Pieters J (2004) Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304(5678):1800–1804PubMedCrossRef
103.
Zurück zum Zitat Cowley S, Ko M, Pick N, Chow R, Downing KJ, Gordhan BG, Betts JC, Mizrahi V, Smith DA, Stokes RW, Av-Gay Y (2004) The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo. Mol Microbiol 52(6):1691–1702PubMedCrossRef Cowley S, Ko M, Pick N, Chow R, Downing KJ, Gordhan BG, Betts JC, Mizrahi V, Smith DA, Stokes RW, Av-Gay Y (2004) The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo. Mol Microbiol 52(6):1691–1702PubMedCrossRef
104.
Zurück zum Zitat Houben EN, Walburger A, Ferrari G, Nguyen L, Thompson CJ, Miess C, Vogel G, Mueller B, Pieters J (2009) Differential expression of a virulence factor in pathogenic and non-pathogenic mycobacteria. Mol Microbiol 72(1):41–52PubMedPubMedCentralCrossRef Houben EN, Walburger A, Ferrari G, Nguyen L, Thompson CJ, Miess C, Vogel G, Mueller B, Pieters J (2009) Differential expression of a virulence factor in pathogenic and non-pathogenic mycobacteria. Mol Microbiol 72(1):41–52PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat van der Woude AD, Stoop EJ, Stiess M, Wang S, Ummels R, van Stempvoort G, Piersma SR, Cascioferro A, Jimenez CR, Houben EN, Luirink J, Pieters J, van der Sar AM, Bitter W (2014) Analysis of SecA2-dependent substrates in Mycobacterium marinum identifies protein kinase G (PknG) as a virulence effector. Cell Microbiol 16(2):280–295PubMedCrossRef van der Woude AD, Stoop EJ, Stiess M, Wang S, Ummels R, van Stempvoort G, Piersma SR, Cascioferro A, Jimenez CR, Houben EN, Luirink J, Pieters J, van der Sar AM, Bitter W (2014) Analysis of SecA2-dependent substrates in Mycobacterium marinum identifies protein kinase G (PknG) as a virulence effector. Cell Microbiol 16(2):280–295PubMedCrossRef
106.
Zurück zum Zitat Zulauf KE, Sullivan JT, Braunstein M (2018) The SecA2 pathway of Mycobacterium tuberculosis exports effectors that work in concert to arrest phagosome and autophagosome maturation. PLoS Pathog 14(4):e1007011PubMedPubMedCentralCrossRef Zulauf KE, Sullivan JT, Braunstein M (2018) The SecA2 pathway of Mycobacterium tuberculosis exports effectors that work in concert to arrest phagosome and autophagosome maturation. PLoS Pathog 14(4):e1007011PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Wolff KA, de la Pena AH, Nguyen HT, Pham TH, Amzel LM, Gabelli SB, Nguyen L (2015) A redox regulatory system critical for mycobacterial survival in macrophages and biofilm development. PLoS Pathog 11(4):e1004839PubMedPubMedCentralCrossRef Wolff KA, de la Pena AH, Nguyen HT, Pham TH, Amzel LM, Gabelli SB, Nguyen L (2015) A redox regulatory system critical for mycobacterial survival in macrophages and biofilm development. PLoS Pathog 11(4):e1004839PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Wolff KA, Nguyen HT, Cartabuke RH, Singh A, Ogwang S, Nguyen L (2009) Protein kinase G is required for intrinsic antibiotic resistance in mycobacteria. Antimicrob Agents Chemother 53(8):3515–3519PubMedPubMedCentralCrossRef Wolff KA, Nguyen HT, Cartabuke RH, Singh A, Ogwang S, Nguyen L (2009) Protein kinase G is required for intrinsic antibiotic resistance in mycobacteria. Antimicrob Agents Chemother 53(8):3515–3519PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Mueller P, Pieters J (2017) Identification of mycobacterial GarA as a substrate of protein kinase G from M. tuberculosis using a KESTREL-based proteome wide approach. J Microbiol Methods 136:34–39PubMedCrossRef Mueller P, Pieters J (2017) Identification of mycobacterial GarA as a substrate of protein kinase G from M. tuberculosis using a KESTREL-based proteome wide approach. J Microbiol Methods 136:34–39PubMedCrossRef
110.
Zurück zum Zitat O'Hare HM, Duran R, Cervenansky C, Bellinzoni M, Wehenkel AM, Pritsch O, Obal G, Baumgartner J, Vialaret J, Johnsson K, Alzari PM (2008) Regulation of glutamate metabolism by protein kinases in mycobacteria. Mol Microbiol 70(6):1408–1423PubMedCrossRef O'Hare HM, Duran R, Cervenansky C, Bellinzoni M, Wehenkel AM, Pritsch O, Obal G, Baumgartner J, Vialaret J, Johnsson K, Alzari PM (2008) Regulation of glutamate metabolism by protein kinases in mycobacteria. Mol Microbiol 70(6):1408–1423PubMedCrossRef
111.
Zurück zum Zitat Rieck B, Degiacomi G, Zimmermann M, Cascioferro A, Boldrin F, Lazar-Adler NR, Bottrill AR, le Chevalier F, Frigui W, Bellinzoni M, Lisa MN, Alzari PM, Nguyen L, Brosch R, Sauer U, Manganelli R, O'Hare HM (2017) PknG senses amino acid availability to control metabolism and virulence of Mycobacterium tuberculosis. PLoS Pathog 13(5):e1006399PubMedPubMedCentralCrossRef Rieck B, Degiacomi G, Zimmermann M, Cascioferro A, Boldrin F, Lazar-Adler NR, Bottrill AR, le Chevalier F, Frigui W, Bellinzoni M, Lisa MN, Alzari PM, Nguyen L, Brosch R, Sauer U, Manganelli R, O'Hare HM (2017) PknG senses amino acid availability to control metabolism and virulence of Mycobacterium tuberculosis. PLoS Pathog 13(5):e1006399PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Mottola G (2014) The complexity of Rab5 to Rab7 transition guarantees specificity of pathogen subversion mechanisms. Front Cell Infect Microbiol 4:180PubMedPubMedCentralCrossRef Mottola G (2014) The complexity of Rab5 to Rab7 transition guarantees specificity of pathogen subversion mechanisms. Front Cell Infect Microbiol 4:180PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Wang J, Ge P, Qiang L, Tian F, Zhao D, Chai Q, Zhu M, Zhou R, Meng G, Iwakura Y, Gao GF, Liu CH (2017) The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation. Nat Commun 8(1):244PubMedPubMedCentralCrossRef Wang J, Ge P, Qiang L, Tian F, Zhao D, Chai Q, Zhu M, Zhou R, Meng G, Iwakura Y, Gao GF, Liu CH (2017) The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation. Nat Commun 8(1):244PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Desvignes L, Wolf AJ, Ernst JD (2012) Dynamic roles of type I and type II IFNs in early infection with Mycobacterium tuberculosis. J Immunol 188(12):6205–6215PubMedCrossRef Desvignes L, Wolf AJ, Ernst JD (2012) Dynamic roles of type I and type II IFNs in early infection with Mycobacterium tuberculosis. J Immunol 188(12):6205–6215PubMedCrossRef
115.
