Skip to main content
Erschienen in: Medical Microbiology and Immunology 3/2015

01.06.2015 | Review

Manipulation of apoptosis and necroptosis signaling by herpesviruses

verfasst von: Hongyan Guo, William J. Kaiser, Edward S. Mocarski

Erschienen in: Medical Microbiology and Immunology | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Abstract

Like apoptosis, necroptosis is an innate immune mechanism that eliminates pathogen-infected cells. Receptor-interacting protein kinase (RIP)3 (also called RIPK3) mediates necrotic death by phosphorylating an executioner protein, MLKL, leading to plasma membrane leakage. The pathway is triggered against viruses that block caspase 8. In murine CMV, the viral inhibitor of caspase 8 activation prevents extrinsic apoptosis but also has the potential to unleash necroptosis. This virus encodes the viral inhibitor of RIP activation to prevent RIP homotypic interaction motif (RHIM)-dependent signal transduction and necroptosis. Recent investigations reveal a similar mechanism at play in the human alpha-herpesviruses, herpes simplex virus (HSV)1 and HSV2, where RHIM competitor function and caspase 8 suppression are carried out by the virus-encoded large subunit of ribonucleotide reductase (R1). In human cells, R1 inhibition of caspase 8 prevents TNF-induced apoptosis, but sensitizes to TNF-induced necroptosis. The RHIM and caspase 8 interaction domains of R1 collaborate to prevent RIP3-dependent steps and enable both herpesviruses to deflect host cell death machinery that would cut short infection. In mouse cells, HSV1 infection by itself triggers necroptosis by driving RIP3 protein kinase activity. HSV1 R1 contributes to the activation of RIP3 adaptor function in mice, a popular host animal for experimental infection. Based on these studies, infection of RIP3-kinase inactive mice should be explored in models of pathogenesis and latency. The necrotic death pathway that is suppressed during infection in the natural host becomes a cross-species barrier to infection in a non-natural host.
Literatur
2.
3.
4.
Zurück zum Zitat McCormick AL, Mocarski ES (2013) Cell death pathways controlled by cytomegaloviruses. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol I. Caister Scientific Press, Norfolk, pp 263–276 McCormick AL, Mocarski ES (2013) Cell death pathways controlled by cytomegaloviruses. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol I. Caister Scientific Press, Norfolk, pp 263–276
6.
Zurück zum Zitat Jurak I, Schumacher U, Simic H, Voigt S, Brune W (2008) Murine cytomegalovirus m38.5 protein inhibits Bax-mediated cell death. J Virol 82(10):4812–4822CrossRefPubMedCentralPubMed Jurak I, Schumacher U, Simic H, Voigt S, Brune W (2008) Murine cytomegalovirus m38.5 protein inhibits Bax-mediated cell death. J Virol 82(10):4812–4822CrossRefPubMedCentralPubMed
7.
Zurück zum Zitat Manzur M, Fleming P, Huang DC, Degli-Esposti MA, Andoniou CE (2009) Virally mediated inhibition of Bax in leukocytes promotes dissemination of murine cytomegalovirus. Cell Death Differ 16(2):312–320. doi:10.1038/cdd.2008.152 CrossRefPubMed Manzur M, Fleming P, Huang DC, Degli-Esposti MA, Andoniou CE (2009) Virally mediated inhibition of Bax in leukocytes promotes dissemination of murine cytomegalovirus. Cell Death Differ 16(2):312–320. doi:10.​1038/​cdd.​2008.​152 CrossRefPubMed
8.
Zurück zum Zitat Crosby LN, McCormick AL, Mocarski ES (2013) Gene products of the embedded m41/m41.1 locus of murine cytomegalovirus differentially influence replication and pathogenesis. Virology 346:274–283CrossRef Crosby LN, McCormick AL, Mocarski ES (2013) Gene products of the embedded m41/m41.1 locus of murine cytomegalovirus differentially influence replication and pathogenesis. Virology 346:274–283CrossRef
13.
Zurück zum Zitat Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114(2):181–190CrossRefPubMed Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114(2):181–190CrossRefPubMed
14.
15.
Zurück zum Zitat Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F, Zachariou A, Lopez J, Macfarlane M, Cain K, Meier P (2011) The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 43:432–448. doi:10.1016/j.molcel.2011.06.006 CrossRefPubMed Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F, Zachariou A, Lopez J, Macfarlane M, Cain K, Meier P (2011) The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 43:432–448. doi:10.​1016/​j.​molcel.​2011.​06.​006 CrossRefPubMed
20.
22.
Zurück zum Zitat Chan FK, Shisler J, Bixby JG, Felices M, Zheng L, Appel M, Orenstein J, Moss B, Lenardo MJ (2003) A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem 278(51):51613–51621CrossRefPubMed Chan FK, Shisler J, Bixby JG, Felices M, Zheng L, Appel M, Orenstein J, Moss B, Lenardo MJ (2003) A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem 278(51):51613–51621CrossRefPubMed
26.
