Skip to main content
Erschienen in: Brain Structure and Function 1/2022

25.10.2021 | Original Article

Magnetic resonance fingerprinting residual signals can disassociate human grey matter regions

verfasst von: Shahrzad Moinian, Viktor Vegh, Kieran O’Brien, David Reutens

Erschienen in: Brain Structure and Function | Ausgabe 1/2022

Einloggen, um Zugang zu erhalten

Abstract

The importance of accurate structural discrimination of the human grey matter regions has motivated the development of observer-independent reproducible methods that account for inter-individual architectonic variations. We introduce a non-invasive statistical residual analysis framework, employing unique tissue-specific magnetic resonance fingerprinting (MRF) signals after adjusting for the effect of T1 and T2* MR relaxometry parameters (here termed MRF residuals). A 7 T Siemens MR scanner was used to acquire MRF signals, quantitative transmit magnetic field (B1+) maps and T1-weighted anatomical images of eleven cortical areas (5L, 5M, 5Ci, 7A, 7P, 7PC, hIP3, BA2, BA4a, BA4p and BA6) from six female participants. MRF residual signal for each voxel was calculated as the difference between the actual and best matching MRF signal evolutions from a precomputed MRF dictionary covering a range of T1, T2* and B1+ values. To compare MRF residuals between regions of interest, normalised autocorrelation was used as a shape-based statistical signal characterisation method and the Euclidean distance between autocorrelation profiles of residuals was used to measure the interareal dissimilarity. In the eleven cortical areas in both cerebral hemispheres of six participants, the proposed MRF residual analysis consistently showed interareal dissimilarity profiles that concorded with histological studies, indicating that MRF residuals potentially contain tissue microstructural information. MRF residual signals provide additional area-specific information that is complementary to the MR relaxometry-based (T1, T2*) information used previously for distinguishing microstructural differences between human cerebral cortex regions in vivo. The proposed approach led to more accurate identification of structural variations across cortical areas of interest.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Andersson JL, Jenkinson M, Smith S (2007) Non-linear registration aka spatial normalisation fmrib technial report Tr07ja2. Fmrib Analysis Group Of The University Of Oxford, Oxford Andersson JL, Jenkinson M, Smith S (2007) Non-linear registration aka spatial normalisation fmrib technial report Tr07ja2. Fmrib Analysis Group Of The University Of Oxford, Oxford
Zurück zum Zitat Awad IA, Rosenfeld J, Ahl J, Hahn JF, Lüders H (1991) Intractable epilepsy and structural lesions of the brain: mapping, resection strategies, and seizure outcome. Epilepsia 32(2):179–186CrossRefPubMed Awad IA, Rosenfeld J, Ahl J, Hahn JF, Lüders H (1991) Intractable epilepsy and structural lesions of the brain: mapping, resection strategies, and seizure outcome. Epilepsia 32(2):179–186CrossRefPubMed
Zurück zum Zitat Brodmann K (1909) Vergleichende lokalisationslehre der grosshirnrinde in ihren prinzipien dargestellt auf grund des zellenbaues. Barth, Brodmann K (1909) Vergleichende lokalisationslehre der grosshirnrinde in ihren prinzipien dargestellt auf grund des zellenbaues. Barth,
Zurück zum Zitat Chen Y, Jiang Y, Pahwa S, Ma D, Lu L, Twieg Md, Kl W, Seiberlich N, Ma G, Gulani V (2016) MR fingerprinting for rapid quantitative abdominal imaging. Radiology 279(1):278–286CrossRefPubMed Chen Y, Jiang Y, Pahwa S, Ma D, Lu L, Twieg Md, Kl W, Seiberlich N, Ma G, Gulani V (2016) MR fingerprinting for rapid quantitative abdominal imaging. Radiology 279(1):278–286CrossRefPubMed
Zurück zum Zitat Cohen-Adad J, Polimeni JR, Helmer KG, Benner T, Mcnab JA, Wald LL, Rosen BR, Mainero C (2012) T2* mapping and B0 orientation-dependence at 7 T reveal cyto-and myeloarchitecture organization of the human cortex. Neuroimage 60(2):1006–1014CrossRefPubMed Cohen-Adad J, Polimeni JR, Helmer KG, Benner T, Mcnab JA, Wald LL, Rosen BR, Mainero C (2012) T2* mapping and B0 orientation-dependence at 7 T reveal cyto-and myeloarchitecture organization of the human cortex. Neuroimage 60(2):1006–1014CrossRefPubMed