Zurück zum Zitat Jouanguy E, Lamhamedi-Cherradi S, Altare F, Fondanèche MC, Tuerlinckx D, Blanche S, Emile JF, Gaillard JL, Schreiber R, Levin M, Fischer A, Hivroz C, Casanova JL (1997) Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette-Guérin infection and a sibling with clinical tuberculosis. J Clin Investig 100(11):2658–2664PubMedCrossRefPubMedCentral Jouanguy E, Lamhamedi-Cherradi S, Altare F, Fondanèche MC, Tuerlinckx D, Blanche S, Emile JF, Gaillard JL, Schreiber R, Levin M, Fischer A, Hivroz C, Casanova JL (1997) Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette-Guérin infection and a sibling with clinical tuberculosis. J Clin Investig 100(11):2658–2664PubMedCrossRefPubMedCentral
116.
Zurück zum Zitat Okada S, Markle JG, Deenick EK, Mele F, Averbuch D, Lagos M, Alzahrani M, Al-Muhsen S, Halwani R, Ma CS, Wong N, Soudais C, Henderson LA, Marzouqa H, Shamma J, Gonzalez M, Martinez-Barricarte R, Okada C, Avery DT, Latorre D, Deswarte C, Jabot-Hanin F, Torrado E, Fountain J, Belkadi A, Itan Y, Boisson B, Migaud M, Arlehamn CSL, Sette A, Breton S, McCluskey J, Rossjohn J, de Villartay JP, Moshous D, Hambleton S, Latour S, Arkwright PD, Picard C, Lantz O, Engelhard D, Kobayashi M, Abel L, Cooper AM, Notarangelo LD, Boisson-Dupuis S, Puel A, Sallusto F, Bustamante J, Tangye SG, Casanova JL (2015) Immunodeficiencies. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349(6248):606–613PubMedPubMedCentralCrossRef Okada S, Markle JG, Deenick EK, Mele F, Averbuch D, Lagos M, Alzahrani M, Al-Muhsen S, Halwani R, Ma CS, Wong N, Soudais C, Henderson LA, Marzouqa H, Shamma J, Gonzalez M, Martinez-Barricarte R, Okada C, Avery DT, Latorre D, Deswarte C, Jabot-Hanin F, Torrado E, Fountain J, Belkadi A, Itan Y, Boisson B, Migaud M, Arlehamn CSL, Sette A, Breton S, McCluskey J, Rossjohn J, de Villartay JP, Moshous D, Hambleton S, Latour S, Arkwright PD, Picard C, Lantz O, Engelhard D, Kobayashi M, Abel L, Cooper AM, Notarangelo LD, Boisson-Dupuis S, Puel A, Sallusto F, Bustamante J, Tangye SG, Casanova JL (2015) Immunodeficiencies. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349(6248):606–613PubMedPubMedCentralCrossRef
117.
118.
Zurück zum Zitat Ehrt S, Schnappinger D, Bekiranov S, Drenkow J, Shi S, Gingeras TR, Gaasterland T, Schoolnik G, Nathan C (2001) Reprogramming of the macrophage transcriptome in response to interferon-gamma and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J Exp Med 194(8):1123–1140PubMedPubMedCentralCrossRef Ehrt S, Schnappinger D, Bekiranov S, Drenkow J, Shi S, Gingeras TR, Gaasterland T, Schoolnik G, Nathan C (2001) Reprogramming of the macrophage transcriptome in response to interferon-gamma and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J Exp Med 194(8):1123–1140PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Feng CG, Collazo-Custodio CM, Eckhaus M, Hieny S, Belkaid Y, Elkins K, Jankovic D, Taylor GA, Sher A (2004) Mice deficient in LRG-47 display increased susceptibility to mycobacterial infection associated with the induction of lymphopenia. J Immunol 172(2):1163–1168PubMedCrossRef Feng CG, Collazo-Custodio CM, Eckhaus M, Hieny S, Belkaid Y, Elkins K, Jankovic D, Taylor GA, Sher A (2004) Mice deficient in LRG-47 display increased susceptibility to mycobacterial infection associated with the induction of lymphopenia. J Immunol 172(2):1163–1168PubMedCrossRef
120.
Zurück zum Zitat Tiwari S, Choi H-P, Matsuzawa T, Pypaert M, MacMicking JD (2009) Targeting of the GTPase Irgm1 to the phagosomal membrane via PtdIns(3,4)P2 and PtdIns(3,4,5)P3 promotes immunity to mycobacteria. Nat Immunol 10(8):907–917PubMedPubMedCentralCrossRef Tiwari S, Choi H-P, Matsuzawa T, Pypaert M, MacMicking JD (2009) Targeting of the GTPase Irgm1 to the phagosomal membrane via PtdIns(3,4)P2 and PtdIns(3,4,5)P3 promotes immunity to mycobacteria. Nat Immunol 10(8):907–917PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Duncan SA, Baganizi DR, Sahu R, Singh SR, Dennis VA (2017) SOCS proteins as regulators of inflammatory responses induced by bacterial infections: a review. Front Microbiol 8:2431PubMedPubMedCentralCrossRef Duncan SA, Baganizi DR, Sahu R, Singh SR, Dennis VA (2017) SOCS proteins as regulators of inflammatory responses induced by bacterial infections: a review. Front Microbiol 8:2431PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Queval CJ, Song O-R, Carralot J-P, Saliou J-M, Bongiovanni A, Deloison G, Deboosère N, Jouny S, Iantomasi R, Delorme V, Debrie A-S, Park S-J, Gouveia JC, Tomavo S, Brosch R, Yoshimura A, Yeramian E, Brodin P (2017) Mycobacterium tuberculosis controls phagosomal acidification by targeting CISH-mediated signaling. Cell Rep 20(13):3188–3198PubMedPubMedCentralCrossRef Queval CJ, Song O-R, Carralot J-P, Saliou J-M, Bongiovanni A, Deloison G, Deboosère N, Jouny S, Iantomasi R, Delorme V, Debrie A-S, Park S-J, Gouveia JC, Tomavo S, Brosch R, Yoshimura A, Yeramian E, Brodin P (2017) Mycobacterium tuberculosis controls phagosomal acidification by targeting CISH-mediated signaling. Cell Rep 20(13):3188–3198PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Mancuso G, Midiri A, Biondo C, Beninati C, Zummo S, Galbo R, Tomasello F, Gambuzza M, Macri G, Ruggeri A, Leanderson T, Teti G (2007) Type I IFN signaling is crucial for host resistance against different species of pathogenic bacteria. J Immunol 178(5):3126–3133PubMedCrossRef Mancuso G, Midiri A, Biondo C, Beninati C, Zummo S, Galbo R, Tomasello F, Gambuzza M, Macri G, Ruggeri A, Leanderson T, Teti G (2007) Type I IFN signaling is crucial for host resistance against different species of pathogenic bacteria. J Immunol 178(5):3126–3133PubMedCrossRef
124.
Zurück zum Zitat Donovan ML, Schultz TE, Duke TJ, Blumenthal A (2017) Type I interferons in the pathogenesis of tuberculosis: molecular drivers and immunological consequences. Front Immunol 8:1633PubMedPubMedCentralCrossRef Donovan ML, Schultz TE, Duke TJ, Blumenthal A (2017) Type I interferons in the pathogenesis of tuberculosis: molecular drivers and immunological consequences. Front Immunol 8:1633PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Pestka S, Krause CD, Walter MR (2004) Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202(1):8–32PubMedCrossRef Pestka S, Krause CD, Walter MR (2004) Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202(1):8–32PubMedCrossRef
126.