Zurück zum Zitat Upton JW, Kaiser WJ, Mocarski ES (2008) Cytomegalovirus M45 cell death suppression requires receptor-interacting protein (RIP) homotypic interaction motif (RHIM)-dependent interaction with RIP1. J Biol Chem 283(25):16966–16970CrossRefPubMedCentralPubMed Upton JW, Kaiser WJ, Mocarski ES (2008) Cytomegalovirus M45 cell death suppression requires receptor-interacting protein (RIP) homotypic interaction motif (RHIM)-dependent interaction with RIP1. J Biol Chem 283(25):16966–16970CrossRefPubMedCentralPubMed
28.
Zurück zum Zitat Upton JW, Kaiser WJ, Mocarski ES (2012) DAI (ZBP1/DLM-1) complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11:290–297CrossRefPubMedCentralPubMed Upton JW, Kaiser WJ, Mocarski ES (2012) DAI (ZBP1/DLM-1) complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11:290–297CrossRefPubMedCentralPubMed
29.
Zurück zum Zitat Guo H, Omoto S, Harris PA, Finger JN, Bertin J, Gough PJ, Kaiser WJ, Mocarski ES (2015) Herpes simplex virus suppression of necroptosis in human cells. Cell Host Microbe 17:243–251CrossRefPubMed Guo H, Omoto S, Harris PA, Finger JN, Bertin J, Gough PJ, Kaiser WJ, Mocarski ES (2015) Herpes simplex virus suppression of necroptosis in human cells. Cell Host Microbe 17:243–251CrossRefPubMed
30.
Zurück zum Zitat Wang X, Li Y, Liu S, Yu X, Li L, Shi C, He W, Li J, Xu L, Hu Z, Yu L, Yang Z, Chen Q, Ge L, Zhang Z, Zhou B, Jiang X, Chen S, He S (2014) Direct activation of RIP3/MLKL-dependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense. Proc Natl Acad Sci USA 111:15438–15443. doi:10.1073/pnas.1412767111 CrossRefPubMedCentralPubMed Wang X, Li Y, Liu S, Yu X, Li L, Shi C, He W, Li J, Xu L, Hu Z, Yu L, Yang Z, Chen Q, Ge L, Zhang Z, Zhou B, Jiang X, Chen S, He S (2014) Direct activation of RIP3/MLKL-dependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense. Proc Natl Acad Sci USA 111:15438–15443. doi:10.​1073/​pnas.​1412767111 CrossRefPubMedCentralPubMed
31.
Zurück zum Zitat Huang Z, Wu S-Q, Liang Y, Zhou X, Chen W, Li L, Wu J, Zhuang Q, Chen C, Li J, Zhong C, Xia W, Zhou R, Zheng C, Han J (2015) Targeting HSV-1 protein ICP6 by RIP1 and RIP3 initiates necroptosis to restrict HSV-1 propagation in mice. Cell Host Microbe 17:229–242CrossRefPubMed Huang Z, Wu S-Q, Liang Y, Zhou X, Chen W, Li L, Wu J, Zhuang Q, Chen C, Li J, Zhong C, Xia W, Zhou R, Zheng C, Han J (2015) Targeting HSV-1 protein ICP6 by RIP1 and RIP3 initiates necroptosis to restrict HSV-1 propagation in mice. Cell Host Microbe 17:229–242CrossRefPubMed
32.
33.
Zurück zum Zitat Weng D, Marty-Roix R, Ganesan S, Proulx MK, Vladimer GI, Kaiser WJ, Mocarski ES, Pouliot K, Chan FK, Kelliher MA, Harris PA, Bertin J, Gough PJ, Shayakhmetov DM, Goguen JD, Fitzgerald KA, Silverman N, Lien E (2014) Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proc Natl Acad Sci USA 111:7391–7396. doi:10.1073/pnas.1403477111 CrossRefPubMedCentralPubMed Weng D, Marty-Roix R, Ganesan S, Proulx MK, Vladimer GI, Kaiser WJ, Mocarski ES, Pouliot K, Chan FK, Kelliher MA, Harris PA, Bertin J, Gough PJ, Shayakhmetov DM, Goguen JD, Fitzgerald KA, Silverman N, Lien E (2014) Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proc Natl Acad Sci USA 111:7391–7396. doi:10.​1073/​pnas.​1403477111 CrossRefPubMedCentralPubMed
37.
Zurück zum Zitat Dillon CP, Oberst A, Weinlich R, Janke LJ, Kang TB, Ben-Moshe T, Mak TW, Wallach D, Green DR (2012) Survival function of the FADD-caspase-8-cFLIP(L) complex. Cell Rep 1:401–407CrossRefPubMedCentralPubMed Dillon CP, Oberst A, Weinlich R, Janke LJ, Kang TB, Ben-Moshe T, Mak TW, Wallach D, Green DR (2012) Survival function of the FADD-caspase-8-cFLIP(L) complex. Cell Rep 1:401–407CrossRefPubMedCentralPubMed
38.
