Skip to main content
Erschienen in: Journal of Neuroinflammation 1/2015

Open Access 01.12.2015 | Review

Mapping neuroinflammation in frontotemporal dementia with molecular PET imaging

verfasst von: Jing Zhang

Erschienen in: Journal of Neuroinflammation | Ausgabe 1/2015

Abstract

Recent findings have led to a renewed interest and support for an active role of inflammation in neurodegenerative dementias and related neurologic disorders. Detection of neuroinflammation in vivo throughout the course of neurodegenerative diseases is of great clinical interest. Studies have shown that microglia activation (an indicator of neuroinflammation) may present at early stages of frontotemporal dementia (FTD), but the role of neuroinflammation in the pathogenesis of FTD is largely unknown. The first-generation translocator protein (TSPO) ligand ([11C]-PK11195) has been used to detect microglia activation in FTD, and the second-generation TSPO ligands have imaged neuroinflammation in vivo with improved pharmacokinetic properties. This paper reviews related literature and technical issues on mapping neuroinflammation in FTD with positron-emission tomography (PET) imaging. Early detection of neuroinflammation in FTD may identify new tools for diagnosis, novel treatment targets, and means to monitor therapeutic efficacy. More studies are needed to image and track neuroinflammation in FTD. It is anticipated that the advances of TSPO PET imaging will overcome technical difficulties, and molecular imaging of neuroinflammation will aid in the characterization of neuroinflammation in FTD. Such knowledge has the potential to shed light on the poorly understood pathogenesis of FTD and related dementias, and provide imaging markers to guide the development and assessment of new therapies.
Hinweise

Competing interests

The author declares no competing interests.

Author’s contributions

JZ contributed to the drafting of the main text and producing the references. The author read and approved the final manuscript.
Abkürzungen
AD
Alzheimer’s disease
ALC
acetyl-L-carnitine
ALS
amyotrophic lateral sclerosis
bv-FTD
behavioral variant FTD
CNS
central nervous system
DPA714
[18F]-DPA714
FEPPA
[18F]-FEPPA
FTD
frontotemporal dementia
FUS
fused in sarcoma protein
GRN
progranulin
HAB
high-affinity binders
IL
interleukin
LAB
low-affinity binders
MAB
mixed-affinity binders
MAPT
microtubule-associated protein tau
MCI
mild cognitive impairment
MS
multiple sclerosis
PD
Parkinson’s disease
PNFA
progressive non-fluent aphasia
svPPA
semantic variant primary progressive aphasia
TDP
transactive response DNA-binding protein
TNF
tumor necrosis factor
TSPO
translocator protein

Background

Frontotemporal dementia (FTD) is a devastating neurodegenerative disorder, primarily affecting the frontal and/or temporal lobes of the brain. It is the second most frequent cause of presenile neurodegenerative dementia in those less than 65 years of age [1]. The prevalence is around 15 per 100,000 in people between 45 and 65 years of age, and the mean survival varies from 3 to 10 years from diagnosis [2]. There are mainly three types of FTD: behavioral variant FTD (bv-FTD), semantic dementia (SD), and progressive non-fluent aphasia (PNFA), and they are common in the aggregation of neuronal proteins such as the microtubule-associated protein tau (MAPT), the transactive response DNA-binding protein with molecular weight 43 kDa (TDP-43), and the fused in sarcoma protein (FUS) [3]. Of the FTD cases, 25% to 50% are inherited [4], and the mutations are in the genes for MAPT, progranulin (GRN), and in the chromosome 9 open reading frame 72 (C9orf72) [3].
The clinical diagnosis of FTD is a challenge. In general, from symptom onset, it takes 4 years for bv-FTD and SD, and 3 years for PNFA to reach a correct diagnosis [5]. FTD is often misdiagnosed as Alzheimer’s disease (AD) or psychiatric disorders. Abnormalities in structural imaging may be very subtle at early stages, while functional imaging changes may not be specific enough to differentiate FTD from AD at individual patient level. For example, failure to correctly diagnose FTD and AD often occurs in cases that present with temporoparietal hypometabolism [6]. Currently, there is no effective pharmacological treatment to slow the progression of FTD. Prognosis is therefore poor, and dependency on caregivers and eventual death typically occurs in a few years after diagnosis [2,3].
Leading models have highlighted the potential neurotoxic properties of tau aggregation in FTD [7] and related neurodegenerative dementias [8,9]. Recent findings have led to a renewed interest and support for an active role of inflammation in neurodegenerative processes [10]. In AD, chronic neuroinflammation appears to be a central process in AD pathophysiology [11,12], and there are promising targets in modulation of neuroinflammation for AD treatment [12]. Further, a link has been proposed recently between neuroinflammation and specific forms of FTD, suggesting that neuroinflammation is an important component of FTD [10,13]. Consequently, early detection of neuroinflammation in FTD may identify new tools for diagnosis, novel treatment targets, and means to monitor therapeutic efficacy.
Pathological protein aggregation and neuroinflammatory responses may begin before patients start experiencing AD or FTD symptoms [10,11]; thus, neuroinflammation could be an early marker for neurodegenerative dementias. Since the neuroinflammatory response may mediate the outcome of brain tissue in many neurologic diseases including stroke, epilepsy, and neurodegenerative disorders, it is of great clinical interest to detect neuroinflammation accurately and reliably [14]. Positron-emission tomography (PET) imaging with radioligands that label activated microglia, a key cellular component of the neuroinflammatory response, offers a potential means to characterize neuroinflammation in vivo. Increases in the translocator protein (TSPO, 18 kDa) expression detected by PET imaging with radioligands of TSPO or peripheral benzodiazepine receptor (PBR) is recognized as a biomarker of activated microglia [15], which might aid in the diagnosis of early FTD. In this paper, the existing evidence on neuroinflammation in FTD and PET imaging of neuroinflammation in FTD with TSPO ligands is reviewed and related technical issues are discussed.