Zurück zum Zitat Isaacs A, Lindenmann J (1957) Virus interference. I. The interferon. Proc R Soc B Biol Sci 147(927):258–267 Isaacs A, Lindenmann J (1957) Virus interference. I. The interferon. Proc R Soc B Biol Sci 147(927):258–267
127.
Zurück zum Zitat Stanley SA, Johndrow JE, Manzanillo P, Cox JS (2007) The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol 178(5):3143–3152PubMedCrossRef Stanley SA, Johndrow JE, Manzanillo P, Cox JS (2007) The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol 178(5):3143–3152PubMedCrossRef
128.
Zurück zum Zitat Jang A-R, Choi J-H, Shin SJ, Park J-H (2018) Mycobacterium tuberculosis ESAT6 induces IFN-β gene expression in macrophages via TLRs-mediated signaling. Cytokine 104:104–109PubMedCrossRef Jang A-R, Choi J-H, Shin SJ, Park J-H (2018) Mycobacterium tuberculosis ESAT6 induces IFN-β gene expression in macrophages via TLRs-mediated signaling. Cytokine 104:104–109PubMedCrossRef
129.
Zurück zum Zitat Pandey AK, Yang Y, Jiang Z, Fortune SM, Coulombe F, Behr MA, Fitzgerald KA, Sassetti CM, Kelliher MA (2009) NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog 5(7):e1000500PubMedPubMedCentralCrossRef Pandey AK, Yang Y, Jiang Z, Fortune SM, Coulombe F, Behr MA, Fitzgerald KA, Sassetti CM, Kelliher MA (2009) NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog 5(7):e1000500PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Ruangkiattikul N, Nerlich A, Abdissa K, Lienenklaus S, Suwandi A, Janze N, Laarmann K, Spanier J, Kalinke U, Weiss S, Goethe R (2017) cGAS-STING-TBK1-IRF3/7 induced interferon-β contributes to the clearing of non tuberculous mycobacterial infection in mice. Virulence 8(7):1303–1315PubMedPubMedCentralCrossRef Ruangkiattikul N, Nerlich A, Abdissa K, Lienenklaus S, Suwandi A, Janze N, Laarmann K, Spanier J, Kalinke U, Weiss S, Goethe R (2017) cGAS-STING-TBK1-IRF3/7 induced interferon-β contributes to the clearing of non tuberculous mycobacterial infection in mice. Virulence 8(7):1303–1315PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Wiens KE, Ernst JD (2016) The mechanism for type I interferon induction by Mycobacterium tuberculosis is bacterial strain-dependent. PLoS Pathog 12(8):e1005809PubMedPubMedCentralCrossRef Wiens KE, Ernst JD (2016) The mechanism for type I interferon induction by Mycobacterium tuberculosis is bacterial strain-dependent. PLoS Pathog 12(8):e1005809PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Moreira-Teixeira L, Mayer-Barber K, Sher A, O'Garra A (2018) Type I interferons in tuberculosis: foe and occasionally friend. J Exp Med 215(5):1273–1285PubMedCrossRefPubMedCentral Moreira-Teixeira L, Mayer-Barber K, Sher A, O'Garra A (2018) Type I interferons in tuberculosis: foe and occasionally friend. J Exp Med 215(5):1273–1285PubMedCrossRefPubMedCentral
135.
Zurück zum Zitat Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, Klunker S, Meyer N, O’Mahony L, Palomares O, Rhyner C, Quaked N, Schaffartzik A, Van De Veen W, Zeller S, Zimmermann M, Akdis CA (2011) Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J Allergy Clin Immunol 127(3):701–721.e70PubMedCrossRef Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, Klunker S, Meyer N, O’Mahony L, Palomares O, Rhyner C, Quaked N, Schaffartzik A, Van De Veen W, Zeller S, Zimmermann M, Akdis CA (2011) Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J Allergy Clin Immunol 127(3):701–721.e70PubMedCrossRef
136.
Zurück zum Zitat Saunders BM, Frank AA, Orme IM, Cooper AM (2000) Interleukin-6 induces early gamma interferon production in the infected lung but is not required for generation of specific immunity to Mycobacterium tuberculosis infection. Infect Immun 68(6):3322–3326PubMedPubMedCentralCrossRef Saunders BM, Frank AA, Orme IM, Cooper AM (2000) Interleukin-6 induces early gamma interferon production in the infected lung but is not required for generation of specific immunity to Mycobacterium tuberculosis infection. Infect Immun 68(6):3322–3326PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Martinez AN, Mehra S, Kaushal D (2013) Role of interleukin 6 in innate immunity to Mycobacterium tuberculosis infection. J Infect Dis 207(8):1253–1261PubMedPubMedCentralCrossRef Martinez AN, Mehra S, Kaushal D (2013) Role of interleukin 6 in innate immunity to Mycobacterium tuberculosis infection. J Infect Dis 207(8):1253–1261PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Domingo-Gonzalez R, Prince O, Cooper A, Khader SA (2016) Cytokines and chemokines in Mycobacterium tuberculosis infection. Microbiol Spectrum 4(5) Domingo-Gonzalez R, Prince O, Cooper A, Khader SA (2016) Cytokines and chemokines in Mycobacterium tuberculosis infection. Microbiol Spectrum 4(5)
140.
Zurück zum Zitat de Jong R, Altare F, Haagen IA, Elferink DG, Boer T, van Breda Vriesman PJ, Kabel PJ, Draaisma JM, van Dissel JT, Kroon FP, Casanova JL, Ottenhoff TH (1998) Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 280(5368):1435–1438PubMedCrossRef de Jong R, Altare F, Haagen IA, Elferink DG, Boer T, van Breda Vriesman PJ, Kabel PJ, Draaisma JM, van Dissel JT, Kroon FP, Casanova JL, Ottenhoff TH (1998) Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 280(5368):1435–1438PubMedCrossRef
141.
Zurück zum Zitat Jouanguy E, Döffinger R, Dupuis S, Pallier A, Altare F, Casanova J-L (1999) IL-12 and IFN-γ in host defense against mycobacteria and salmonella in mice and men. Curr Opin Immunol 11(3):346–351PubMedCrossRef Jouanguy E, Döffinger R, Dupuis S, Pallier A, Altare F, Casanova J-L (1999) IL-12 and IFN-γ in host defense against mycobacteria and salmonella in mice and men. Curr Opin Immunol 11(3):346–351PubMedCrossRef
142.
Zurück zum Zitat Cooper AM, Roberts AD, Rhoades ER, Callahan JE, Getzy DM, Orme IM (1995) The role of interleukin-12 in acquired immunity to Mycobacterium tuberculosis infection. Immunology 84(3):423–432PubMedPubMedCentral Cooper AM, Roberts AD, Rhoades ER, Callahan JE, Getzy DM, Orme IM (1995) The role of interleukin-12 in acquired immunity to Mycobacterium tuberculosis infection. Immunology 84(3):423–432PubMedPubMedCentral
143.
Zurück zum Zitat Cooper A, Khader SA (2008) The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. Immunol Rev 226:191PubMedPubMedCentralCrossRef Cooper A, Khader SA (2008) The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. Immunol Rev 226:191PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Raphael I, Nalawade S, Eagar TN, Forsthuber TG (2015) T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74(1):5–17PubMedCrossRef Raphael I, Nalawade S, Eagar TN, Forsthuber TG (2015) T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74(1):5–17PubMedCrossRef
146.