Zurück zum Zitat Kaiser WJ, Daley-Bauer LP, Thapa RJ, Mandal P, Berger SB, Huang C, Sundararajan A, Guo H, Roback L, Speck SH, Bertin J, Gough PJ, Balachandran S, Mocarski ES (2014) RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc Natl Acad Sci USA 111:7753–7758. doi:10.1073/pnas.1401857111 CrossRefPubMedCentralPubMed Kaiser WJ, Daley-Bauer LP, Thapa RJ, Mandal P, Berger SB, Huang C, Sundararajan A, Guo H, Roback L, Speck SH, Bertin J, Gough PJ, Balachandran S, Mocarski ES (2014) RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc Natl Acad Sci USA 111:7753–7758. doi:10.​1073/​pnas.​1401857111 CrossRefPubMedCentralPubMed
39.
Zurück zum Zitat Rickard JA, O’Donnell JA, Evans JM, Lalaoui N, Poh AR, Rogers T, Vince JE, Lawlor KE, Ninnis RL, Anderton H, Hall C, Spall SK, Phesse TJ, Abud HE, Cengia LH, Corbin J, Mifsud S, Di Rago L, Metcalf D, Ernst M, Dewson G, Roberts AW, Alexander WS, Murphy JM, Ekert PG, Masters SL, Vaux DL, Croker BA, Gerlic M, Silke J (2014) RIPK1 regulates RIPK3–MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157(5):1175–1188. doi:10.1016/j.cell.2014.04.019 CrossRefPubMed Rickard JA, O’Donnell JA, Evans JM, Lalaoui N, Poh AR, Rogers T, Vince JE, Lawlor KE, Ninnis RL, Anderton H, Hall C, Spall SK, Phesse TJ, Abud HE, Cengia LH, Corbin J, Mifsud S, Di Rago L, Metcalf D, Ernst M, Dewson G, Roberts AW, Alexander WS, Murphy JM, Ekert PG, Masters SL, Vaux DL, Croker BA, Gerlic M, Silke J (2014) RIPK1 regulates RIPK3–MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157(5):1175–1188. doi:10.​1016/​j.​cell.​2014.​04.​019 CrossRefPubMed
40.
Zurück zum Zitat Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, Gurung P, Verbist KC, Brewer TL, Llambi F, Gong YN, Janke LJ, Kelliher MA, Kanneganti TD, Green DR (2014) RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157(5):1189–1202. doi:10.1016/j.cell.2014.04.018 CrossRefPubMed Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, Gurung P, Verbist KC, Brewer TL, Llambi F, Gong YN, Janke LJ, Kelliher MA, Kanneganti TD, Green DR (2014) RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157(5):1189–1202. doi:10.​1016/​j.​cell.​2014.​04.​018 CrossRefPubMed
41.
Zurück zum Zitat Mandal P, Berger SB, Pillay S, Moriwaki K, Huang C, Guo H, Lich JD, Finger J, Kasparcova V, Votta B, Ouellette M, King BW, Wisnoski D, Lakdawala AS, DeMartino MP, Casillas LN, Haile PA, Sehon CA, Marquis RW, Upton J, Daley-Bauer LP, Roback L, Ramia N, Dovey CM, Carette JE, Chan FK, Bertin J, Gough PJ, Mocarski ES, Kaiser WJ (2014) RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol Cell 56(4):481–495. doi:10.1016/j.molcel.2014.10.021 CrossRefPubMed Mandal P, Berger SB, Pillay S, Moriwaki K, Huang C, Guo H, Lich JD, Finger J, Kasparcova V, Votta B, Ouellette M, King BW, Wisnoski D, Lakdawala AS, DeMartino MP, Casillas LN, Haile PA, Sehon CA, Marquis RW, Upton J, Daley-Bauer LP, Roback L, Ramia N, Dovey CM, Carette JE, Chan FK, Bertin J, Gough PJ, Mocarski ES, Kaiser WJ (2014) RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol Cell 56(4):481–495. doi:10.​1016/​j.​molcel.​2014.​10.​021 CrossRefPubMed
42.
Zurück zum Zitat Newton K, Dugger DL, Wickliffe KE, Kapoor N, de-Almagro MC, Vucic D, Komuves L, Ferrando RE, French DM, Webster J, Roose-Girma M, Warming S, Dixit VM (2014) Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343:1357–1360. doi:10.1126/science.1249361 CrossRefPubMed Newton K, Dugger DL, Wickliffe KE, Kapoor N, de-Almagro MC, Vucic D, Komuves L, Ferrando RE, French DM, Webster J, Roose-Girma M, Warming S, Dixit VM (2014) Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343:1357–1360. doi:10.​1126/​science.​1249361 CrossRefPubMed
44.