Neuroinflammation in FTD

Compared with healthy subjects and AD patients, an increased prevalence of related autoimmune diseases has been reported in FTD patients with semantic variant primary progressive aphasia (svPPA) who were GRN mutation carriers [13,16]. It has also been found that a proapoptotic protein (regulated partially by vasoactive neuropeptides) in astrocytes called Bax showed immunoreactivity in FTD, which suggested autoimmunity in the pathology of FTD [17]. In tau-negative FTD, neuroinflammation may play a more important role in the pathogenesis of FTD because mutations in the progranulin (GRN) genes lead to tau-negative FTD [10]. Progranulin acts as a mediator of the inflammatory response [18], and deficiency in progranulin may lead to greater microglial activation and a dysregulated inflammatory response in microglia that could cause neuron death and disease progression in FTD [10]. In addition, head trauma that triggers neuroinflammation has been associated with behavioral variant FTD [19]. Furthermore, some biomarkers of inflammation, such as elevated cytokines (for example, tumor necrosis factor (TNF)-α) in the cerebrospinal fluid (CSF), have been observed in patients with FTD [20]. These findings support the hypothesis that neuroinflammation has a detrimental role in FTD [10]. However, the pathogenesis of FTD, in particular the role of neuroinflammation, is still poorly understood.
Microglia are the resident immune cells in the central nervous system (CNS), representing the first line of defense against pathogens: they sense subtle pathological changes and become activated before obvious functional or anatomical abnormalities occur. Normal protective microglia mediate clearance of abnormal protein (such as Aβ or tau) aggregates, remove cell debris, and promote neuroregeneration. However, activated microglia secrete inflammatory mediators (for example, interleukin (IL)-1β), coactivate astrocytes, and induce neuronal death, which further increases brain tissue damage with amplified microglial activation [14]. The neuroinflammatory reaction involves dramatic upregulation of a mitochondrial transmembrane protein, TSPO, which is a marker for microglial activation and a target for imaging neuroinflammation with PET ligands designed to bind TPSO. It has been reported that PET imaging with the widely used first-generation TSPO ligand [11C]-PK11195 detected neuroinflammation in patients with mild cognitive impairment (MCI) [21]. This and other evidence [22-25] suggests that neuroinflammation is an early and continuous process in neurodegenerative dementias [26]. It is now known that microglia detect pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) through pattern recognition receptors (PRRs), and in neurodegenerative disorders, microglia cannot discriminate between invading pathogens and aberrant molecules (or abnormal proteins) of the host, which leads to DAMP-triggered neuroinflammation through sustained and excessive release of pro-inflammatory cytokines such as IL-1β [10]. In addition, age-related microglia priming is crucial in exaggerated neuroinflammation [27], and microglial activation may be related to dementia progression [28].
Genes related to microglial activation (for example, a variant of the triggering receptor expressed on myeloid cells 2 (TREM2)) have now been associated with FTD [29,30]. Abnormal protein aggregates such as amyloid or tau deposition could cause microglial activation. New hypothesis has suggested that microglia could be functionally impaired by abnormal protein aggregates, leading to reduced microglial motility and phagocytic activity in vivo [31]. There is evidence that sustained exposure to bacterial lipopolysaccharide (LPS) or other pro-inflammatory mediators restricts microglial phagocytosis of protein aggregation and suppresses axonal transportation [10]. Several animal studies and postmortem studies have revealed that neuroinflammation stimulated neuronal degeneration [32,33]. On the other hand, microglia-driven neuroinflammation could lead to the formation of tau aggregation [34]. In FTD, the neuronal and axonal degeneration are sufficient to induce microglial activation [19].
Few studies to date have examined neuroinflammation in vivo in FTD patients. Molecular PET imaging with [11C]-PK11195 has found that compared with controls, the mean [11C]-PK11195 binding was significantly increased in patients with FTD (n = 5, including four patients with progressive non-fluent aphasia and one patient with behavioral variant FTD) in regions such as the left dorsolateral prefrontal cortex and the right hippocampus and parahippocampus [35]. The pattern of microglial activation partially overlapped with the pattern of brain atrophy, but there was also increased [11C](R)-PK11195 binding in regions contralateral to predominant lobar atrophy suggesting that microglial activation was present at early stages of FTD prior to anatomical changes [19]. Using postmortem brain tissues, Vennetic et al. found that [11C]-PK11195 binded specifically to activated microglia in FTD, and the binding was correlated with microglial activation identified by immunohistochemistry in situ [36]. Postmortem immunohistochemistry study further demonstrated that compared with controls, higher level of microglial activation detected by [11C]-PK11195 was found in the frontal and temporal cortex in patients with FTD (n = 78), and greater microglial activation was found in the temporal subcortical white matter in FTD-MART than in other FTD genetic types [37].
In neurodegenerative disorders such as FTD, there is a common pattern in the mechanisms of sensing abnormal protein aggregates, activating microglia, transducing to the release of cytokines, and amplifying the neurotoxic effects in a chronic inflammatory process [14]. A better understanding of the immune response in the brain is critical for possible modulation of microglial activity to slow down or reverse the course of neurodegeneration [14]. Further development of PET imaging with TSPO ligands represents a potential in vivo tool for tracking the progression of neuroinflammation in neurodegenerative disorders such as FTD.

Molecular PET imaging with second-generation TSPO ligands

The value of TSPO PET imaging is in detecting microglia activation in the diseased brain, visualizing neuroinflammation and its progression, and monitoring treatment effect, which is highly needed in the diagnosis and treatment of FTD. TSPO is an interesting target for molecular PET imaging because it is involved in a number of neurodegenerative disorders (such as AD, FTD, and Parkinson’s disease (PD)) and neuroinflammatory disorders (such as ischemic stroke and multiple sclerosis). However, there are several limitations in the first-generation TSPO ligand [11C]-PK11195, mainly high non-specific binding, low brain penetration, and high plasma protein binding, which may explain the negative findings in several studies using [11C]-PK11195 [38,39]. In recent years, novel tracers such as [11C]-DAA1106, [11C]vinpocetine, [11C]-DPA-713, [11C]-PBR28, [18F]-FEDAA1106, [18F]-PBR06, [18F]-PBR111, [18F]-DPA-714, and [18F]-FEPPA have been developed as the second-generation TSPO radioligands. Comparative studies showed that novel TSPO ligands such as [18F]-DPA-714 have higher specific binding and lower non-specific binding than [11C]-PK11195 in rodent models [40,41]. Further, Venneti et al. reported that [3H]-DAA1106 showed a higher binding affinity than [11C]-PK11195 in postmortem brain tissues of patients with neurodegenerative disorders such as FTD [36]. Similarly, Vas et al. found higher binding of [11C]vinpocetine than [11C]-PK11195 in patients with multiple sclerosis [42]. These findings suggest that the second-generation TSPO ligands are better than the first-generation TSPO ligand [11C]-PK11195 in imaging activated microglia in vivo in neurodegenerative disorders due to improved pharmacokinetic properties [36].
In recent years, PET imaging with novel TSPO radioligands has been applied to visualizing neuroinflammation in neurodegenerative disorders, although there is very limited data on in vivo PET imaging with the second-generation TSPO tracers in FTD. Using PET imaging with [11C]-DAA1106, Miyoshi et al. examined patients with FTD (n = 3) who were presymptomatic MART gene carriers with parkinsonism linked to chromosome 17 (FTDP-17) and found increased microglial activation in regions such as frontal cortex in patients compared with controls, although such increase was not overt throughout the diseased brain in FTD [43]. In addition, regional increased [11C]-DAA1106 binding has been found in patients with MCI (n = 7) compared to healthy controls [22], and patients with AD (n = 19) had greater regional [11C]-PBR28 binding than controls, which was correlated with severity of the disease [44]. These findings suggest that neuroinflammation is an intrinsic process in tau pathology, which exists even at a presymptomatic stage.
However, research on imaging neuroinflammation with the second-generation TSPO ligands is still in its infancy, and the sample sizes of such research are usually small. In vivo and in vitro studies with the second-generation TSPO ligands have shown significant inter-subject variability because of differences in binding affinity in individual subjects [44-47]. Three affinity patterns of binding variations have been reported: high-affinity binders (HABs), low-affinity binders (LABs), and mixed-affinity binders (MABs) [47,48]. A single polymorphism (rs6971) located in the exon 4 of the TSPO gene determines the binding affinity of the second-generation ligands and causes large inter-subject variation [44,49,50], while for the first-generation TSPO ligand [11C]-PK11195, the inter-subject variation in binding affinity is little.
Compared with carbon-11-labeled TSPO ligands (for example, [11C]-PK11195), tracers labeled with fluorine 18 have a longer half-life ([18F] vs. [11C]: approximately 110 min vs. approximately 20 min), which is suitable for long-distance dissemination and larger clinical studies. Among the fluorine-18-labeled second-generation TSPO ligands, [18F]-FEDAA1106 has proved ineffective [51,52] and [18F]-PBR06 produces a metabolite that confounds quantification of TSPO binding [53], but [18F]-FEPPA (FEPPA) and [18F]-DPA-714 (DPA714) may be promising [54-56]. FEPPA PET imaging has been applied to animals [54,57-62] and humans [63-70] and has demonstrated that increased neuroinflammation was not associated with normal aging, but regional increased FEPPA uptake was associated with AD or PD [67-70]. Similarly, there are a number of PET imaging studies with [18F]-DPA-714 [40,56,71-79], and focal increase in DPA714 uptake has been found in patients with neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) [78].
Taken together, although in its infancy, research on PET imaging with the second-generation TSPO ligands is in progress and has shown increased uptake in brain regions associated with neuroinflammation in early FTD and other neurodegenerative disorders such as those of tau pathology (even at a presymptomatic stage), suggesting that TSPO imaging is useful in detecting neuroinflammation in vivo from the early stage of the disease.