Zurück zum Zitat De Blank P, Badve C, Gold DR, Stearns D, Sunshine J, Dastmalchian S, Tomei K, Ae S, Js B-S, Lane A, Griswold M, Gulani V, Ma D (2019) Magnetic resonance fingerprinting to characterize childhood and young adult brain tumors. Pediatr Neurosurg 54(5):310–318. https://doi.org/10.1159/000501696CrossRefPubMed De Blank P, Badve C, Gold DR, Stearns D, Sunshine J, Dastmalchian S, Tomei K, Ae S, Js B-S, Lane A, Griswold M, Gulani V, Ma D (2019) Magnetic resonance fingerprinting to characterize childhood and young adult brain tumors. Pediatr Neurosurg 54(5):310–318. https://​doi.​org/​10.​1159/​000501696CrossRefPubMed
Zurück zum Zitat Douaud G, Menke RA, Gass A, Monsch AU, Rao A, Whitcher B, Zamboni G, Pm M, Sollberger M, Smith S (2013) Brain microstructure reveals early abnormalities more than two years prior to clinical progression from mild cognitive impairment to Alzheimer’s disease. J Neurosci 33(5):2147–2155CrossRefPubMedPubMedCentral Douaud G, Menke RA, Gass A, Monsch AU, Rao A, Whitcher B, Zamboni G, Pm M, Sollberger M, Smith S (2013) Brain microstructure reveals early abnormalities more than two years prior to clinical progression from mild cognitive impairment to Alzheimer’s disease. J Neurosci 33(5):2147–2155CrossRefPubMedPubMedCentral
Zurück zum Zitat Duffau H (2011) Brain mapping: from neural basis of cognition to surgical applications. Springer Science & Business Media, BerlinCrossRef Duffau H (2011) Brain mapping: from neural basis of cognition to surgical applications. Springer Science & Business Media, BerlinCrossRef
Zurück zum Zitat Geyer S (2012) The microstructural border between the motor and the cognitive domain in the human cerebral cortex, vol 174. Springer Science & Business Media, Berlin Geyer S (2012) The microstructural border between the motor and the cognitive domain in the human cerebral cortex, vol 174. Springer Science & Business Media, Berlin
Zurück zum Zitat Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design, vol 82. Wiley-Liss, New York Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design, vol 82. Wiley-Liss, New York
Zurück zum Zitat Honey CJ, Thivierge J-P, Sporns O (2010) Can structure predict function in the human brain? Neuroimage 52(3):766–776CrossRefPubMed Honey CJ, Thivierge J-P, Sporns O (2010) Can structure predict function in the human brain? Neuroimage 52(3):766–776CrossRefPubMed
Zurück zum Zitat Hopf A (1968) Registration of the myeloarchitecture of the human frontal lobe with an extinction method. J Hirnforsch 10(3):259–269PubMed Hopf A (1968) Registration of the myeloarchitecture of the human frontal lobe with an extinction method. J Hirnforsch 10(3):259–269PubMed
Zurück zum Zitat Hopf A (1970) Photometric studies on the myeloarchitecture of the human parietal lobe. Ii postcentral region. J Hirnforsch 12(1):135–141PubMed Hopf A (1970) Photometric studies on the myeloarchitecture of the human parietal lobe. Ii postcentral region. J Hirnforsch 12(1):135–141PubMed
Zurück zum Zitat Krol LR (2020) Permutation test. https://github.com/lrkrol/permutationTest Krol LR (2020) Permutation test. https://​github.​com/​lrkrol/​permutationTest
Zurück zum Zitat Ma D, Se J, Deshmane A, Sakaie K, Pierre EY, Larvie M, Mcgivney D, Blumcke I, Krishnan B, Lowe M, Gulani V, Najm I, Ma G, Zi W (2019) Development of high-resolution 3d MR fingerprinting for detection and characterization of epileptic lesions. J Magn Reson Imaging 49(5):1333–1346. https://doi.org/10.1002/Jmri.26319CrossRefPubMed Ma D, Se J, Deshmane A, Sakaie K, Pierre EY, Larvie M, Mcgivney D, Blumcke I, Krishnan B, Lowe M, Gulani V, Najm I, Ma G, Zi W (2019) Development of high-resolution 3d MR fingerprinting for detection and characterization of epileptic lesions. J Magn Reson Imaging 49(5):1333–1346. https://​doi.​org/​10.​1002/​Jmri.​26319CrossRefPubMed
Zurück zum Zitat Moinian S, Vegh V, Reutens D (2020) In vivo voxel-wise parcellation of the human cerebral cortex using 3d mr fingerprinting (MRF) and supervised machine learning classification. Ismrm, Virtual Moinian S, Vegh V, Reutens D (2020) In vivo voxel-wise parcellation of the human cerebral cortex using 3d mr fingerprinting (MRF) and supervised machine learning classification. Ismrm, Virtual