47.
Zurück zum Zitat McComb S, Cessford E, Alturki NA, Joseph J, Shutinoski B, Startek JB, Gamero AM, Mossman KL, Sad S (2014) Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages. Proc Natl Acad Sci USA 111(31):E3206–E3213. doi:10.1073/pnas.1407068111 CrossRefPubMedCentralPubMed McComb S, Cessford E, Alturki NA, Joseph J, Shutinoski B, Startek JB, Gamero AM, Mossman KL, Sad S (2014) Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages. Proc Natl Acad Sci USA 111(31):E3206–E3213. doi:10.​1073/​pnas.​1407068111 CrossRefPubMedCentralPubMed
51.
Zurück zum Zitat Lembo D, Donalisio M, Hofer A, Cornaglia M, Brune W, Koszinowski U, Thelander L, Landolfo S (2004) The ribonucleotide reductase R1 homolog of murine cytomegalovirus is not a functional enzyme subunit but is required for pathogenesis. J Virol 78(8):4278–4288CrossRefPubMedCentralPubMed Lembo D, Donalisio M, Hofer A, Cornaglia M, Brune W, Koszinowski U, Thelander L, Landolfo S (2004) The ribonucleotide reductase R1 homolog of murine cytomegalovirus is not a functional enzyme subunit but is required for pathogenesis. J Virol 78(8):4278–4288CrossRefPubMedCentralPubMed
53.
Zurück zum Zitat Galvan V, Roizman B (1998) Herpes simplex virus 1 induces and blocks apoptosis at multiple steps during infection and protects cells from exogenous inducers in a cell-type-dependent manner. Proc Natl Acad Sci USA 95(7):3931–3936CrossRefPubMedCentralPubMed Galvan V, Roizman B (1998) Herpes simplex virus 1 induces and blocks apoptosis at multiple steps during infection and protects cells from exogenous inducers in a cell-type-dependent manner. Proc Natl Acad Sci USA 95(7):3931–3936CrossRefPubMedCentralPubMed
54.
Zurück zum Zitat Leopardi R, Van Sant C, Roizman B (1997) The herpes simplex virus 1 protein kinase US3 is required for protection from apoptosis induced by the virus. Proc Natl Acad Sci USA 94(15):7891–7896CrossRefPubMedCentralPubMed Leopardi R, Van Sant C, Roizman B (1997) The herpes simplex virus 1 protein kinase US3 is required for protection from apoptosis induced by the virus. Proc Natl Acad Sci USA 94(15):7891–7896CrossRefPubMedCentralPubMed
55.
Zurück zum Zitat Peri P, Nuutila K, Vuorinen T, Saukko P, Hukkanen V (2011) Cathepsins are involved in virus-induced cell death in ICP4 and Us3 deletion mutant herpes simplex virus type 1-infected monocytic cells. J Gen Virol 92(Pt 1):173–180. doi:10.1099/vir.0.025080-0 CrossRefPubMed Peri P, Nuutila K, Vuorinen T, Saukko P, Hukkanen V (2011) Cathepsins are involved in virus-induced cell death in ICP4 and Us3 deletion mutant herpes simplex virus type 1-infected monocytic cells. J Gen Virol 92(Pt 1):173–180. doi:10.​1099/​vir.​0.​025080-0 CrossRefPubMed
56.
Zurück zum Zitat Galvan V, Brandimarti R, Roizman B (1999) Herpes simplex virus 1 blocks caspase-3-independent and caspase-dependent pathways to cell death. J Virol 73(4):3219–3226PubMedCentralPubMed Galvan V, Brandimarti R, Roizman B (1999) Herpes simplex virus 1 blocks caspase-3-independent and caspase-dependent pathways to cell death. J Virol 73(4):3219–3226PubMedCentralPubMed
57.
Zurück zum Zitat Zhou G, Roizman B (2000) Wild-type herpes simplex virus 1 blocks programmed cell death and release of cytochrome c but not the translocation of mitochondrial apoptosis-inducing factor to the nuclei of human embryonic lung fibroblasts. J Virol 74(19):9048–9053CrossRefPubMedCentralPubMed Zhou G, Roizman B (2000) Wild-type herpes simplex virus 1 blocks programmed cell death and release of cytochrome c but not the translocation of mitochondrial apoptosis-inducing factor to the nuclei of human embryonic lung fibroblasts. J Virol 74(19):9048–9053CrossRefPubMedCentralPubMed
58.
Zurück zum Zitat Munger J, Chee AV, Roizman B (2001) The U(S)3 protein kinase blocks apoptosis induced by the d120 mutant of herpes simplex virus 1 at a premitochondrial stage. J Virol 75(12):5491–5497CrossRefPubMedCentralPubMed Munger J, Chee AV, Roizman B (2001) The U(S)3 protein kinase blocks apoptosis induced by the d120 mutant of herpes simplex virus 1 at a premitochondrial stage. J Virol 75(12):5491–5497CrossRefPubMedCentralPubMed
59.