Discussion

In neurodegenerative and neuroinflammatory disorders, microglia activation may be an early phenomenon, which can be visualized by PET imaging with TSPO ligands, and the second-generation TSPO ligands have shown improved pharmacokinetic properties. However, to image neuroinflammation in FTD using PET with the second-generation TSPO ligands, several practical issues or technical details need to be considered.
First, since PET imaging with the second-generation TSPO ligands display inter-subject variability in binding affinity, the genotype at the polymorphism (rs6971) in the TSPO gene needs to be determined. Subjects may need to be screened for LABs because the second-generation TSPO ligands do not provide a measureable signal in PET studies involving LABs. The ratio of LABs in healthy subjects varies from 0% [66] to 13.3% [80], and the ratio of LABs in one sample of AD patients was 15.4% [67]. Therefore, genotype analysis for polymorphism (rs6971) in the TSPO gene is needed before PET imaging scan, and a small portion of subjects with LABs may need to be excluded from PET imaging with the second-generation TSPO ligand.
Second, most of the human studies with fluorine-18-labeled second-generation TSPO ligands used scan acquisition times of 1.5 to 2 h which might be long for patients with FTD. In attempts to reduce FEPPA PET scan time, Rusjan et al. have found increased variability and decreased identifiability (with the average coefficient of variance ratio 14% for total distribution volume V(T)) with 1.5-h scan time [64]. However, the average of V(T) were not significantly biased compared with those of 2-h scanning, and the V(T) values at 1.5 h were correlated with the values at 3 h (r 2 = 0.91) [64], suggesting that 1.5-h or shorter scan time might be possible if relative measures (for example, distribution volume ratio) are used.
Third, current PET imaging with the second-generation TSPO ligands usually requires arterial blood sampling to determine the blood radioactivity time-activity curve (TAC) and plasma radioactivity curve so that the input function for the kinetic analysis can be created to compute the ligand uptake and binding potential. Such invasive kinetic analysis is technically demanding, and uncomfortable and potentially painful to patients. To avoid the need for arterial blood sampling, it is necessary to apply non-invasive quantitative models that use radioactivity concentration in a reference region (that is, brain area with negligible binding) to approximate concentration of tracer in the non-displaceable compartment as an indirect input function [80-86]. However, microglia cells and the TPSO ligand binding sites are distributed throughout the entire brain, and a reference region can hardly be found in the brain.
In the past, the first-generation TSPO ligand [11C]-PK11195 (PK11195) faced similar difficulties. Turkheimer et al. developed a non-invasive analysis method for PK11195 PET using reference and target region modeling where predefined kinetic classes were used to extract a gray matter reference tissue [87]. They found that binding potential values obtained by a plasma input were highly correlated with those of a reference input [86]. Since then, non-invasive kinetic analysis has been increasingly adopted in PK11195 PET imaging, and arterial blood sampling is no longer needed. Therefore, it is possible to apply non-invasive kinetic analyses such as the reference approach to PET imaging with the second-generation TSPO ligands [87]. However, there are mainly two challenges: (1) Since the kinetics of HAB and MAB genetic groups may differ, a database of reference for both HAB and MAB groups may be needed; (2) The second-generation TSPO ligands show high level of vascular binding [88], which may make it difficult to separate the normal gray matter from other tissue classes.
Finally, it is unclear how accurate TSPO PET imaging is in detecting neuroinflammation in neurodegenerative dementias. There are on-going clinical trials with TSPO ligands such as FEPPA [89-91], [11C]PBR28 [92], and [18F]PDA-714 [93] in neurodegenerative disorders (one study including FTD). However, published results of these studies are not available yet. There is a need not only for tracking neuroinflammation in FTD with TSPO PET imaging, but also for assessing the accuracy of TSPO imaging in detecting neuroinflammation in FTD. This is especially needed for subtypes within FTD that may have unique molecular mechanisms related to neuroinflammation (that is, progranulin mutations).

Conclusions

Recent molecular advances in the pathophysiology of the FTD have led to new disease models highlighting the potential role of pathologic neuroinflammation in disease onset and progression. PET imaging with the second-generation TSPO ligands offers a potentially powerful means to identify neuroinflammatory patterns in vivo across the FTD subtypes. More studies are needed to image and track neuroinflammation in FTD, which may aid in the diagnosis of early FTD. It is anticipated that the advances of molecular imaging of brain TSPO will overcome technical difficulties and that molecular imaging of neuroinflammation could aid in the characterization of neuroinflammation in FTD, increase our understanding of disease pathogenesis, and inform development and testing of novel therapeutic interventions.

Acknowledgements

The author would like to thank Drs. Turkheimer, Rusjan, and Jennings for addressing questions of their work in this area and their related discussion. This work was supported by the University of Western Ontario, Schulich School of Medicine & Dentistry Research Initiative Grant.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The author declares no competing interests.