Zurück zum Zitat Harris J, De Haro SA, Master SS, Keane J, Roberts EA, Delgado M, Deretic V (2007) T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27(3):505–517PubMedCrossRef Harris J, De Haro SA, Master SS, Keane J, Roberts EA, Delgado M, Deretic V (2007) T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27(3):505–517PubMedCrossRef
147.
Zurück zum Zitat Dahl KE, Shiratsuchi H, Hamilton BD, Ellner JJ, Toossi Z (1996) Selective induction of transforming growth factor beta in human monocytes by lipoarabinomannan of Mycobacterium tuberculosis. Infect Immun 64(2):399–405PubMedPubMedCentralCrossRef Dahl KE, Shiratsuchi H, Hamilton BD, Ellner JJ, Toossi Z (1996) Selective induction of transforming growth factor beta in human monocytes by lipoarabinomannan of Mycobacterium tuberculosis. Infect Immun 64(2):399–405PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Jeong YH, Hur Y-G, Lee H, Kim S, Cho J-E, Chang J, Shin SJ, Lee H, Kang YA, Cho S-N, Ha S-J (2014) Discrimination between active and latent tuberculosis based on ratio of antigen-specific to mitogen-induced IP-10 production. J Clin Microbiol 53(2):504–510PubMedCrossRef Jeong YH, Hur Y-G, Lee H, Kim S, Cho J-E, Chang J, Shin SJ, Lee H, Kang YA, Cho S-N, Ha S-J (2014) Discrimination between active and latent tuberculosis based on ratio of antigen-specific to mitogen-induced IP-10 production. J Clin Microbiol 53(2):504–510PubMedCrossRef
149.
Zurück zum Zitat O'Leary S, O'Sullivan MP, Keane J (2011) IL-10 blocks phagosome maturation in mycobacterium tuberculosis-infected human macrophages. Am J Respir Cell Mol Biol 45(1):172–180PubMedCrossRef O'Leary S, O'Sullivan MP, Keane J (2011) IL-10 blocks phagosome maturation in mycobacterium tuberculosis-infected human macrophages. Am J Respir Cell Mol Biol 45(1):172–180PubMedCrossRef
150.
Zurück zum Zitat Harding CV, Boom WH (2010) Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol 8(4):296–307PubMedPubMedCentralCrossRef Harding CV, Boom WH (2010) Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol 8(4):296–307PubMedPubMedCentralCrossRef
151.
Zurück zum Zitat Darwin KH, Ehrt S, Gutierrez-Ramos JC, Weich N, Nathan CF (2003) The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302(5652):1963–1966PubMedCrossRef Darwin KH, Ehrt S, Gutierrez-Ramos JC, Weich N, Nathan CF (2003) The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302(5652):1963–1966PubMedCrossRef
152.
Zurück zum Zitat Pieters J, Ploegh H (2003) Microbiology. Chemical warfare and mycobacterial defense. Science 302(5652):1900–1902PubMedCrossRef Pieters J, Ploegh H (2003) Microbiology. Chemical warfare and mycobacterial defense. Science 302(5652):1900–1902PubMedCrossRef
153.
Zurück zum Zitat Pearce MJ, Mintseris J, Ferreyra J, Gygi SP, Darwin KH (2008) Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322(5904):1104–1107PubMedPubMedCentralCrossRef Pearce MJ, Mintseris J, Ferreyra J, Gygi SP, Darwin KH (2008) Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322(5904):1104–1107PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Striebel F, Imkamp F, Özcelik D, Weber-Ban E (2014) Pupylation as a signal for proteasomal degradation in bacteria. Biochim Biophys Acta Mol Cell Res 1843(1):103–113CrossRef Striebel F, Imkamp F, Özcelik D, Weber-Ban E (2014) Pupylation as a signal for proteasomal degradation in bacteria. Biochim Biophys Acta Mol Cell Res 1843(1):103–113CrossRef
156.
Zurück zum Zitat Samanovic MI, Tu S, Novak O, Iyer LM, McAllister FE, Aravind L, Gygi SP, Hubbard SR, Strnad M, Darwin KH (2015) Proteasomal control of cytokinin synthesis protects Mycobacterium tuberculosis against nitric oxide. Mol Cell 57(6):984–994PubMedPubMedCentralCrossRef Samanovic MI, Tu S, Novak O, Iyer LM, McAllister FE, Aravind L, Gygi SP, Hubbard SR, Strnad M, Darwin KH (2015) Proteasomal control of cytokinin synthesis protects Mycobacterium tuberculosis against nitric oxide. Mol Cell 57(6):984–994PubMedPubMedCentralCrossRef
157.
Zurück zum Zitat Shi X, Festa RA, Ioerger TR, Butler-Wu S, Sacchettini JC, Darwin KH, Samanovic MI (2014) The copper-responsive RicR regulon contributes to Mycobacterium tuberculosis virulence. mBio 5(1) Shi X, Festa RA, Ioerger TR, Butler-Wu S, Sacchettini JC, Darwin KH, Samanovic MI (2014) The copper-responsive RicR regulon contributes to Mycobacterium tuberculosis virulence. mBio 5(1)
158.
Zurück zum Zitat Becker SH, Darwin KH (2017) Bacterial proteasomes: mechanistic and functional insights. Microbiol Mol Biol Rev 81(1) Becker SH, Darwin KH (2017) Bacterial proteasomes: mechanistic and functional insights. Microbiol Mol Biol Rev 81(1)
159.
Zurück zum Zitat BoseDasgupta S, Moes S, Jenoe P, Pieters J (2015) Cytokine-induced macropinocytosis in macrophages is regulated by 14-3-3ζ through its interaction with serine-phosphorylated coronin 1. FEBS J 282(7):1167–1181PubMedCrossRef BoseDasgupta S, Moes S, Jenoe P, Pieters J (2015) Cytokine-induced macropinocytosis in macrophages is regulated by 14-3-3ζ through its interaction with serine-phosphorylated coronin 1. FEBS J 282(7):1167–1181PubMedCrossRef
160.
Zurück zum Zitat Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferon-γ. Annu Rev Immunol 15(1):749–795PubMedCrossRef Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferon-γ. Annu Rev Immunol 15(1):749–795PubMedCrossRef
161.
162.
Zurück zum Zitat Springer HM, Schramm M, Taylor GA, Howard JC (2013) Irgm1 (LRG-47), a regulator of cell-autonomous immunity, does not localize to mycobacterial or listerial phagosomes in IFN- -induced mouse cells. J Immunol 191(4):1765–1774PubMedCrossRef Springer HM, Schramm M, Taylor GA, Howard JC (2013) Irgm1 (LRG-47), a regulator of cell-autonomous immunity, does not localize to mycobacterial or listerial phagosomes in IFN- -induced mouse cells. J Immunol 191(4):1765–1774PubMedCrossRef
163.
Zurück zum Zitat Astarie-Dequeker C, Le Guyader L, Malaga W, Seaphanh F-K, Chalut C, Lopez A, Guilhot C (2009) Phthiocerol Dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathogens 5(2):e1000289PubMedPubMedCentralCrossRef Astarie-Dequeker C, Le Guyader L, Malaga W, Seaphanh F-K, Chalut C, Lopez A, Guilhot C (2009) Phthiocerol Dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathogens 5(2):e1000289PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Casanova JL, Abel L (2002) Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 20:581–620PubMedCrossRef Casanova JL, Abel L (2002) Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 20:581–620PubMedCrossRef
165.