Zurück zum Zitat Hagglund R, Munger J, Poon AP, Roizman B (2002) U(S)3 protein kinase of herpes simplex virus 1 blocks caspase 3 activation induced by the products of U(S)1.5 and U(L)13 genes and modulates expression of transduced U(S)1.5 open reading frame in a cell type-specific manner. J Virol 76(2):743–754CrossRefPubMedCentralPubMed Hagglund R, Munger J, Poon AP, Roizman B (2002) U(S)3 protein kinase of herpes simplex virus 1 blocks caspase 3 activation induced by the products of U(S)1.5 and U(L)13 genes and modulates expression of transduced U(S)1.5 open reading frame in a cell type-specific manner. J Virol 76(2):743–754CrossRefPubMedCentralPubMed
60.
Zurück zum Zitat Langelier Y, Bergeron S, Chabaud S, Lippens J, Guilbault C, Sasseville AM, Denis S, Mosser DD, Massie B (2002) The R1 subunit of herpes simplex virus ribonucleotide reductase protects cells against apoptosis at, or upstream of, caspase-8 activation. J Gen Virol 83(Pt 11):2779–2789PubMed Langelier Y, Bergeron S, Chabaud S, Lippens J, Guilbault C, Sasseville AM, Denis S, Mosser DD, Massie B (2002) The R1 subunit of herpes simplex virus ribonucleotide reductase protects cells against apoptosis at, or upstream of, caspase-8 activation. J Gen Virol 83(Pt 11):2779–2789PubMed
61.
Zurück zum Zitat Perkins D, Pereira EF, Aurelian L (2003) The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) functions as a dominant regulator of apoptosis in hippocampal neurons involving activation of the ERK survival pathway and upregulation of the antiapoptotic protein Bag-1. J Virol 77(2):1292–1305CrossRefPubMedCentralPubMed Perkins D, Pereira EF, Aurelian L (2003) The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) functions as a dominant regulator of apoptosis in hippocampal neurons involving activation of the ERK survival pathway and upregulation of the antiapoptotic protein Bag-1. J Virol 77(2):1292–1305CrossRefPubMedCentralPubMed
62.
Zurück zum Zitat Zhou G, Avitabile E, Campadelli-Fiume G, Roizman B (2003) The domains of glycoprotein D required to block apoptosis induced by herpes simplex virus 1 are largely distinct from those involved in cell-cell fusion and binding to nectin1. J Virol 77(6):3759–3767CrossRefPubMedCentralPubMed Zhou G, Avitabile E, Campadelli-Fiume G, Roizman B (2003) The domains of glycoprotein D required to block apoptosis induced by herpes simplex virus 1 are largely distinct from those involved in cell-cell fusion and binding to nectin1. J Virol 77(6):3759–3767CrossRefPubMedCentralPubMed
63.
Zurück zum Zitat Leopardi R, Roizman B (1996) The herpes simplex virus major regulatory protein ICP4 blocks apoptosis induced by the virus or by hyperthermia. Proc Natl Acad Sci USA 93(18):9583–9587CrossRefPubMedCentralPubMed Leopardi R, Roizman B (1996) The herpes simplex virus major regulatory protein ICP4 blocks apoptosis induced by the virus or by hyperthermia. Proc Natl Acad Sci USA 93(18):9583–9587CrossRefPubMedCentralPubMed
64.
Zurück zum Zitat Benetti L, Roizman B (2004) Herpes simplex virus protein kinase US3 activates and functionally overlaps protein kinase A to block apoptosis. Proc Natl Acad Sci USA 101(25):9411–9416CrossRefPubMedCentralPubMed Benetti L, Roizman B (2004) Herpes simplex virus protein kinase US3 activates and functionally overlaps protein kinase A to block apoptosis. Proc Natl Acad Sci USA 101(25):9411–9416CrossRefPubMedCentralPubMed
65.
Zurück zum Zitat Munger J, Roizman B (2001) The US3 protein kinase of herpes simplex virus 1 mediates the posttranslational modification of BAD and prevents BAD-induced programmed cell death in the absence of other viral proteins. Proc Natl Acad Sci USA 98(18):10410–10415CrossRefPubMedCentralPubMed Munger J, Roizman B (2001) The US3 protein kinase of herpes simplex virus 1 mediates the posttranslational modification of BAD and prevents BAD-induced programmed cell death in the absence of other viral proteins. Proc Natl Acad Sci USA 98(18):10410–10415CrossRefPubMedCentralPubMed
66.
Zurück zum Zitat Zhou G, Roizman B (2002) Truncated forms of glycoprotein D of herpes simplex virus 1 capable of blocking apoptosis and of low-efficiency entry into cells form a heterodimer dependent on the presence of a cysteine located in the shared transmembrane domains. J Virol 76(22):11469–11475CrossRefPubMedCentralPubMed Zhou G, Roizman B (2002) Truncated forms of glycoprotein D of herpes simplex virus 1 capable of blocking apoptosis and of low-efficiency entry into cells form a heterodimer dependent on the presence of a cysteine located in the shared transmembrane domains. J Virol 76(22):11469–11475CrossRefPubMedCentralPubMed
67.