Author’s contributions

JZ contributed to the drafting of the main text and producing the references. The author read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Neary D, Snowden JS, Mann DMA. Frontotemporal lobar degeneration: clinical and pathological relationships. Acta Neuropathol. 2007;114:31–8.CrossRefPubMed Neary D, Snowden JS, Mann DMA. Frontotemporal lobar degeneration: clinical and pathological relationships. Acta Neuropathol. 2007;114:31–8.CrossRefPubMed
2.
Zurück zum Zitat Hodges JR, Davies R, Xuereb J, Kril J, Halliday G. Survival in frontotemporal dementia. Neurology. 2003;61(3):349–54.CrossRefPubMed Hodges JR, Davies R, Xuereb J, Kril J, Halliday G. Survival in frontotemporal dementia. Neurology. 2003;61(3):349–54.CrossRefPubMed
3.
Zurück zum Zitat Riedl L, Mackenzie IR, Förstl H, Kurz A, Diehl-Schmid J. Frontotemporal lobar degeneration: current perspectives. Neuropsychiatric Disease Treatment. 2014;10:297–310.PubMedCentralPubMed Riedl L, Mackenzie IR, Förstl H, Kurz A, Diehl-Schmid J. Frontotemporal lobar degeneration: current perspectives. Neuropsychiatric Disease Treatment. 2014;10:297–310.PubMedCentralPubMed
4.
Zurück zum Zitat Rademakers R, Neumann M, Mackenzie IR. Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol. 2012;8(8):423–34.PubMedCentralPubMed Rademakers R, Neumann M, Mackenzie IR. Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol. 2012;8(8):423–34.PubMedCentralPubMed
5.
Zurück zum Zitat Diehl-Schmid J, Pohl C, Perneczky R, Hartmann J, Förstl H, Kurz A. Frühsymptome, Überlebenszeit und Todesursachen. Initial symptoms, survival and causes of death in 115 patients with frontotemporal lobar degeneration. Fortschr Neurol Psychiatr. 2007;75(12):708–13.CrossRefPubMed Diehl-Schmid J, Pohl C, Perneczky R, Hartmann J, Förstl H, Kurz A. Frühsymptome, Überlebenszeit und Todesursachen. Initial symptoms, survival and causes of death in 115 patients with frontotemporal lobar degeneration. Fortschr Neurol Psychiatr. 2007;75(12):708–13.CrossRefPubMed
6.
Zurück zum Zitat Womack KB, Diaz-Arrastia R, Aizenstein HJ, Arnold SE, Barbas NR, Boeve BF, et al. Temporoparietal hypometabolism in frontotemporal lobar degeneration and associated imaging diagnostic errors. Arch Neurol. 2011;68(3):329–37.CrossRefPubMedCentralPubMed Womack KB, Diaz-Arrastia R, Aizenstein HJ, Arnold SE, Barbas NR, Boeve BF, et al. Temporoparietal hypometabolism in frontotemporal lobar degeneration and associated imaging diagnostic errors. Arch Neurol. 2011;68(3):329–37.CrossRefPubMedCentralPubMed
7.
Zurück zum Zitat Ho SW, Tsui YT, Wong TT, Cheung SK, Goggins WB, Yi LM, et al. Effects of 17-allylamino-17-demethoxygeldanamycin (17-AAG) in transgenic mouse models of frontotemporal lobar degeneration and Alzheimer’s disease. Transl Neurodegener. 2013;2(1):24.CrossRefPubMedCentralPubMed Ho SW, Tsui YT, Wong TT, Cheung SK, Goggins WB, Yi LM, et al. Effects of 17-allylamino-17-demethoxygeldanamycin (17-AAG) in transgenic mouse models of frontotemporal lobar degeneration and Alzheimer’s disease. Transl Neurodegener. 2013;2(1):24.CrossRefPubMedCentralPubMed
8.
Zurück zum Zitat Neumann K, Farias G, Slachevsky A, Perez P, Maccioni RB. Human platelets tau: a potential peripheral marker for Alzheimer’s disease. J Alzheimers Dis. 2011;25:103–9.PubMed Neumann K, Farias G, Slachevsky A, Perez P, Maccioni RB. Human platelets tau: a potential peripheral marker for Alzheimer’s disease. J Alzheimers Dis. 2011;25:103–9.PubMed
9.
Zurück zum Zitat Borza LR. A review on the cause-effect relationship between oxidative stress and toxic proteins in the pathogenesis of neurodegenerative diseases. Rev Med Chir Soc Med Nat Iasi. 2014;118(1):19–27.PubMed Borza LR. A review on the cause-effect relationship between oxidative stress and toxic proteins in the pathogenesis of neurodegenerative diseases. Rev Med Chir Soc Med Nat Iasi. 2014;118(1):19–27.PubMed
10.
Zurück zum Zitat Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. Nat Rev Immunol. 2014;14(7):463–77.CrossRefPubMed Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. Nat Rev Immunol. 2014;14(7):463–77.CrossRefPubMed
11.
Zurück zum Zitat Morales I, Guzmán-Martínez L, Cerda-Troncoso C, Farías GA, Maccioni RB. Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci. 2014;8:112.PubMedCentralPubMed Morales I, Guzmán-Martínez L, Cerda-Troncoso C, Farías GA, Maccioni RB. Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci. 2014;8:112.PubMedCentralPubMed
12.
13.
Zurück zum Zitat Miller ZA, Rankin KP, Graff-Radford NR, Takada LT, Sturm VE, Cleveland CM, et al. TDP-43 frontotemporal lobar degeneration and autoimmune disease. J Neurol Neurosurg Psychiatry. 2013;84(9):956–62.CrossRefPubMed Miller ZA, Rankin KP, Graff-Radford NR, Takada LT, Sturm VE, Cleveland CM, et al. TDP-43 frontotemporal lobar degeneration and autoimmune disease. J Neurol Neurosurg Psychiatry. 2013;84(9):956–62.CrossRefPubMed
14.
15.
Zurück zum Zitat Venneti S, Wiley CA, Kofler J. Imaging microglial activation during neuroinflammation and Alzheimer’s disease. J Neuroimmune Pharmacol. 2009;4(2):227–43.CrossRefPubMedCentralPubMed Venneti S, Wiley CA, Kofler J. Imaging microglial activation during neuroinflammation and Alzheimer’s disease. J Neuroimmune Pharmacol. 2009;4(2):227–43.CrossRefPubMedCentralPubMed
16.
Zurück zum Zitat Kleinberger G, Capell A, Haass C, Van Broeckhoven C. Mechanisms of granulin deficiency: lessons from cellular and animal models. Mol Neurobiol. 2013;47:337–60.CrossRefPubMedCentralPubMed Kleinberger G, Capell A, Haass C, Van Broeckhoven C. Mechanisms of granulin deficiency: lessons from cellular and animal models. Mol Neurobiol. 2013;47:337–60.CrossRefPubMedCentralPubMed
17.
Zurück zum Zitat Nichol KE, Kim R, Cotman CW. Bcl-2 family protein behaviour in frontotemporal dementia implies vascular involvement. Neurology. 2001;56(11 Suppl 4):S35–40.CrossRefPubMed Nichol KE, Kim R, Cotman CW. Bcl-2 family protein behaviour in frontotemporal dementia implies vascular involvement. Neurology. 2001;56(11 Suppl 4):S35–40.CrossRefPubMed
18.
Zurück zum Zitat Pickford F, Marcus J, Camargo LM, Xiao Q, Graham D, Mo JR, et al. Progranulin is a chemoattractant for microglia and stimulates their endocytic activity. Am J Pathol. 2011;178:284–95.CrossRefPubMedCentralPubMed Pickford F, Marcus J, Camargo LM, Xiao Q, Graham D, Mo JR, et al. Progranulin is a chemoattractant for microglia and stimulates their endocytic activity. Am J Pathol. 2011;178:284–95.CrossRefPubMedCentralPubMed
19.
Zurück zum Zitat Rosso S, Landweer E, Houterman M, Donker Kaat L, van Duijn CM, van Swieten JC. Medical and environmental risk factors for sporadic frontotemporal dementia: a retrospective case–control study. J Neurol Neurosurg Psychiatry. 2003;74:1574–6.CrossRefPubMedCentralPubMed Rosso S, Landweer E, Houterman M, Donker Kaat L, van Duijn CM, van Swieten JC. Medical and environmental risk factors for sporadic frontotemporal dementia: a retrospective case–control study. J Neurol Neurosurg Psychiatry. 2003;74:1574–6.CrossRefPubMedCentralPubMed
20.
Zurück zum Zitat Sjögren M, Folkesson S, Blennow K, Tarkowski E. Increased intrathecal inflammatory activity in frontotemporal dementia: pathophysiological implications. J Neurol Neurosurg Psychiatry. 2004;75:1107–11.CrossRefPubMedCentralPubMed Sjögren M, Folkesson S, Blennow K, Tarkowski E. Increased intrathecal inflammatory activity in frontotemporal dementia: pathophysiological implications. J Neurol Neurosurg Psychiatry. 2004;75:1107–11.CrossRefPubMedCentralPubMed
21.