Zurück zum Zitat Bustamante J, Arias AA, Vogt G, Picard C, Galicia LB, Prando C, Grant AV, Marchal CC, Hubeau M, Chapgier A, de Beaucoudrey L, Puel A, Feinberg J, Valinetz E, Janniere L, Besse C, Boland A, Brisseau JM, Blanche S, Lortholary O, Fieschi C, Emile JF, Boisson-Dupuis S, Al-Muhsen S, Woda B, Newburger PE, Condino-Neto A, Dinauer MC, Abel L, Casanova JL, Germline CYBB (2011) Mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol 12(3):213–221PubMedPubMedCentralCrossRef Bustamante J, Arias AA, Vogt G, Picard C, Galicia LB, Prando C, Grant AV, Marchal CC, Hubeau M, Chapgier A, de Beaucoudrey L, Puel A, Feinberg J, Valinetz E, Janniere L, Besse C, Boland A, Brisseau JM, Blanche S, Lortholary O, Fieschi C, Emile JF, Boisson-Dupuis S, Al-Muhsen S, Woda B, Newburger PE, Condino-Neto A, Dinauer MC, Abel L, Casanova JL, Germline CYBB (2011) Mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol 12(3):213–221PubMedPubMedCentralCrossRef
166.
Zurück zum Zitat Mattila JT, Ojo OO, Kepka-Lenhart D, Marino S, Kim JH, Eum SY, Via LE, Barry CE 3rd, Klein E, Kirschner DE, Morris SM Jr, Lin PL, Flynn JL (2013) Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J Immunol 191(2):773–784PubMedCrossRef Mattila JT, Ojo OO, Kepka-Lenhart D, Marino S, Kim JH, Eum SY, Via LE, Barry CE 3rd, Klein E, Kirschner DE, Morris SM Jr, Lin PL, Flynn JL (2013) Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J Immunol 191(2):773–784PubMedCrossRef
167.
Zurück zum Zitat Marakalala MJ, Martinez FO, Pluddemann A, Gordon S (2018) Macrophage heterogeneity in the immunopathogenesis of tuberculosis. Front Microbiol 9:1028PubMedPubMedCentralCrossRef Marakalala MJ, Martinez FO, Pluddemann A, Gordon S (2018) Macrophage heterogeneity in the immunopathogenesis of tuberculosis. Front Microbiol 9:1028PubMedPubMedCentralCrossRef
168.
169.
Zurück zum Zitat Kaufmann SHE (2001) How can immunology contribute to the control of tuberculosis? Nat Rev Immunol 1(1):20–30PubMedCrossRef Kaufmann SHE (2001) How can immunology contribute to the control of tuberculosis? Nat Rev Immunol 1(1):20–30PubMedCrossRef
170.
Zurück zum Zitat Ramachandra L, Chu RS, Askew D, Noss EH, Canaday DH, Potter NS, Johnsen A, Krieg AM, Nedrud JG, Boom WH, Harding CV (1999) Phagocytic antigen processing and effects of microbial products on antigen processing and T-cell responses. Immunol Rev 168(1):217–239PubMedCrossRef Ramachandra L, Chu RS, Askew D, Noss EH, Canaday DH, Potter NS, Johnsen A, Krieg AM, Nedrud JG, Boom WH, Harding CV (1999) Phagocytic antigen processing and effects of microbial products on antigen processing and T-cell responses. Immunol Rev 168(1):217–239PubMedCrossRef
171.
Zurück zum Zitat Pieters J (2001) Evasion of host cell defense mechanisms by pathogenic bacteria. Curr Opin Immunol 13(1):37–44PubMedCrossRef Pieters J (2001) Evasion of host cell defense mechanisms by pathogenic bacteria. Curr Opin Immunol 13(1):37–44PubMedCrossRef
172.
Zurück zum Zitat Espinosa-Cueto P, Magallanes-Puebla A, Castellanos C, Mancilla R (2017) Dendritic cells that phagocytose apoptotic macrophages loaded with mycobacterial antigens activate CD8 T cells via cross-presentation. PLoS One 12(8):e0182126PubMedPubMedCentralCrossRef Espinosa-Cueto P, Magallanes-Puebla A, Castellanos C, Mancilla R (2017) Dendritic cells that phagocytose apoptotic macrophages loaded with mycobacterial antigens activate CD8 T cells via cross-presentation. PLoS One 12(8):e0182126PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Harriff MJ, Purdy GE, Lewinsohn DM (2012) Escape from the phagosome: the explanation for MHC-I processing of mycobacterial antigens? Front Immunol 3:40PubMedPubMedCentralCrossRef Harriff MJ, Purdy GE, Lewinsohn DM (2012) Escape from the phagosome: the explanation for MHC-I processing of mycobacterial antigens? Front Immunol 3:40PubMedPubMedCentralCrossRef
174.
Zurück zum Zitat Nunes-Alves C, Booty MG, Carpenter SM, Jayaraman P, Rothchild AC, Behar SM (2014) In search of a new paradigm for protective immunity to TB. Nat Rev Microbiol 12(4):289–299PubMedPubMedCentralCrossRef Nunes-Alves C, Booty MG, Carpenter SM, Jayaraman P, Rothchild AC, Behar SM (2014) In search of a new paradigm for protective immunity to TB. Nat Rev Microbiol 12(4):289–299PubMedPubMedCentralCrossRef
175.
Zurück zum Zitat Silva CL, Lowrie DB (2000) Identification and characterization of murine cytotoxic T cells that kill Mycobacterium tuberculosis. Infect Immun 68(6):3269–3274PubMedPubMedCentralCrossRef Silva CL, Lowrie DB (2000) Identification and characterization of murine cytotoxic T cells that kill Mycobacterium tuberculosis. Infect Immun 68(6):3269–3274PubMedPubMedCentralCrossRef
176.
Zurück zum Zitat Vyas JM, Van der Veen AG, Ploegh HL (2008) The known unknowns of antigen processing and presentation, nature reviews. Immunology 8(8):607–618PubMed Vyas JM, Van der Veen AG, Ploegh HL (2008) The known unknowns of antigen processing and presentation, nature reviews. Immunology 8(8):607–618PubMed
178.
Zurück zum Zitat Noss EH, Pai RK, Sellati TJ, Radolf JD, Belisle J, Golenbock DT, Boom WH, Harding CV (2001) Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis. J Immunol 167(2):910–918PubMedCrossRef Noss EH, Pai RK, Sellati TJ, Radolf JD, Belisle J, Golenbock DT, Boom WH, Harding CV (2001) Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis. J Immunol 167(2):910–918PubMedCrossRef
179.
Zurück zum Zitat Garg A, Barnes PF, Roy S, Quiroga MF, Wu S, Garcia VE, Krutzik SR, Weis SE, Vankayalapati R (2008) Mannose-capped lipoarabinomannan- and prostaglandin E2-dependent expansion of regulatory T cells in human Mycobacterium tuberculosis infection. Eur J Immunol 38(2):459–469PubMedPubMedCentralCrossRef Garg A, Barnes PF, Roy S, Quiroga MF, Wu S, Garcia VE, Krutzik SR, Weis SE, Vankayalapati R (2008) Mannose-capped lipoarabinomannan- and prostaglandin E2-dependent expansion of regulatory T cells in human Mycobacterium tuberculosis infection. Eur J Immunol 38(2):459–469PubMedPubMedCentralCrossRef
180.