Zurück zum Zitat Benetti L, Munger J, Roizman B (2003) The herpes simplex virus 1 US3 protein kinase blocks caspase-dependent double cleavage and activation of the proapoptotic protein BAD. J Virol 77(11):6567–6573CrossRefPubMedCentralPubMed Benetti L, Munger J, Roizman B (2003) The herpes simplex virus 1 US3 protein kinase blocks caspase-dependent double cleavage and activation of the proapoptotic protein BAD. J Virol 77(11):6567–6573CrossRefPubMedCentralPubMed
68.
Zurück zum Zitat Perkins D, Yu Y, Bambrick LL, Yarowsky PJ, Aurelian L (2002) Expression of herpes simplex virus type 2 protein ICP10 PK rescues neurons from apoptosis due to serum deprivation or genetic defects. Exp Neurol 174(1):118–122. doi:10.1006/exnr.2001.7849 CrossRefPubMed Perkins D, Yu Y, Bambrick LL, Yarowsky PJ, Aurelian L (2002) Expression of herpes simplex virus type 2 protein ICP10 PK rescues neurons from apoptosis due to serum deprivation or genetic defects. Exp Neurol 174(1):118–122. doi:10.​1006/​exnr.​2001.​7849 CrossRefPubMed
69.
Zurück zum Zitat Perkins D, Pereira EF, Gober M, Yarowsky PJ, Aurelian L (2002) The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) blocks apoptosis in hippocampal neurons, involving activation of the MEK/MAPK survival pathway. J Virol 76(3):1435–1449CrossRefPubMedCentralPubMed Perkins D, Pereira EF, Gober M, Yarowsky PJ, Aurelian L (2002) The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) blocks apoptosis in hippocampal neurons, involving activation of the MEK/MAPK survival pathway. J Virol 76(3):1435–1449CrossRefPubMedCentralPubMed
70.
Zurück zum Zitat Chabaud S, Sasseville AM, Elahi SM, Caron A, Dufour F, Massie B, Langelier Y (2007) The ribonucleotide reductase domain of the R1 subunit of herpes simplex virus type 2 ribonucleotide reductase is essential for R1 antiapoptotic function. J Gen Virol 88(Pt 2):384–394. doi:10.1099/vir.0.82383-0 CrossRefPubMed Chabaud S, Sasseville AM, Elahi SM, Caron A, Dufour F, Massie B, Langelier Y (2007) The ribonucleotide reductase domain of the R1 subunit of herpes simplex virus type 2 ribonucleotide reductase is essential for R1 antiapoptotic function. J Gen Virol 88(Pt 2):384–394. doi:10.​1099/​vir.​0.​82383-0 CrossRefPubMed
71.
Zurück zum Zitat Dufour F, Sasseville AM, Chabaud S, Massie B, Siegel RM, Langelier Y (2011) The ribonucleotide reductase R1 subunits of herpes simplex virus types 1 and 2 protect cells against TNFalpha- and FasL-induced apoptosis by interacting with caspase-8. Apoptosis Int J Progr Cell Death 16(3):256–271. doi:10.1007/s10495-010-0560-2 CrossRef Dufour F, Sasseville AM, Chabaud S, Massie B, Siegel RM, Langelier Y (2011) The ribonucleotide reductase R1 subunits of herpes simplex virus types 1 and 2 protect cells against TNFalpha- and FasL-induced apoptosis by interacting with caspase-8. Apoptosis Int J Progr Cell Death 16(3):256–271. doi:10.​1007/​s10495-010-0560-2 CrossRef
73.
Zurück zum Zitat Aurelian L (2005) HSV-induced apoptosis in herpes encephalitis. Curr Top Microbiol Immunol 289:79–111PubMed Aurelian L (2005) HSV-induced apoptosis in herpes encephalitis. Curr Top Microbiol Immunol 289:79–111PubMed
74.
Zurück zum Zitat Perng GC, Jones C, Ciacci-Zanella J, Stone M, Henderson G, Yukht A, Slanina SM, Hofman FM, Ghiasi H, Nesburn AB, Wechsler SL (2000) Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287(5457):1500–1503CrossRefPubMed Perng GC, Jones C, Ciacci-Zanella J, Stone M, Henderson G, Yukht A, Slanina SM, Hofman FM, Ghiasi H, Nesburn AB, Wechsler SL (2000) Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287(5457):1500–1503CrossRefPubMed
77.