Zurück zum Zitat Cagnin A, Kassiou M, Meikle SR, Banati RB. In vivo evidence for microglial activation in neurodegenerative dementia. Acta Neurol Scand. 2006;114 Suppl 185:107–14.CrossRef Cagnin A, Kassiou M, Meikle SR, Banati RB. In vivo evidence for microglial activation in neurodegenerative dementia. Acta Neurol Scand. 2006;114 Suppl 185:107–14.CrossRef
22.
Zurück zum Zitat Okello A, Koivunen J, Edison P, Archer HA, Turkheimer FE, Någren K, et al. Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology. 2009;73(10):754–60.CrossRefPubMedCentralPubMed Okello A, Koivunen J, Edison P, Archer HA, Turkheimer FE, Någren K, et al. Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology. 2009;73(10):754–60.CrossRefPubMedCentralPubMed
23.
Zurück zum Zitat Bhaskar K, Konerth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM, Lamb BT. Regulation of tau pathology by the microglial fractalkine receptor. Neuron. 2010;68:19–31.CrossRefPubMedCentralPubMed Bhaskar K, Konerth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM, Lamb BT. Regulation of tau pathology by the microglial fractalkine receptor. Neuron. 2010;68:19–31.CrossRefPubMedCentralPubMed
24.
Zurück zum Zitat Yasuno F, Kosaka J, Ota M, Higuchi M, Ito H, Fujimura Y, et al. Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment-dementia converters measured by positron emission tomography with [11C]DAA1106. Psychiatry Res. 2012;203(1):67–74.CrossRefPubMed Yasuno F, Kosaka J, Ota M, Higuchi M, Ito H, Fujimura Y, et al. Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment-dementia converters measured by positron emission tomography with [11C]DAA1106. Psychiatry Res. 2012;203(1):67–74.CrossRefPubMed
25.
Zurück zum Zitat Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 2007;53:337–51.CrossRefPubMed Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 2007;53:337–51.CrossRefPubMed
26.
Zurück zum Zitat Zimmer ER, Leuzy A, Benedet AL, Breitner J, Gauthier S, Rosa-Net P. Tracking neuroinflammation in Alzheimer’s disease: the role of positron emission tomography imaging. J Neuroinflammation. 2014;11:120.CrossRefPubMedCentralPubMed Zimmer ER, Leuzy A, Benedet AL, Breitner J, Gauthier S, Rosa-Net P. Tracking neuroinflammation in Alzheimer’s disease: the role of positron emission tomography imaging. J Neuroinflammation. 2014;11:120.CrossRefPubMedCentralPubMed
27.
Zurück zum Zitat Henry CJ, Huang Y, Wynne AM, Godbout JP. Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. Brain Behav Immun. 2009;23(3):309–17.CrossRefPubMedCentralPubMed Henry CJ, Huang Y, Wynne AM, Godbout JP. Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. Brain Behav Immun. 2009;23(3):309–17.CrossRefPubMedCentralPubMed
28.
Zurück zum Zitat Hommet C, Mondon K, Camus V, Ribeiro MJ, Beaufils E, Arlicot N, et al. Neuroinflammation and β amyloid deposition in Alzheimer’s disease: in vivo quantification with molecular imaging. Dement Geriatr Cogn Disord. 2014;37(1–2):1–18.CrossRefPubMed Hommet C, Mondon K, Camus V, Ribeiro MJ, Beaufils E, Arlicot N, et al. Neuroinflammation and β amyloid deposition in Alzheimer’s disease: in vivo quantification with molecular imaging. Dement Geriatr Cogn Disord. 2014;37(1–2):1–18.CrossRefPubMed
29.
Zurück zum Zitat Guerreiro RJ, Lohmann E, Brás JM, Gibbs JR, Rohrer JD, Gurunlian N, et al. Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA Neurol. 2013;70:78–84.CrossRefPubMedCentralPubMed Guerreiro RJ, Lohmann E, Brás JM, Gibbs JR, Rohrer JD, Gurunlian N, et al. Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA Neurol. 2013;70:78–84.CrossRefPubMedCentralPubMed
30.
Zurück zum Zitat Rayaprolu S, Mullen B, Baker M, Lynch T, Finger E, Seeley WW, et al. TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease. Mol Neurodegener. 2013;8:19.CrossRefPubMedCentralPubMed Rayaprolu S, Mullen B, Baker M, Lynch T, Finger E, Seeley WW, et al. TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease. Mol Neurodegener. 2013;8:19.CrossRefPubMedCentralPubMed
31.
Zurück zum Zitat Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci. 2014;15(5):300–12.CrossRefPubMed Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci. 2014;15(5):300–12.CrossRefPubMed
32.
Zurück zum Zitat Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med. 1999;5:1403–9.CrossRefPubMed Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med. 1999;5:1403–9.CrossRefPubMed
33.
Zurück zum Zitat McGeer PL, McGeer EG. Inflammation and the degenerative diseases of aging. Ann N Y Acad Sci. 2004;1035:104–16.CrossRefPubMed McGeer PL, McGeer EG. Inflammation and the degenerative diseases of aging. Ann N Y Acad Sci. 2004;1035:104–16.CrossRefPubMed
34.
Zurück zum Zitat Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci. 2005;25:8843–53.CrossRefPubMed Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci. 2005;25:8843–53.CrossRefPubMed
35.
Zurück zum Zitat Cagnin A, Rossor M, Sampson EL, Mackinnon T, Banati RB. In vivo detection of microglial activation in frontotemporal dementia. Ann Neurol. 2004;56:894–7.CrossRefPubMed Cagnin A, Rossor M, Sampson EL, Mackinnon T, Banati RB. In vivo detection of microglial activation in frontotemporal dementia. Ann Neurol. 2004;56:894–7.CrossRefPubMed
36.
Zurück zum Zitat Venneti S, Wang G, Nguyen J, Wiley CA. The positron emission tomography ligand DAA1106 binds with high affinity to activated microglia in human neurological disorders. J Neuropathol Exp Neurol. 2008;67:1001–10.CrossRefPubMedCentralPubMed Venneti S, Wang G, Nguyen J, Wiley CA. The positron emission tomography ligand DAA1106 binds with high affinity to activated microglia in human neurological disorders. J Neuropathol Exp Neurol. 2008;67:1001–10.CrossRefPubMedCentralPubMed
37.
Zurück zum Zitat Lant SB, Robinson AC, Thompson JC, Rollinson S, Pickering-Brown S, Snowden JS, et al. Patterns of microglial cell activation in frontotemporal lobar degeneration. Neuropathol Appl Neurobiol. 2014;40(6):686–96.CrossRefPubMed Lant SB, Robinson AC, Thompson JC, Rollinson S, Pickering-Brown S, Snowden JS, et al. Patterns of microglial cell activation in frontotemporal lobar degeneration. Neuropathol Appl Neurobiol. 2014;40(6):686–96.CrossRefPubMed
38.
Zurück zum Zitat Wiley CA, Lopresti BJ, Venneti S, Price J, Klunk WE, DeKosky ST, et al. Carbon 11-labeled Pittsburgh compound B and carbon 11-labeled (R)-PK11195 positron emission tomographic imaging in Alzheimer disease. Arch Neurol. 2009;66:60–7.CrossRefPubMedCentralPubMed Wiley CA, Lopresti BJ, Venneti S, Price J, Klunk WE, DeKosky ST, et al. Carbon 11-labeled Pittsburgh compound B and carbon 11-labeled (R)-PK11195 positron emission tomographic imaging in Alzheimer disease. Arch Neurol. 2009;66:60–7.CrossRefPubMedCentralPubMed
39.
Zurück zum Zitat Schuitemaker A, Kropholler MA, Boellaard R, van der Flier WM, Kloet RW, van der Doef TF, et al. Microglial activation in Alzheimer’s disease: an (R) [11C]PK11195 positron emission tomography study. Neurobiol Aging. 2013;34:128–36.CrossRefPubMed Schuitemaker A, Kropholler MA, Boellaard R, van der Flier WM, Kloet RW, van der Doef TF, et al. Microglial activation in Alzheimer’s disease: an (R) [11C]PK11195 positron emission tomography study. Neurobiol Aging. 2013;34:128–36.CrossRefPubMed
40.
Zurück zum Zitat Chauveau F, Van Camp N, Dollé F, Kuhnast B, Hinnen F, Damont A, et al. Comparative evaluation of the translocator protein radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat model of acute neuroinflammation. J Nucl Med. 2009;50(3):468–76.CrossRefPubMed Chauveau F, Van Camp N, Dollé F, Kuhnast B, Hinnen F, Damont A, et al. Comparative evaluation of the translocator protein radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat model of acute neuroinflammation. J Nucl Med. 2009;50(3):468–76.CrossRefPubMed
41.