Zurück zum Zitat Holla S, Stephen-Victor E, Prakhar P, Sharma M, Saha C, Udupa V, Kaveri SV, Bayry J, Balaji KN (2016) Mycobacteria-responsive sonic hedgehog signaling mediates programmed death-ligand 1- and prostaglandin E2-induced regulatory T cell expansion. Sci Rep 6(1) Holla S, Stephen-Victor E, Prakhar P, Sharma M, Saha C, Udupa V, Kaveri SV, Bayry J, Balaji KN (2016) Mycobacteria-responsive sonic hedgehog signaling mediates programmed death-ligand 1- and prostaglandin E2-induced regulatory T cell expansion. Sci Rep 6(1)
181.
Zurück zum Zitat Cohen NR, Garg S, Brenner MB (2009) Antigen presentation by CD1 lipids, T cells, and NKT cells in microbial immunity. Adv Immunol 102:1–94PubMedCrossRef Cohen NR, Garg S, Brenner MB (2009) Antigen presentation by CD1 lipids, T cells, and NKT cells in microbial immunity. Adv Immunol 102:1–94PubMedCrossRef
183.
Zurück zum Zitat Gagliardi MC, Teloni R, Giannoni F, Mariotti S, Remoli ME, Sargentini V, Videtta M, Pardini M, De Libero G, Coccia EM, Nisini R (2009) Mycobacteria exploit p38 signaling to affect CD1 expression and lipid antigen presentation by human dendritic cells. Infect Immun 77(11):4947–4952PubMedPubMedCentralCrossRef Gagliardi MC, Teloni R, Giannoni F, Mariotti S, Remoli ME, Sargentini V, Videtta M, Pardini M, De Libero G, Coccia EM, Nisini R (2009) Mycobacteria exploit p38 signaling to affect CD1 expression and lipid antigen presentation by human dendritic cells. Infect Immun 77(11):4947–4952PubMedPubMedCentralCrossRef
184.
Zurück zum Zitat Gold MC, Napier RJ, Lewinsohn DM (2015) MR1-restricted mucosal associated invariant T (MAIT) cells in the immune response to Mycobacterium tuberculosis. Immunol Rev 264(1):154–166PubMedPubMedCentralCrossRef Gold MC, Napier RJ, Lewinsohn DM (2015) MR1-restricted mucosal associated invariant T (MAIT) cells in the immune response to Mycobacterium tuberculosis. Immunol Rev 264(1):154–166PubMedPubMedCentralCrossRef
185.
Zurück zum Zitat Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, Bhati M, Chen Z, Kostenko L, Reantragoon R, Williamson NA, Purcell AW, Dudek NL, McConville MJ, O'Hair RA, Khairallah GN, Godfrey DI, Fairlie DP, Rossjohn J, McCluskey J (2012) MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491(7426):717–723PubMedCrossRef Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, Bhati M, Chen Z, Kostenko L, Reantragoon R, Williamson NA, Purcell AW, Dudek NL, McConville MJ, O'Hair RA, Khairallah GN, Godfrey DI, Fairlie DP, Rossjohn J, McCluskey J (2012) MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491(7426):717–723PubMedCrossRef
186.
Zurück zum Zitat Mori L, Lepore M, De Libero G (2016) The immunology of CD1- and MR1-restricted T cells. Annu Rev Immunol 34:479–510PubMedCrossRef Mori L, Lepore M, De Libero G (2016) The immunology of CD1- and MR1-restricted T cells. Annu Rev Immunol 34:479–510PubMedCrossRef
187.
Zurück zum Zitat Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Barrell BG et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544PubMedCrossRef Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Barrell BG et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544PubMedCrossRef
188.
Zurück zum Zitat McDonough KA, Kress Y, Bloom BR (1993) Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages [published erratum appears in iInfect Immun 1993 Sep;61(9):4021-4]. Infect Immun 61(7):2763–2773PubMedPubMedCentralCrossRef McDonough KA, Kress Y, Bloom BR (1993) Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages [published erratum appears in iInfect Immun 1993 Sep;61(9):4021-4]. Infect Immun 61(7):2763–2773PubMedPubMedCentralCrossRef
189.
Zurück zum Zitat Simeone R, Bobard A, Lippmann J, Bitter W, Majlessi L, Brosch R, Enninga J (2012) Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog 8(2):e1002507PubMedPubMedCentralCrossRef Simeone R, Bobard A, Lippmann J, Bitter W, Majlessi L, Brosch R, Enninga J (2012) Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog 8(2):e1002507PubMedPubMedCentralCrossRef
190.
Zurück zum Zitat Simeone R, Sayes F, Song O, Gröschel MI, Brodin P, Brosch R, Majlessi L (2015) Cytosolic access of Mycobacterium tuberculosis: critical impact of phagosomal acidification control and demonstration of occurrence in vivo. PLoS Pathog 11(2):e1004650PubMedPubMedCentralCrossRef Simeone R, Sayes F, Song O, Gröschel MI, Brodin P, Brosch R, Majlessi L (2015) Cytosolic access of Mycobacterium tuberculosis: critical impact of phagosomal acidification control and demonstration of occurrence in vivo. PLoS Pathog 11(2):e1004650PubMedPubMedCentralCrossRef
191.
Zurück zum Zitat Houben D, Demangel C, van Ingen J, Perez J, Baldeón L, Abdallah AM, Caleechurn L, Bottai D, van Zon M, de Punder K, van der Laan T, Kant A, Bossers-de Vries R, Willemsen P, Bitter W, van Soolingen D, Brosch R, van der Wel N, Peters PJ (2012) ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol 14(8):1287–1298PubMedCrossRef Houben D, Demangel C, van Ingen J, Perez J, Baldeón L, Abdallah AM, Caleechurn L, Bottai D, van Zon M, de Punder K, van der Laan T, Kant A, Bossers-de Vries R, Willemsen P, Bitter W, van Soolingen D, Brosch R, van der Wel N, Peters PJ (2012) ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol 14(8):1287–1298PubMedCrossRef
192.
Zurück zum Zitat Houben ENG, Bestebroer J, Ummels R, Wilson L, Piersma SR, Jiménez CR, Ottenhoff THM, Luirink J, Bitter W (2012) Composition of the type VII secretion system membrane complex. Mol Microbiol 86(2):472–484PubMedCrossRef Houben ENG, Bestebroer J, Ummels R, Wilson L, Piersma SR, Jiménez CR, Ottenhoff THM, Luirink J, Bitter W (2012) Composition of the type VII secretion system membrane complex. Mol Microbiol 86(2):472–484PubMedCrossRef
193.
Zurück zum Zitat Kinhikar AG, Verma I, Chandra D, Singh KK, Weldingh K, Andersen P, Hsu T, Jacobs WR Jr, Laal S (2010) Potential role for ESAT6 in dissemination of M. tuberculosis via human lung epithelial cells. Mol Microbiol 75(1):92–106PubMedCrossRef Kinhikar AG, Verma I, Chandra D, Singh KK, Weldingh K, Andersen P, Hsu T, Jacobs WR Jr, Laal S (2010) Potential role for ESAT6 in dissemination of M. tuberculosis via human lung epithelial cells. Mol Microbiol 75(1):92–106PubMedCrossRef
194.
Zurück zum Zitat Lou Y, Rybniker J, Sala C, Cole ST (2016) EspC forms a filamentous structure in the cell envelope of Mycobacterium tuberculosis and impacts ESX-1 secretion. Mol Microbiol 103(1):26–38PubMedCrossRef Lou Y, Rybniker J, Sala C, Cole ST (2016) EspC forms a filamentous structure in the cell envelope of Mycobacterium tuberculosis and impacts ESX-1 secretion. Mol Microbiol 103(1):26–38PubMedCrossRef
195.
Zurück zum Zitat Demangel C, Brodin P, Cockle PJ, Brosch R, Majlessi L, Leclerc C, Cole ST (2004) Cell envelope protein PPE68 contributes to Mycobacterium tuberculosis RD1 immunogenicity independently of a 10-Kilodalton culture filtrate protein and ESAT-6. Infect Immun 72(4):2170–2176PubMedPubMedCentralCrossRef Demangel C, Brodin P, Cockle PJ, Brosch R, Majlessi L, Leclerc C, Cole ST (2004) Cell envelope protein PPE68 contributes to Mycobacterium tuberculosis RD1 immunogenicity independently of a 10-Kilodalton culture filtrate protein and ESAT-6. Infect Immun 72(4):2170–2176PubMedPubMedCentralCrossRef
196.
Zurück zum Zitat Manzanillo PS, Ayres JS, Watson RO, Collins AC, Souza G, Rae CS, Schneider DS, Nakamura K, Shiloh MU, Cox JS (2013) The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501(7468):512–516PubMedPubMedCentralCrossRef Manzanillo PS, Ayres JS, Watson RO, Collins AC, Souza G, Rae CS, Schneider DS, Nakamura K, Shiloh MU, Cox JS (2013) The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501(7468):512–516PubMedPubMedCentralCrossRef
197.
Zurück zum Zitat Watson RO, Manzanillo PS, Cox JS (2012) Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150(4):803–815PubMedPubMedCentralCrossRef Watson RO, Manzanillo PS, Cox JS (2012) Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150(4):803–815PubMedPubMedCentralCrossRef
198.
Zurück zum Zitat Vance RE, Isberg RR, Portnoy DA (2009) Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6(1):10–21PubMedPubMedCentralCrossRef Vance RE, Isberg RR, Portnoy DA (2009) Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6(1):10–21PubMedPubMedCentralCrossRef
199.
Zurück zum Zitat Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119(6):753–766PubMedCrossRef Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119(6):753–766PubMedCrossRef
200.
Zurück zum Zitat Delgado MA, Deretic V (2009) Toll-like receptors in control of immunological autophagy. Cell Death Differ 16(7):976–983PubMedCrossRef Delgado MA, Deretic V (2009) Toll-like receptors in control of immunological autophagy. Cell Death Differ 16(7):976–983PubMedCrossRef
201.
Zurück zum Zitat Liu PT, Stenger S, Tang DH, Modlin RL (2007) Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol 179(4):2060–2063PubMedCrossRef Liu PT, Stenger S, Tang DH, Modlin RL (2007) Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol 179(4):2060–2063PubMedCrossRef
202.
Zurück zum Zitat Shin D-M, Yuk J-M, Lee H-M, Lee S-H, Son JW, Harding CV, Kim J-M, Modlin RL, Jo E-K (2010) Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cell Microbiol 12(11):1648–1665PubMedPubMedCentralCrossRef Shin D-M, Yuk J-M, Lee H-M, Lee S-H, Son JW, Harding CV, Kim J-M, Modlin RL, Jo E-K (2010) Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cell Microbiol 12(11):1648–1665PubMedPubMedCentralCrossRef
203.
Zurück zum Zitat Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS (2012) Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11(5):469–480PubMedPubMedCentralCrossRef Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS (2012) Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11(5):469–480PubMedPubMedCentralCrossRef
204.
Zurück zum Zitat Schmeisser H, Fey SB, Horowitz J, Fischer ER, Balinsky CA, Miyake K, Bekisz J, Snow AL, Zoon KC (2013) Type I interferons induce autophagy in certain human cancer cell lines. Autophagy 9(5):683–696PubMedPubMedCentralCrossRef Schmeisser H, Fey SB, Horowitz J, Fischer ER, Balinsky CA, Miyake K, Bekisz J, Snow AL, Zoon KC (2013) Type I interferons induce autophagy in certain human cancer cell lines. Autophagy 9(5):683–696PubMedPubMedCentralCrossRef
205.
Zurück zum Zitat Romagnoli A, Etna MP, Giacomini E, Pardini M, Remoli ME, Corazzari M, Falasca L, Goletti D, Gafa V, Simeone R, Delogu G, Piacentini M, Brosch R, Fimia GM, Coccia EM (2012) ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. Autophagy 8(9):1357–1370PubMedPubMedCentralCrossRef Romagnoli A, Etna MP, Giacomini E, Pardini M, Remoli ME, Corazzari M, Falasca L, Goletti D, Gafa V, Simeone R, Delogu G, Piacentini M, Brosch R, Fimia GM, Coccia EM (2012) ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. Autophagy 8(9):1357–1370PubMedPubMedCentralCrossRef
207.
Zurück zum Zitat Lammas DA, Stober C, Harvey CJ, Kendrick N, Panchalingam S, Kumararatne DS (1997) ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z(P2X7) receptors. Immunity 7(3):433–444PubMedCrossRef Lammas DA, Stober C, Harvey CJ, Kendrick N, Panchalingam S, Kumararatne DS (1997) ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z(P2X7) receptors. Immunity 7(3):433–444PubMedCrossRef
208.
Zurück zum Zitat Amaral EP, Lasunskaia EB, D'Império-Lima MR (2016) Innate immunity in tuberculosis: how the sensing of mycobacteria and tissue damage modulates macrophage death. Microbes Infect 18(1):11–20PubMedCrossRef Amaral EP, Lasunskaia EB, D'Império-Lima MR (2016) Innate immunity in tuberculosis: how the sensing of mycobacteria and tissue damage modulates macrophage death. Microbes Infect 18(1):11–20PubMedCrossRef
209.
Zurück zum Zitat Petit-Jentreau L, Tailleux L, Coombes JL (2017) Purinergic signaling: a common path in the macrophage response against Mycobacterium tuberculosis and toxoplasma gondii. Front Cell Infect Microbiol 7:347PubMedPubMedCentralCrossRef Petit-Jentreau L, Tailleux L, Coombes JL (2017) Purinergic signaling: a common path in the macrophage response against Mycobacterium tuberculosis and toxoplasma gondii. Front Cell Infect Microbiol 7:347PubMedPubMedCentralCrossRef
210.
Zurück zum Zitat Parandhaman DK, Narayanan S (2014) Cell death paradigms in the pathogenesis of Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 4:31PubMedPubMedCentralCrossRef Parandhaman DK, Narayanan S (2014) Cell death paradigms in the pathogenesis of Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 4:31PubMedPubMedCentralCrossRef
211.
Zurück zum Zitat Velmurugan K, Chen B, Miller JL, Azogue S, Gurses S, Hsu T, Glickman M, Jacobs WR Jr, Porcelli SA, Briken V (2007) Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog 3(7):e110PubMedPubMedCentralCrossRef Velmurugan K, Chen B, Miller JL, Azogue S, Gurses S, Hsu T, Glickman M, Jacobs WR Jr, Porcelli SA, Briken V (2007) Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog 3(7):e110PubMedPubMedCentralCrossRef
212.
Zurück zum Zitat Hinchey J, Lee S, Jeon BY, Basaraba RJ, Venkataswamy MM, Chen B, Chan J, Braunstein M, Orme IM, Derrick SC, Morris SL, Jacobs WR Jr, Porcelli SA (2007) Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J Clin Invest 117(8):2279–2288PubMedPubMedCentralCrossRef Hinchey J, Lee S, Jeon BY, Basaraba RJ, Venkataswamy MM, Chen B, Chan J, Braunstein M, Orme IM, Derrick SC, Morris SL, Jacobs WR Jr, Porcelli SA (2007) Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J Clin Invest 117(8):2279–2288PubMedPubMedCentralCrossRef
213.
Zurück zum Zitat Briken V, Miller JL (2008) Living on the edge: inhibition of host cell apoptosis by Mycobacterium tuberculosis. Future Microbiol 3(4):415–422PubMedCrossRef Briken V, Miller JL (2008) Living on the edge: inhibition of host cell apoptosis by Mycobacterium tuberculosis. Future Microbiol 3(4):415–422PubMedCrossRef
214.
Zurück zum Zitat Miller JL, Velmurugan K, Cowan MJ, Briken V (2010) The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-alpha-mediated host cell apoptosis. PLoS Pathog 6(4):e1000864PubMedPubMedCentralCrossRef Miller JL, Velmurugan K, Cowan MJ, Briken V (2010) The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-alpha-mediated host cell apoptosis. PLoS Pathog 6(4):e1000864PubMedPubMedCentralCrossRef
215.
Zurück zum Zitat Srinivasan L, Gurses SA, Hurley BE, Miller JL, Karakousis PC, Briken V (2016) Identification of a transcription factor that regulates host cell exit and virulence of Mycobacterium tuberculosis. PLoS Pathog 12(5):e1005652PubMedPubMedCentralCrossRef Srinivasan L, Gurses SA, Hurley BE, Miller JL, Karakousis PC, Briken V (2016) Identification of a transcription factor that regulates host cell exit and virulence of Mycobacterium tuberculosis. PLoS Pathog 12(5):e1005652PubMedPubMedCentralCrossRef
216.
Zurück zum Zitat Chen M, Gan H, Remold HG (2006) A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J Immunol 176(6):3707–3716PubMedCrossRef Chen M, Gan H, Remold HG (2006) A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J Immunol 176(6):3707–3716PubMedCrossRef
217.
Zurück zum Zitat Divangahi M, Chen M, Gan H, Desjardins D, Hickman TT, Lee DM, Fortune S, Behar SM, Remold HG (2009) Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat Immunol 10(8):899–906PubMedPubMedCentralCrossRef Divangahi M, Chen M, Gan H, Desjardins D, Hickman TT, Lee DM, Fortune S, Behar SM, Remold HG (2009) Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat Immunol 10(8):899–906PubMedPubMedCentralCrossRef
218.
Zurück zum Zitat Miller JL, Velmurugan K, Cowan MJ, Briken V (2010) The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-α-mediated host cell apoptosis. PLoS Pathog 6(4):e1000864PubMedPubMedCentralCrossRef Miller JL, Velmurugan K, Cowan MJ, Briken V (2010) The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-α-mediated host cell apoptosis. PLoS Pathog 6(4):e1000864PubMedPubMedCentralCrossRef
219.
Zurück zum Zitat Gengenbacher M, Kaufmann SHE (2012) Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev 36(3):514–532PubMedCrossRef Gengenbacher M, Kaufmann SHE (2012) Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev 36(3):514–532PubMedCrossRef
220.
Zurück zum Zitat Doddam SN, Peddireddy V, Ahmed N (2017) Mycobacterium tuberculosis DosR regulon gene Rv2004c encodes a novel antigen with pro-inflammatory functions and potential diagnostic application for detection of latent tuberculosis. Front Immunol 8:712PubMedPubMedCentralCrossRef Doddam SN, Peddireddy V, Ahmed N (2017) Mycobacterium tuberculosis DosR regulon gene Rv2004c encodes a novel antigen with pro-inflammatory functions and potential diagnostic application for detection of latent tuberculosis. Front Immunol 8:712PubMedPubMedCentralCrossRef
221.
Zurück zum Zitat Chen Z, Hu Y, Cumming BM, Lu P, Feng L, Deng J, Steyn AJC, Chen S (2016) Mycobacterial WhiB6 differentially regulates ESX-1 and the dos regulon to modulate granuloma formation and virulence in zebrafish. Cell Rep 16(9):2512–2524PubMedCrossRef Chen Z, Hu Y, Cumming BM, Lu P, Feng L, Deng J, Steyn AJC, Chen S (2016) Mycobacterial WhiB6 differentially regulates ESX-1 and the dos regulon to modulate granuloma formation and virulence in zebrafish. Cell Rep 16(9):2512–2524PubMedCrossRef
223.
Zurück zum Zitat Hu Y, Movahedzadeh F, Stoker NG, Coates ARM (2006) Deletion of the Mycobacterium tuberculosis -crystallin-like hspX gene causes increased bacterial growth in vivo. Infect Immun 74(2):861–868PubMedPubMedCentralCrossRef Hu Y, Movahedzadeh F, Stoker NG, Coates ARM (2006) Deletion of the Mycobacterium tuberculosis -crystallin-like hspX gene causes increased bacterial growth in vivo. Infect Immun 74(2):861–868PubMedPubMedCentralCrossRef
224.
Zurück zum Zitat Kumar A, Deshane JS, Crossman DK, Bolisetty S, Yan B-S, Kramnik I, Agarwal A, Steyn AJC (2008) Heme Oxygenase-1-derived carbon monoxide induces the Mycobacterium tuberculosis dormancy regulon. J Biol Chem 283(26):18032–18039PubMedPubMedCentralCrossRef Kumar A, Deshane JS, Crossman DK, Bolisetty S, Yan B-S, Kramnik I, Agarwal A, Steyn AJC (2008) Heme Oxygenase-1-derived carbon monoxide induces the Mycobacterium tuberculosis dormancy regulon. J Biol Chem 283(26):18032–18039PubMedPubMedCentralCrossRef
225.
Zurück zum Zitat Vandal OH, Pierini LM, Schnappinger D, Nathan CF, Ehrt S (2008) A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nat Med 14(8):849–854PubMedPubMedCentralCrossRef Vandal OH, Pierini LM, Schnappinger D, Nathan CF, Ehrt S (2008) A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nat Med 14(8):849–854PubMedPubMedCentralCrossRef
226.
Zurück zum Zitat Botella H, Vaubourgeix J, Lee MH, Song N, Xu W, Makinoshima H, Glickman MS, Ehrt S (2017) Mycobacterium tuberculosis protease MarP activates a peptidoglycan hydrolase during acid stress. EMBO J 36(4):536–548PubMedPubMedCentralCrossRef Botella H, Vaubourgeix J, Lee MH, Song N, Xu W, Makinoshima H, Glickman MS, Ehrt S (2017) Mycobacterium tuberculosis protease MarP activates a peptidoglycan hydrolase during acid stress. EMBO J 36(4):536–548PubMedPubMedCentralCrossRef
Metadaten
Titel
Macrophage-microbe interaction: lessons learned from the pathogen Mycobacterium tuberculosis
verfasst von
Somdeb BoseDasgupta
Jean Pieters
Publikationsdatum
10.10.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Seminars in Immunopathology / Ausgabe 6/2018
Print ISSN: 1863-2297
Elektronische ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-018-0710-0

Weitere Artikel der Ausgabe 6/2018

Seminars in Immunopathology 6/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.