Zurück zum Zitat Bertin J, Armstrong RC, Ottilie S, Martin DA, Wang Y, Banks S, Wang GH, Senkevich TG, Alnemri ES, Moss B, Lenardo MJ, Tomaselli KJ, Cohen JI (1997) Death effector domain-containing herpesvirus and poxvirus proteins inhibit both Fas- and TNFR1-induced apoptosis. Proc Natl Acad Sci USA 94(4):1172–1176CrossRefPubMedCentralPubMed Bertin J, Armstrong RC, Ottilie S, Martin DA, Wang Y, Banks S, Wang GH, Senkevich TG, Alnemri ES, Moss B, Lenardo MJ, Tomaselli KJ, Cohen JI (1997) Death effector domain-containing herpesvirus and poxvirus proteins inhibit both Fas- and TNFR1-induced apoptosis. Proc Natl Acad Sci USA 94(4):1172–1176CrossRefPubMedCentralPubMed
79.
Zurück zum Zitat Lundberg P, Welander PV, Edwards CK 3rd, van Rooijen N, Cantin E (2007) Tumor necrosis factor (TNF) protects resistant C57BL/6 mice against herpes simplex virus-induced encephalitis independently of signaling via TNF receptor 1 or 2. J Virol 81(3):1451–1460. doi:10.1128/jvi.02243-06 CrossRefPubMedCentralPubMed Lundberg P, Welander PV, Edwards CK 3rd, van Rooijen N, Cantin E (2007) Tumor necrosis factor (TNF) protects resistant C57BL/6 mice against herpes simplex virus-induced encephalitis independently of signaling via TNF receptor 1 or 2. J Virol 81(3):1451–1460. doi:10.​1128/​jvi.​02243-06 CrossRefPubMedCentralPubMed
80.
Zurück zum Zitat Rossol-Voth R, Rossol S, Schutt KH, Corridori S, de Cian W, Falke D (1991) In vivo protective effect of tumour necrosis factor alpha against experimental infection with herpes simplex virus type 1. J Gen Virol 72(Pt 1):143–147CrossRefPubMed Rossol-Voth R, Rossol S, Schutt KH, Corridori S, de Cian W, Falke D (1991) In vivo protective effect of tumour necrosis factor alpha against experimental infection with herpes simplex virus type 1. J Gen Virol 72(Pt 1):143–147CrossRefPubMed
81.
Zurück zum Zitat Sergerie Y, Rivest S, Boivin G (2007) Tumor necrosis factor-alpha and interleukin-1 beta play a critical role in the resistance against lethal herpes simplex virus encephalitis. J Infect Dis 196(6):853–860. doi:10.1086/520094 CrossRefPubMed Sergerie Y, Rivest S, Boivin G (2007) Tumor necrosis factor-alpha and interleukin-1 beta play a critical role in the resistance against lethal herpes simplex virus encephalitis. J Infect Dis 196(6):853–860. doi:10.​1086/​520094 CrossRefPubMed
82.
Zurück zum Zitat Sergerie Y, Boivin G, Gosselin D, Rivest S (2007) Delayed but not early glucocorticoid treatment protects the host during experimental herpes simplex virus encephalitis in mice. J Infect Dis 195(6):817–825. doi:10.1086/511987 CrossRefPubMed Sergerie Y, Boivin G, Gosselin D, Rivest S (2007) Delayed but not early glucocorticoid treatment protects the host during experimental herpes simplex virus encephalitis in mice. J Infect Dis 195(6):817–825. doi:10.​1086/​511987 CrossRefPubMed
83.
Zurück zum Zitat Bousfiha A, Picard C, Boisson-Dupuis S, Zhang SY, Bustamante J, Puel A, Jouanguy E, Ailal F, El-Baghdadi J, Abel L, Casanova JL (2010) Primary immunodeficiencies of protective immunity to primary infections. Clin Immunol 135(2):204–209. doi:10.1016/j.clim.2010.02.001 CrossRefPubMed Bousfiha A, Picard C, Boisson-Dupuis S, Zhang SY, Bustamante J, Puel A, Jouanguy E, Ailal F, El-Baghdadi J, Abel L, Casanova JL (2010) Primary immunodeficiencies of protective immunity to primary infections. Clin Immunol 135(2):204–209. doi:10.​1016/​j.​clim.​2010.​02.​001 CrossRefPubMed
84.
Zurück zum Zitat Perez de Diego R, Sancho-Shimizu V, Lorenzo L, Puel A, Plancoulaine S, Picard C, Herman M, Cardon A, Durandy A, Bustamante J, Vallabhapurapu S, Bravo J, Warnatz K, Chaix Y, Cascarrigny F, Lebon P, Rozenberg F, Karin M, Tardieu M, Al-Muhsen S, Jouanguy E, Zhang SY, Abel L, Casanova JL (2010) Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 33(3):400–411. doi:10.1016/j.immuni.2010.08.014 CrossRefPubMed Perez de Diego R, Sancho-Shimizu V, Lorenzo L, Puel A, Plancoulaine S, Picard C, Herman M, Cardon A, Durandy A, Bustamante J, Vallabhapurapu S, Bravo J, Warnatz K, Chaix Y, Cascarrigny F, Lebon P, Rozenberg F, Karin M, Tardieu M, Al-Muhsen S, Jouanguy E, Zhang SY, Abel L, Casanova JL (2010) Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 33(3):400–411. doi:10.​1016/​j.​immuni.​2010.​08.​014 CrossRefPubMed
86.
Zurück zum Zitat Guo Y, Audry M, Ciancanelli M, Alsina L, Azevedo J, Herman M, Anguiano E, Sancho-Shimizu V, Lorenzo L, Pauwels E, Philippe PB, Perez de Diego R, Cardon A, Vogt G, Picard C, Andrianirina ZZ, Rozenberg F, Lebon P, Plancoulaine S, Tardieu M, Valerie D, Jouanguy E, Chaussabel D, Geissmann F, Abel L, Casanova JL, Zhang SY (2011) Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J Exp Med 208(10):2083–2098. doi:10.1084/jem.20101568 CrossRefPubMedCentralPubMed Guo Y, Audry M, Ciancanelli M, Alsina L, Azevedo J, Herman M, Anguiano E, Sancho-Shimizu V, Lorenzo L, Pauwels E, Philippe PB, Perez de Diego R, Cardon A, Vogt G, Picard C, Andrianirina ZZ, Rozenberg F, Lebon P, Plancoulaine S, Tardieu M, Valerie D, Jouanguy E, Chaussabel D, Geissmann F, Abel L, Casanova JL, Zhang SY (2011) Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J Exp Med 208(10):2083–2098. doi:10.​1084/​jem.​20101568 CrossRefPubMedCentralPubMed
87.
Zurück zum Zitat Sancho-Shimizu V, Perez de Diego R, Lorenzo L, Halwani R, Alangari A, Israelsson E, Fabrega S, Cardon A, Maluenda J, Tatematsu M, Mahvelati F, Herman M, Ciancanelli M, Guo Y, AlSum Z, Alkhamis N, Al-Makadma AS, Ghadiri A, Boucherit S, Plancoulaine S, Picard C, Rozenberg F, Tardieu M, Lebon P, Jouanguy E, Rezaei N, Seya T, Matsumoto M, Chaussabel D, Puel A, Zhang SY, Abel L, Al-Muhsen S, Casanova JL (2011) Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J Clin Invest 121(12):4889–4902. doi:10.1172/jci59259 CrossRefPubMedCentralPubMed Sancho-Shimizu V, Perez de Diego R, Lorenzo L, Halwani R, Alangari A, Israelsson E, Fabrega S, Cardon A, Maluenda J, Tatematsu M, Mahvelati F, Herman M, Ciancanelli M, Guo Y, AlSum Z, Alkhamis N, Al-Makadma AS, Ghadiri A, Boucherit S, Plancoulaine S, Picard C, Rozenberg F, Tardieu M, Lebon P, Jouanguy E, Rezaei N, Seya T, Matsumoto M, Chaussabel D, Puel A, Zhang SY, Abel L, Al-Muhsen S, Casanova JL (2011) Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J Clin Invest 121(12):4889–4902. doi:10.​1172/​jci59259 CrossRefPubMedCentralPubMed
88.
Zurück zum Zitat Lafaille FG, Pessach IM, Zhang SY, Ciancanelli MJ, Herman M, Abhyankar A, Ying SW, Keros S, Goldstein PA, Mostoslavsky G, Ordovas-Montanes J, Jouanguy E, Plancoulaine S, Tu E, Elkabetz Y, Al-Muhsen S, Tardieu M, Schlaeger TM, Daley GQ, Abel L, Casanova JL, Studer L, Notarangelo LD (2012) Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 491(7426):769–773. doi:10.1038/nature11583 PubMedCentralPubMed Lafaille FG, Pessach IM, Zhang SY, Ciancanelli MJ, Herman M, Abhyankar A, Ying SW, Keros S, Goldstein PA, Mostoslavsky G, Ordovas-Montanes J, Jouanguy E, Plancoulaine S, Tu E, Elkabetz Y, Al-Muhsen S, Tardieu M, Schlaeger TM, Daley GQ, Abel L, Casanova JL, Studer L, Notarangelo LD (2012) Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 491(7426):769–773. doi:10.​1038/​nature11583 PubMedCentralPubMed
Metadaten
Titel
Manipulation of apoptosis and necroptosis signaling by herpesviruses
verfasst von
Hongyan Guo
William J. Kaiser
Edward S. Mocarski
Publikationsdatum
01.06.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical Microbiology and Immunology / Ausgabe 3/2015
Print ISSN: 0300-8584
Elektronische ISSN: 1432-1831
DOI
https://doi.org/10.1007/s00430-015-0410-5

Weitere Artikel der Ausgabe 3/2015

Medical Microbiology and Immunology 3/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.