Zurück zum Zitat Van Camp N, Boisgard R, Kuhnast B, Thézé B, Viel T, Grégoire MC, et al. In vivo imaging of neuroinflammation: a comparative study between [(18)F]PBR111, [(11)C]CLINME and [(11)C]PK11195 in an acute rodent model. Eur J Nucl Med Mol Imaging. 2010;37(5):962–72.CrossRefPubMed Van Camp N, Boisgard R, Kuhnast B, Thézé B, Viel T, Grégoire MC, et al. In vivo imaging of neuroinflammation: a comparative study between [(18)F]PBR111, [(11)C]CLINME and [(11)C]PK11195 in an acute rodent model. Eur J Nucl Med Mol Imaging. 2010;37(5):962–72.CrossRefPubMed
42.
Zurück zum Zitat Vas A, Shchukin Y, Karrenbauer VD, Cselényi Z, Kostulas K, Hillert J, et al. Functional neuroimaging in multiple sclerosis with radiolabelled glia markers: preliminary comparative PET studies with [11C]vinpocetine and [11C]PK11195 in patients. J Neurol Sci. 2008;264(1–2):9–17.CrossRefPubMed Vas A, Shchukin Y, Karrenbauer VD, Cselényi Z, Kostulas K, Hillert J, et al. Functional neuroimaging in multiple sclerosis with radiolabelled glia markers: preliminary comparative PET studies with [11C]vinpocetine and [11C]PK11195 in patients. J Neurol Sci. 2008;264(1–2):9–17.CrossRefPubMed
43.
Zurück zum Zitat Miyoshi M, Shinotoh H, Wszolek ZK, Strongosky AJ, Shimada H, Arakawa R, et al. In vivo detection of neuropathologic changes in presymptomatic MAPT mutation carriers: a PET and MRI study. Parkinsonism Relat Disord. 2010;16(6):404–8.CrossRefPubMed Miyoshi M, Shinotoh H, Wszolek ZK, Strongosky AJ, Shimada H, Arakawa R, et al. In vivo detection of neuropathologic changes in presymptomatic MAPT mutation carriers: a PET and MRI study. Parkinsonism Relat Disord. 2010;16(6):404–8.CrossRefPubMed
44.
Zurück zum Zitat Kreisl WC, Lyoo CH, McGwier M, Snow J, Jenko KJ, Kimura N, et al. Biomarkers Consortium PET Radioligand Project Team. In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain. 2013;136(Pt 7):2228–38.CrossRefPubMedCentralPubMed Kreisl WC, Lyoo CH, McGwier M, Snow J, Jenko KJ, Kimura N, et al. Biomarkers Consortium PET Radioligand Project Team. In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain. 2013;136(Pt 7):2228–38.CrossRefPubMedCentralPubMed
45.
Zurück zum Zitat Oh U, Fujita M, Ikonomidou VN, Evangelou IE, Matsuura E, Harberts E, et al. Translocator protein PET imaging for glial activation in multiple sclerosis. J Neuroimmune Pharmacol. 2011;6(3):354–61.CrossRefPubMedCentralPubMed Oh U, Fujita M, Ikonomidou VN, Evangelou IE, Matsuura E, Harberts E, et al. Translocator protein PET imaging for glial activation in multiple sclerosis. J Neuroimmune Pharmacol. 2011;6(3):354–61.CrossRefPubMedCentralPubMed
46.
Zurück zum Zitat Fujita M, Imaizumi M, Zoghbi SS, Fujimura Y, Farris AG, Suhara T, et al. Kinetic analysis in healthy humans of a novel positron emission tomography radioligand to image the peripheral benzodiazepine receptor, a potential biomarker for inflammation. Neuroimage. 2008;40(1):43–52.CrossRefPubMedCentralPubMed Fujita M, Imaizumi M, Zoghbi SS, Fujimura Y, Farris AG, Suhara T, et al. Kinetic analysis in healthy humans of a novel positron emission tomography radioligand to image the peripheral benzodiazepine receptor, a potential biomarker for inflammation. Neuroimage. 2008;40(1):43–52.CrossRefPubMedCentralPubMed
47.
Zurück zum Zitat Owen DR, Gunn RN, Rabiner EA, Bennacef I, Fujita M, Kreisl WC, et al. Mixed-affinity binding in humans with 18-kDa translocator protein ligands. J Nucl Med. 2011;52(1):24–32.CrossRefPubMedCentralPubMed Owen DR, Gunn RN, Rabiner EA, Bennacef I, Fujita M, Kreisl WC, et al. Mixed-affinity binding in humans with 18-kDa translocator protein ligands. J Nucl Med. 2011;52(1):24–32.CrossRefPubMedCentralPubMed
48.
Zurück zum Zitat Owen DR, Howell OW, Tang SP, Wells LA, Bennacef I, Bergstrom M, et al. Two binding sites for [3H]PBR28 in human brain: implications for TSPO PET imaging of neuroinflammation. J Cereb Blood Flow Metab. 2010;30(9):1608–18.CrossRefPubMedCentralPubMed Owen DR, Howell OW, Tang SP, Wells LA, Bennacef I, Bergstrom M, et al. Two binding sites for [3H]PBR28 in human brain: implications for TSPO PET imaging of neuroinflammation. J Cereb Blood Flow Metab. 2010;30(9):1608–18.CrossRefPubMedCentralPubMed
49.
Zurück zum Zitat Mizrahi R, Rusjan PM, Kennedy J, Pollock B, Mulsant B, Suridjan I, et al. Translocator protein (18 kDa) polymorphism (rs6971) explains in-vivo brain binding affinity of the PET radioligand [(18)F]-FEPPA. J Cereb Blood Flow Metab. 2012;32(6):968–72.CrossRefPubMedCentralPubMed Mizrahi R, Rusjan PM, Kennedy J, Pollock B, Mulsant B, Suridjan I, et al. Translocator protein (18 kDa) polymorphism (rs6971) explains in-vivo brain binding affinity of the PET radioligand [(18)F]-FEPPA. J Cereb Blood Flow Metab. 2012;32(6):968–72.CrossRefPubMedCentralPubMed
50.
Zurück zum Zitat Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32(1):1–5.CrossRefPubMedCentralPubMed Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32(1):1–5.CrossRefPubMedCentralPubMed
51.
Zurück zum Zitat Varrone A, Mattsson P, Forsberg A, Takano A, Nag S, Gulyás B, et al. In vivo imaging of the 18-kDa translocator protein (TSPO) with [18 F]FEDAA1106 and PET does not show increased binding in Alzheimer’s disease patients. Eur J Nucl Med Mol Imaging. 2013;40(6):921–31.CrossRefPubMed Varrone A, Mattsson P, Forsberg A, Takano A, Nag S, Gulyás B, et al. In vivo imaging of the 18-kDa translocator protein (TSPO) with [18 F]FEDAA1106 and PET does not show increased binding in Alzheimer’s disease patients. Eur J Nucl Med Mol Imaging. 2013;40(6):921–31.CrossRefPubMed
52.
Zurück zum Zitat Takano A, Piehl F, Hillert J, Varrone A, Nag S, Gulyás B, et al. In vivo TSPO imaging in patients with multiple sclerosis: a brain PET study with [18 F]FEDAA1106. EJNMMI Res. 2013;3(1):30.CrossRefPubMedCentralPubMed Takano A, Piehl F, Hillert J, Varrone A, Nag S, Gulyás B, et al. In vivo TSPO imaging in patients with multiple sclerosis: a brain PET study with [18 F]FEDAA1106. EJNMMI Res. 2013;3(1):30.CrossRefPubMedCentralPubMed
53.
Zurück zum Zitat Fujimura Y, Zoghbi SS, Simeon FG, Taku A, Pike VW, Innis RB, et al. Quantification of translocator protein (18 kDa) in the human brain with PET and a novel radioligand, 18F-PBR06. J Nucl Med. 2009;50:1047–53.CrossRefPubMedCentralPubMed Fujimura Y, Zoghbi SS, Simeon FG, Taku A, Pike VW, Innis RB, et al. Quantification of translocator protein (18 kDa) in the human brain with PET and a novel radioligand, 18F-PBR06. J Nucl Med. 2009;50:1047–53.CrossRefPubMedCentralPubMed
54.
Zurück zum Zitat Wilson AA, Garcia A, Parkes J, McCormick P, Stephenson KA, Houle S, et al. Radiosynthesis and initial evaluation of [18F]-FEPPA for PET imaging of peripheral benzodiazepine receptors. Nucl Med Biol. 2008;35(3):305–14.CrossRefPubMed Wilson AA, Garcia A, Parkes J, McCormick P, Stephenson KA, Houle S, et al. Radiosynthesis and initial evaluation of [18F]-FEPPA for PET imaging of peripheral benzodiazepine receptors. Nucl Med Biol. 2008;35(3):305–14.CrossRefPubMed
55.
Zurück zum Zitat James ML, Fulton RR, Vercoullie J, Henderson DJ, Garreau L, Chalon S, et al. DPA-714, a new translocator protein-specific ligand: synthesis, radiofluorination, and pharmacologic characterization. J Nucl Med. 2008;49:814–22.CrossRefPubMed James ML, Fulton RR, Vercoullie J, Henderson DJ, Garreau L, Chalon S, et al. DPA-714, a new translocator protein-specific ligand: synthesis, radiofluorination, and pharmacologic characterization. J Nucl Med. 2008;49:814–22.CrossRefPubMed
56.