Zurück zum Zitat Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE (2011) Statistical parametric mapping: the analysis of functional brain images. Elsevier, Amsterdam Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE (2011) Statistical parametric mapping: the analysis of functional brain images. Elsevier, Amsterdam
Zurück zum Zitat Perlin K (1985) An image synthesizer. Acm Siggraph Computer Graphics 19(3):287–296CrossRef Perlin K (1985) An image synthesizer. Acm Siggraph Computer Graphics 19(3):287–296CrossRef
Zurück zum Zitat Scheperjans F, Hermann K, Sb E, Amunts K, Schleicher A, Zilles K (2008) Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. Cereb Cortex 18(4):846–867CrossRefPubMed Scheperjans F, Hermann K, Sb E, Amunts K, Schleicher A, Zilles K (2008) Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. Cereb Cortex 18(4):846–867CrossRefPubMed
Zurück zum Zitat Tardif CL, Dinse J, Schäfer A, Turner R, Bazin P-L (2013) Multi-modal surface-based alignment of cortical areas using intra-cortical T1 contrast. International workshop on multimodal brain image analysis. Springer, Berlin, pp 222–232CrossRef Tardif CL, Dinse J, Schäfer A, Turner R, Bazin P-L (2013) Multi-modal surface-based alignment of cortical areas using intra-cortical T1 contrast. International workshop on multimodal brain image analysis. Springer, Berlin, pp 222–232CrossRef
Zurück zum Zitat Wang X, Smith K, Hyndman R (2006) Characteristic-based clustering for time series data. Data Min Knowl Disc 13(3):335–364CrossRef Wang X, Smith K, Hyndman R (2006) Characteristic-based clustering for time series data. Data Min Knowl Disc 13(3):335–364CrossRef
Zurück zum Zitat Wang I, Boyacioglu R, Griswold MA, Jones S, Ma D (2019) Exploring human cortical microstructure using magnetic resonance fingerprinting at 3t. Ismrm, Montreal, p 4990 Wang I, Boyacioglu R, Griswold MA, Jones S, Ma D (2019) Exploring human cortical microstructure using magnetic resonance fingerprinting at 3t. Ismrm, Montreal, p 4990
Zurück zum Zitat Weiskopf N, Mohammadi S, Lutti A, Callaghan MF (2015) Advances in MRI-based computational neuroanatomy: from morphometry to in-vivo histology (vol 28, Pg 313, 2015). Curr Opin Neurol 28(5):547–547CrossRef Weiskopf N, Mohammadi S, Lutti A, Callaghan MF (2015) Advances in MRI-based computational neuroanatomy: from morphometry to in-vivo histology (vol 28, Pg 313, 2015). Curr Opin Neurol 28(5):547–547CrossRef
Zurück zum Zitat Widjaja E, Zarei Mahmoodabadi S, Otsubo H, Snead OC, Holowka S, Bells S, Raybaud C (2009) Subcortical alterations in tissue microstructure adjacent to focal cortical dysplasia: detection at diffusion-tensor MR imaging by using magnetoencephalographic dipole cluster localization. Radiology 251(1):206–215CrossRefPubMed Widjaja E, Zarei Mahmoodabadi S, Otsubo H, Snead OC, Holowka S, Bells S, Raybaud C (2009) Subcortical alterations in tissue microstructure adjacent to focal cortical dysplasia: detection at diffusion-tensor MR imaging by using magnetoencephalographic dipole cluster localization. Radiology 251(1):206–215CrossRefPubMed
Zurück zum Zitat Winston GP, Micallef C, Symms MR, Alexander DC, Duncan JS, Zhang H (2014) Advanced diffusion imaging sequences could aid assessing patients with focal cortical dysplasia and epilepsy. Epilepsy Res 108(2):336–339CrossRefPubMedPubMedCentral Winston GP, Micallef C, Symms MR, Alexander DC, Duncan JS, Zhang H (2014) Advanced diffusion imaging sequences could aid assessing patients with focal cortical dysplasia and epilepsy. Epilepsy Res 108(2):336–339CrossRefPubMedPubMedCentral
Metadaten
Titel
Magnetic resonance fingerprinting residual signals can disassociate human grey matter regions
verfasst von
Shahrzad Moinian
Viktor Vegh
Kieran O’Brien
David Reutens
Publikationsdatum
25.10.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 1/2022
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-021-02402-9

Weitere Artikel der Ausgabe 1/2022

Brain Structure and Function 1/2022 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.