Zurück zum Zitat Arlicot N, Vercouillie J, Ribeiro MJ, Tauber C, Venel Y, Baulieu JL, et al. Initial evaluation in healthy humans of [18F]DPA-714, a potential PET biomarker for neuroinflammation. Nucl Med Biol. 2012;39(4):570–8.CrossRefPubMed Arlicot N, Vercouillie J, Ribeiro MJ, Tauber C, Venel Y, Baulieu JL, et al. Initial evaluation in healthy humans of [18F]DPA-714, a potential PET biomarker for neuroinflammation. Nucl Med Biol. 2012;39(4):570–8.CrossRefPubMed
57.
Zurück zum Zitat Hatano K, Yamada T, Toyama H, Kudo G, Nomura M, Suzuki H, et al. Correlation between FEPPA uptake and microglia activation in 6-OHDA injured rat brain. Neuroimage. 2010;52 Suppl 1:S138–8.CrossRef Hatano K, Yamada T, Toyama H, Kudo G, Nomura M, Suzuki H, et al. Correlation between FEPPA uptake and microglia activation in 6-OHDA injured rat brain. Neuroimage. 2010;52 Suppl 1:S138–8.CrossRef
58.
Zurück zum Zitat Liu F, Zhang X, Patterson TA, Liu S, Ali SF, Paule MG, et al. Assessment of potential neuronal toxicity of inhaled anesthetics in the developing nonhuman primate. J Drug Alcohol Res. 2012;1:1–9.CrossRef Liu F, Zhang X, Patterson TA, Liu S, Ali SF, Paule MG, et al. Assessment of potential neuronal toxicity of inhaled anesthetics in the developing nonhuman primate. J Drug Alcohol Res. 2012;1:1–9.CrossRef
59.
Zurück zum Zitat Zhang X, Paule MG, Newport GD, Liu F, Callicott R, Liu S, et al. MicroPET/CT imaging of [18F]-FEPPA in the nonhuman primate: a potential biomarker of pathogenic processes associated with anesthetic-induced neurotoxicity. ISRN Anesthesiology. 2012;261640:11. Zhang X, Paule MG, Newport GD, Liu F, Callicott R, Liu S, et al. MicroPET/CT imaging of [18F]-FEPPA in the nonhuman primate: a potential biomarker of pathogenic processes associated with anesthetic-induced neurotoxicity. ISRN Anesthesiology. 2012;261640:11.
60.
Zurück zum Zitat Zhang X, Liu S, Paule MG, Newport GD, Callicott R, Berridge MS, et al. Protective effects of acetyl L-carnitine on inhalation anesthetic-induced neuronal damage in the nonhuman primate. J Mol Pharm Org Process Res. 2013;1:1. Zhang X, Liu S, Paule MG, Newport GD, Callicott R, Berridge MS, et al. Protective effects of acetyl L-carnitine on inhalation anesthetic-induced neuronal damage in the nonhuman primate. J Mol Pharm Org Process Res. 2013;1:1.
61.
Zurück zum Zitat Bennacef I, Salinas C, Horvath G, Gunn R, Bonasera T, Wilson A, et al. Comparison of [11C]PBR28 and [18F]FEPPA as CNS peripheral benzodiazepine receptor PET ligands in the pig. J Nucl Med. 2008;49(Supplement 1):81P. Bennacef I, Salinas C, Horvath G, Gunn R, Bonasera T, Wilson A, et al. Comparison of [11C]PBR28 and [18F]FEPPA as CNS peripheral benzodiazepine receptor PET ligands in the pig. J Nucl Med. 2008;49(Supplement 1):81P.
62.
Zurück zum Zitat Vasdev N, Green DE, Vines DC, McLarty K, McCormick PN, Moran MD, et al. Positron-emission tomography imaging of the TSPO with [(18)F]FEPPA in a preclinical breast cancer model. Cancer Biother Radiopharm. 2013;28(3):254–9.CrossRefPubMed Vasdev N, Green DE, Vines DC, McLarty K, McCormick PN, Moran MD, et al. Positron-emission tomography imaging of the TSPO with [(18)F]FEPPA in a preclinical breast cancer model. Cancer Biother Radiopharm. 2013;28(3):254–9.CrossRefPubMed
64.
Zurück zum Zitat Rusjan PM, Wilson AA, Bloomfield PM, Vitcu I, Meyer JH, Houle S, et al. Quantitation of translocator protein binding in human brain with the novel radioligand [18F]-FEPPA and positron emission tomography. J Cereb Blood Flow Metab. 2011;31(8):1807–16.CrossRefPubMedCentralPubMed Rusjan PM, Wilson AA, Bloomfield PM, Vitcu I, Meyer JH, Houle S, et al. Quantitation of translocator protein binding in human brain with the novel radioligand [18F]-FEPPA and positron emission tomography. J Cereb Blood Flow Metab. 2011;31(8):1807–16.CrossRefPubMedCentralPubMed
65.
Zurück zum Zitat Suridjan I, Rusjan PM, Kenk M, Verhoeff NP, Voineskos AN, Rotenberg D, et al. Quantitative imaging of neuroinflammation in human white matter: a positron emission tomography study with translocator protein 18 kDa radioligand, [18F]-FEPPA. Synapse. 2014;68(11):536–47.CrossRefPubMed Suridjan I, Rusjan PM, Kenk M, Verhoeff NP, Voineskos AN, Rotenberg D, et al. Quantitative imaging of neuroinflammation in human white matter: a positron emission tomography study with translocator protein 18 kDa radioligand, [18F]-FEPPA. Synapse. 2014;68(11):536–47.CrossRefPubMed
66.
Zurück zum Zitat Suridjan I, Rusjan PM, Voineskos AN, Selvanathan T, Setiawan E, Strafella AP, et al. Neuroinflammation in healthy aging: a PET study using a novel translocator protein 18 kDa (TSPO) radioligand, [(18)F]-FEPPA. Neuroimage. 2014;1(84):868–75.CrossRef Suridjan I, Rusjan PM, Voineskos AN, Selvanathan T, Setiawan E, Strafella AP, et al. Neuroinflammation in healthy aging: a PET study using a novel translocator protein 18 kDa (TSPO) radioligand, [(18)F]-FEPPA. Neuroimage. 2014;1(84):868–75.CrossRef
67.
Zurück zum Zitat Suridjan I, Pollock BG, Voineskos AN, Verhoeff P, Chow T, Mulsant BH, Rusjan PM, Houle S, Mizrahi R. Mapping neuroinflammation in vivo in healthy aging and Alzheimer’s disease: a PET study using a novel translocator protein 18kDA (TSPO) radioligand, [18F]-FEPPA, 2012. (poster), Alzheimer’s & Dementia, 8(4), Suppl 693:P4-164 Suridjan I, Pollock BG, Voineskos AN, Verhoeff P, Chow T, Mulsant BH, Rusjan PM, Houle S, Mizrahi R. Mapping neuroinflammation in vivo in healthy aging and Alzheimer’s disease: a PET study using a novel translocator protein 18kDA (TSPO) radioligand, [18F]-FEPPA, 2012. (poster), Alzheimer’s & Dementia, 8(4), Suppl 693:P4-164
68.
Zurück zum Zitat Suridjan I, Pollock BG, Voineskos AN, Verhoeff P, Chow T, Mulsant BH, Rusjan PM, Houle S, Mizrahi R. Mapping neuroinflammation in-vivo in Alzheimer’s disease: a PET study using a novel TSPO radioligand, [18F]FEPPA. 39th Annual Harvey Stancer Research Day, University of Toronto, Toronto, 2013 (poster). Suridjan I, Pollock BG, Voineskos AN, Verhoeff P, Chow T, Mulsant BH, Rusjan PM, Houle S, Mizrahi R. Mapping neuroinflammation in-vivo in Alzheimer’s disease: a PET study using a novel TSPO radioligand, [18F]FEPPA. 39th Annual Harvey Stancer Research Day, University of Toronto, Toronto, 2013 (poster).
69.
Zurück zum Zitat Koshimori Y, Ko JH, Mizrahi R, Rusjan PM, Wilson AA, Houle S, et al. Activated microglia in Parkinson’s disease: a PET study with a novel radiotracer, 18FFEPPA [abstract]. Mov Disord. 2012;27 Suppl 1:741. Koshimori Y, Ko JH, Mizrahi R, Rusjan PM, Wilson AA, Houle S, et al. Activated microglia in Parkinson’s disease: a PET study with a novel radiotracer, 18FFEPPA [abstract]. Mov Disord. 2012;27 Suppl 1:741.
70.
Zurück zum Zitat Ko JH, Koshimori Y, Mizrahi R, Rusjan P, Wilson AA, Lang AE, et al. Voxel-based imaging of translocator protein 18 kDa (TSPO) in high-resolution PET. J Cereb Blood Flow Metab. 2013;33(3):348–50.CrossRefPubMedCentralPubMed Ko JH, Koshimori Y, Mizrahi R, Rusjan P, Wilson AA, Lang AE, et al. Voxel-based imaging of translocator protein 18 kDa (TSPO) in high-resolution PET. J Cereb Blood Flow Metab. 2013;33(3):348–50.CrossRefPubMedCentralPubMed
71.
Zurück zum Zitat Bernards N, Pottier G, Thézé B, Dollé F, Boisgard R. In vivo evaluation of inflammatory bowel disease with the aid of μPET and the translocator protein 18 kDa radioligand [18F]DPA-714. Mol Imaging Biol. 2015;17:67–75.CrossRefPubMed Bernards N, Pottier G, Thézé B, Dollé F, Boisgard R. In vivo evaluation of inflammatory bowel disease with the aid of μPET and the translocator protein 18 kDa radioligand [18F]DPA-714. Mol Imaging Biol. 2015;17:67–75.CrossRefPubMed
72.
Zurück zum Zitat Wu C, Yue X, Lang L, Kiesewetter DO, Li F, Zhu Z, et al. Longitudinal PET imaging of muscular inflammation using 18F-DPA-714 and 18F-Alfatide II and differentiation with tumors. Theranostics. 2014;4(5):546–55.CrossRefPubMedCentralPubMed Wu C, Yue X, Lang L, Kiesewetter DO, Li F, Zhu Z, et al. Longitudinal PET imaging of muscular inflammation using 18F-DPA-714 and 18F-Alfatide II and differentiation with tumors. Theranostics. 2014;4(5):546–55.CrossRefPubMedCentralPubMed
73.
Zurück zum Zitat Doorduin J, Klein HC, Dierckx RA, James M, Kassiou M, de Vries EF. [11C]-DPA-713 and [18F]-DPA-714 as new PET tracers for TSPO: a comparison with [11C]-(R)-PK11195 in a rat model of herpes encephalitis. Mol Imaging Biol. 2009;11(6):386–98.CrossRefPubMedCentralPubMed Doorduin J, Klein HC, Dierckx RA, James M, Kassiou M, de Vries EF. [11C]-DPA-713 and [18F]-DPA-714 as new PET tracers for TSPO: a comparison with [11C]-(R)-PK11195 in a rat model of herpes encephalitis. Mol Imaging Biol. 2009;11(6):386–98.CrossRefPubMedCentralPubMed
74.
Zurück zum Zitat Boutin H, Prenant C, Maroy R, Galea J, Greenhalgh AD, Smigova A, et al. [18F]DPA-714: direct comparison with [11C]PK11195 in a model of cerebral ischemia in rats. PLoS One. 2013;8(2):e56441.CrossRefPubMedCentralPubMed Boutin H, Prenant C, Maroy R, Galea J, Greenhalgh AD, Smigova A, et al. [18F]DPA-714: direct comparison with [11C]PK11195 in a model of cerebral ischemia in rats. PLoS One. 2013;8(2):e56441.CrossRefPubMedCentralPubMed
75.
Zurück zum Zitat Awde AR, Boisgard R, Thézé B, Dubois A, Zheng J, Dollé F, et al. The translocator protein radioligand 18F-DPA-714 monitors antitumor effect of erufosine in a rat 9L intracranial glioma model. J Nucl Med. 2013;54(12):2125–31.CrossRefPubMed Awde AR, Boisgard R, Thézé B, Dubois A, Zheng J, Dollé F, et al. The translocator protein radioligand 18F-DPA-714 monitors antitumor effect of erufosine in a rat 9L intracranial glioma model. J Nucl Med. 2013;54(12):2125–31.CrossRefPubMed
76.
Zurück zum Zitat Pottier G, Bernards N, Dollé F, Boisgard R. [18F]DPA-714 as a biomarker for positron emission tomography imaging of rheumatoid arthritis in an animal model. Arthritis Res Ther. 2014;16(2):R69.CrossRefPubMedCentralPubMed Pottier G, Bernards N, Dollé F, Boisgard R. [18F]DPA-714 as a biomarker for positron emission tomography imaging of rheumatoid arthritis in an animal model. Arthritis Res Ther. 2014;16(2):R69.CrossRefPubMedCentralPubMed
77.
Zurück zum Zitat Gent YY, Weijers K, Molthoff CF, Windhorst AD, Huisman MC, Kassiou M, et al. Promising potential of new generation translocator protein tracers providing enhanced contrast of arthritis imaging by positron emission tomography in a rat model of arthritis. Arthritis Res Ther. 2014;16(2):R70.CrossRefPubMedCentralPubMed Gent YY, Weijers K, Molthoff CF, Windhorst AD, Huisman MC, Kassiou M, et al. Promising potential of new generation translocator protein tracers providing enhanced contrast of arthritis imaging by positron emission tomography in a rat model of arthritis. Arthritis Res Ther. 2014;16(2):R70.CrossRefPubMedCentralPubMed
78.
Zurück zum Zitat Corcia P, Tauber C, Vercoullie J, Arlicot N, Prunier C, Praline J, et al. Molecular imaging of microglial activation in amyotrophic lateral sclerosis. PLoS One. 2012;7(12):e52941.CrossRefPubMedCentralPubMed Corcia P, Tauber C, Vercoullie J, Arlicot N, Prunier C, Praline J, et al. Molecular imaging of microglial activation in amyotrophic lateral sclerosis. PLoS One. 2012;7(12):e52941.CrossRefPubMedCentralPubMed
79.
Zurück zum Zitat Ribeiro MJ, Vercouillie J, Debiais S, Cottier JP, Bonnaud I, Camus V, et al. Could (18) F-DPA-714 PET imaging be interesting to use in the early post-stroke period? EJNMMI Res. 2014;4:28.CrossRefPubMedCentralPubMed Ribeiro MJ, Vercouillie J, Debiais S, Cottier JP, Bonnaud I, Camus V, et al. Could (18) F-DPA-714 PET imaging be interesting to use in the early post-stroke period? EJNMMI Res. 2014;4:28.CrossRefPubMedCentralPubMed
80.
Zurück zum Zitat Mizrahi R, Rusjan PM, Vitcu I, Ng A, Wilson AA, Houle S, et al. Whole body biodistribution and radiation dosimetry in humans of a new PET ligand, [(18)F]-FEPPA, to image translocator protein (18 kDa). Mol Imaging Biol. 2013;15(3):353–9.CrossRefPubMed Mizrahi R, Rusjan PM, Vitcu I, Ng A, Wilson AA, Houle S, et al. Whole body biodistribution and radiation dosimetry in humans of a new PET ligand, [(18)F]-FEPPA, to image translocator protein (18 kDa). Mol Imaging Biol. 2013;15(3):353–9.CrossRefPubMed
81.
Zurück zum Zitat Farde L, Hall H, Ehrin E, Sedvall G. Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science. 1986;231(4735):258–61.CrossRefPubMed Farde L, Hall H, Ehrin E, Sedvall G. Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science. 1986;231(4735):258–61.CrossRefPubMed
82.
Zurück zum Zitat Lammertsma AA, Bench CJ, Hume SP, Osman S, Gunn K, Brooks DJ, et al. Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab. 1996;16(1):42–52.CrossRefPubMed Lammertsma AA, Bench CJ, Hume SP, Osman S, Gunn K, Brooks DJ, et al. Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab. 1996;16(1):42–52.CrossRefPubMed
83.
Zurück zum Zitat Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996;4(3 Pt 1):153–8.CrossRefPubMed Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996;4(3 Pt 1):153–8.CrossRefPubMed
84.
Zurück zum Zitat Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab. 1996;16(5):834–40.CrossRefPubMed Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab. 1996;16(5):834–40.CrossRefPubMed
85.
Zurück zum Zitat Ichise M, Liow JS, Lu JQ, Takano A, Model K, Toyama H, et al. Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab. 2003;23(9):1096–112.CrossRefPubMed Ichise M, Liow JS, Lu JQ, Takano A, Model K, Toyama H, et al. Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab. 2003;23(9):1096–112.CrossRefPubMed
86.
Zurück zum Zitat Csele’nyi Z, Olsson H, Halldin C, Gulya’s B, Farde L. A comparison of recent parametric neuroreceptor mapping approaches based on measurements with the high affinity PET radioligands [11C]FLB 457 and [11C]WAY 100635. Neuroimage. 2006;32(4):1690–708.CrossRef Csele’nyi Z, Olsson H, Halldin C, Gulya’s B, Farde L. A comparison of recent parametric neuroreceptor mapping approaches based on measurements with the high affinity PET radioligands [11C]FLB 457 and [11C]WAY 100635. Neuroimage. 2006;32(4):1690–708.CrossRef
87.
Zurück zum Zitat Turkheimer FE, Edison P, Pavese N, Roncaroli F, Anderson AN, Hammers A, et al. Reference and target region modeling of [11C]-(R)-PK11195 brain studies. J Nucl Med. 2007;48:158–67.PubMed Turkheimer FE, Edison P, Pavese N, Roncaroli F, Anderson AN, Hammers A, et al. Reference and target region modeling of [11C]-(R)-PK11195 brain studies. J Nucl Med. 2007;48:158–67.PubMed
88.
Zurück zum Zitat Rizzo G, Veronese M, Tonietto M, Zanotti-Fregonara P, Turkheimer FE, Bertoldo A. Kinetic modeling without accounting for the vascular component impairs the quantification of [(11)C]PBR28 brain PET data. J Cereb Blood Flow Metab. 2014;34(6):1060–9.CrossRefPubMedCentralPubMed Rizzo G, Veronese M, Tonietto M, Zanotti-Fregonara P, Turkheimer FE, Bertoldo A. Kinetic modeling without accounting for the vascular component impairs the quantification of [(11)C]PBR28 brain PET data. J Cereb Blood Flow Metab. 2014;34(6):1060–9.CrossRefPubMedCentralPubMed
Metadaten
Titel
Mapping neuroinflammation in frontotemporal dementia with molecular PET imaging
verfasst von
Jing Zhang
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
Journal of Neuroinflammation / Ausgabe 1/2015
Elektronische ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-015-0236-5

Weitere Artikel der Ausgabe 1/2015

Journal of Neuroinflammation 1/2015 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie