Skip to main content
Erschienen in: Brain Topography 2/2018

05.10.2017 | Original Paper

Mapping Slow Waves by EEG Topography and Source Localization: Effects of Sleep Deprivation

verfasst von: Alessia Bersagliere, Roberto D. Pascual-Marqui, Leila Tarokh, Peter Achermann

Erschienen in: Brain Topography | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Slow waves are a salient feature of the electroencephalogram (EEG) during non-rapid eye movement (non-REM) sleep. The aim of this study was to assess the topography of EEG power and the activation of brain structures during slow wave sleep under normal conditions and after sleep deprivation. Sleep EEG recordings during baseline and recovery sleep after 40 h of sustained wakefulness were analyzed (eight healthy young men, 27 channel EEG). Power maps were computed for the first non-REM sleep episode (where sleep pressure is highest) in baseline and recovery sleep, at frequencies between 0.5 and 2 Hz. Power maps had a frontal predominance at all frequencies between 0.5 and 2 Hz. An additional occipital focus of activity was observed below 1 Hz. Power maps ≤ 1 Hz were not affected by sleep deprivation, whereas an increase in power was observed in the maps ≥ 1.25 Hz. Based on the response to sleep deprivation, low-delta (0.5–1 Hz) and mid-delta activity (1.25–2 Hz) were dissociated. Electrical sources within the cortex of low- and mid-delta activity were estimated using eLORETA. Source localization revealed a predominantly frontal distribution of activity for low-delta and mid-delta activity. Sleep deprivation resulted in an increase in source strength only for mid-delta activity, mainly in parietal and frontal regions. Low-delta activity dominated in occipital and temporal regions and mid-delta activity in limbic and frontal regions independent of the level of sleep pressure. Both, power maps and electrical sources exhibited trait-like aspects.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Achermann P, Borbély AA (1997) Low-frequency (< 1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience 81:213–222CrossRefPubMed Achermann P, Borbély AA (1997) Low-frequency (< 1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience 81:213–222CrossRefPubMed
Zurück zum Zitat Achermann P, Borbély AA (1998a) Coherence analysis of the human sleep electroencephalogram. Neuroscience 85:1195–1208CrossRefPubMed Achermann P, Borbély AA (1998a) Coherence analysis of the human sleep electroencephalogram. Neuroscience 85:1195–1208CrossRefPubMed
Zurück zum Zitat Achermann P, Borbély AA (1998b) Temporal evolution of coherence and power in the human sleep electroencephalogram. J Sleep Res 7(Suppl 1):36–41CrossRefPubMed Achermann P, Borbély AA (1998b) Temporal evolution of coherence and power in the human sleep electroencephalogram. J Sleep Res 7(Suppl 1):36–41CrossRefPubMed
Zurück zum Zitat Achermann P, Borbély AA (2017) Sleep homeostasis and models of sleep regulation. In: Kryger MH, Roth T, Dement W (eds) Principles and practice of sleep medicine, 6th edn., Elsevier, Philadelphia, PA, pp 377–387CrossRef Achermann P, Borbély AA (2017) Sleep homeostasis and models of sleep regulation. In: Kryger MH, Roth T, Dement W (eds) Principles and practice of sleep medicine, 6th edn., Elsevier, Philadelphia, PA, pp 377–387CrossRef
Zurück zum Zitat Achermann P, Finelli LA, Borbely AA (2001) Unihemispheric enhancement of delta power in human frontal sleep EEG by prolonged wakefulness. Brain Res 913:220–223CrossRefPubMed Achermann P, Finelli LA, Borbely AA (2001) Unihemispheric enhancement of delta power in human frontal sleep EEG by prolonged wakefulness. Brain Res 913:220–223CrossRefPubMed
Zurück zum Zitat Ambrosius U et al (2008) Heritability of sleep electroencephalogram. Biol Psychiatry 64:344–348CrossRefPubMed Ambrosius U et al (2008) Heritability of sleep electroencephalogram. Biol Psychiatry 64:344–348CrossRefPubMed
Zurück zum Zitat Amzica F, Steriade M (1998) Electrophysiological correlates of sleep delta waves. Electroencephalogr Clin Neurophysiol 107:69–83CrossRefPubMed Amzica F, Steriade M (1998) Electrophysiological correlates of sleep delta waves. Electroencephalogr Clin Neurophysiol 107:69–83CrossRefPubMed
Zurück zum Zitat Bersagliere A, Achermann P (2010) Slow oscillations in human non-rapid eye movement sleep electroencephalogram: effects of increased sleep pressure. J Sleep Res 19:228–237CrossRefPubMed Bersagliere A, Achermann P (2010) Slow oscillations in human non-rapid eye movement sleep electroencephalogram: effects of increased sleep pressure. J Sleep Res 19:228–237CrossRefPubMed
Zurück zum Zitat Buckelmüller J, Landolt HP, Stassen HH, Achermann P (2006) Trait-like individual differences in the human sleep electroencephalogram. Neuroscience 138:351–356CrossRefPubMed Buckelmüller J, Landolt HP, Stassen HH, Achermann P (2006) Trait-like individual differences in the human sleep electroencephalogram. Neuroscience 138:351–356CrossRefPubMed
Zurück zum Zitat Coatanhay A, Soufflet L, Staner L, Boeijinga P (2002) EEG source identification: frequency analysis during sleep. C R Biol 325:273–282CrossRefPubMed Coatanhay A, Soufflet L, Staner L, Boeijinga P (2002) EEG source identification: frequency analysis during sleep. C R Biol 325:273–282CrossRefPubMed
Zurück zum Zitat De Gennaro L et al (2008) The electroencephalographic fingerprint of sleep is genetically determined: a twin study. Ann Neurol 64:455–460CrossRefPubMed De Gennaro L et al (2008) The electroencephalographic fingerprint of sleep is genetically determined: a twin study. Ann Neurol 64:455–460CrossRefPubMed
Zurück zum Zitat Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21CrossRefPubMed Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21CrossRefPubMed
Zurück zum Zitat Dierks T et al (2000) Spatial pattern of cerebral glucose metabolism (PET) correlates with localization of intracerebral EEG-generators in Alzheimer’s disease. Clin Neurophysiol 111:1817–1824CrossRefPubMed Dierks T et al (2000) Spatial pattern of cerebral glucose metabolism (PET) correlates with localization of intracerebral EEG-generators in Alzheimer’s disease. Clin Neurophysiol 111:1817–1824CrossRefPubMed
Zurück zum Zitat Esser SK, Hill SL, Tononi G (2007) Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves. Sleep 30:1617–1630CrossRefPubMedPubMedCentral Esser SK, Hill SL, Tononi G (2007) Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves. Sleep 30:1617–1630CrossRefPubMedPubMedCentral
Zurück zum Zitat Finelli LA (2001) Functional mapping of the human brain during sleep and sleep deprivation Dissertation ETH no 14251 Finelli LA (2001) Functional mapping of the human brain during sleep and sleep deprivation Dissertation ETH no 14251
Zurück zum Zitat Finelli LA, Baumann H, Borbély AA, Achermann P (2000) Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep. Neuroscience 101:523–529CrossRefPubMed Finelli LA, Baumann H, Borbély AA, Achermann P (2000) Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep. Neuroscience 101:523–529CrossRefPubMed
Zurück zum Zitat Finelli LA, Achermann P, Borbély AA (2001a) Individual ‘fingerprints’ in human sleep EEG topography. Neuropsychopharmacology 25:S57–S62CrossRef Finelli LA, Achermann P, Borbély AA (2001a) Individual ‘fingerprints’ in human sleep EEG topography. Neuropsychopharmacology 25:S57–S62CrossRef
Zurück zum Zitat Finelli LA, Borbély AA, Achermann P (2001b) Functional topography of the human nonREM sleep electroencephalogram. Eur J Neurosci 13:2282–2290CrossRefPubMed Finelli LA, Borbély AA, Achermann P (2001b) Functional topography of the human nonREM sleep electroencephalogram. Eur J Neurosci 13:2282–2290CrossRefPubMed
Zurück zum Zitat Frackowiak RSJ (ed) (2004) Human brain function. 2nd edn., Academic Press, London Frackowiak RSJ (ed) (2004) Human brain function. 2nd edn., Academic Press, London
Zurück zum Zitat Frei E, Gamma A, Pascual-Marqui R, Lehmann D, Hell D, Vollenweider FX (2001) Localization of MDMA-induced brain activity in healthy volunteers using low resolution brain electromagnetic tomography (LORETA). Hum Brain Mapp 14:152–165CrossRefPubMed Frei E, Gamma A, Pascual-Marqui R, Lehmann D, Hell D, Vollenweider FX (2001) Localization of MDMA-induced brain activity in healthy volunteers using low resolution brain electromagnetic tomography (LORETA). Hum Brain Mapp 14:152–165CrossRefPubMed
Zurück zum Zitat Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol 113:702–712CrossRefPubMed Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol 113:702–712CrossRefPubMed
Zurück zum Zitat Geiger A, Huber R, Kurth S, Ringli M, Jenni OG, Achermann P (2011) The sleep EEG as a marker of intellectual ability in school age children. Sleep 34:181–189CrossRefPubMedPubMedCentral Geiger A, Huber R, Kurth S, Ringli M, Jenni OG, Achermann P (2011) The sleep EEG as a marker of intellectual ability in school age children. Sleep 34:181–189CrossRefPubMedPubMedCentral
Zurück zum Zitat Liu Q, Farahibozorg S, Porcaro C, Wenderoth N, Mantini D (2017) Detecting large-scale networks in the human brain using high-density electroencephalography. Hum Brain Mapp. doi:10.1002/hbm.23688 Liu Q, Farahibozorg S, Porcaro C, Wenderoth N, Mantini D (2017) Detecting large-scale networks in the human brain using high-density electroencephalography. Hum Brain Mapp. doi:10.​1002/​hbm.​23688
Zurück zum Zitat Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 164:177–190CrossRefPubMed Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 164:177–190CrossRefPubMed
Zurück zum Zitat Marzano C, Ferrara M, Curcio G, De Gennaro L (2010) The effects of sleep deprivation in humans: topographical electroencephalogram changes in non-rapid eye movement (NREM) sleep versus REM sleep. J Sleep Res 19:260–268CrossRefPubMed Marzano C, Ferrara M, Curcio G, De Gennaro L (2010) The effects of sleep deprivation in humans: topographical electroencephalogram changes in non-rapid eye movement (NREM) sleep versus REM sleep. J Sleep Res 19:260–268CrossRefPubMed
Zurück zum Zitat Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G (2004) The sleep slow oscillation as a traveling wave. J Neurosci 24:6862–6870CrossRefPubMed Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G (2004) The sleep slow oscillation as a traveling wave. J Neurosci 24:6862–6870CrossRefPubMed
Zurück zum Zitat Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G (2005) Breakdown of cortical effective connectivity during sleep. Science 309:2228–2232CrossRefPubMed Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G (2005) Breakdown of cortical effective connectivity during sleep. Science 309:2228–2232CrossRefPubMed
Zurück zum Zitat Mazziotta J et al (2001) A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 356:1293–1322CrossRefPubMedPubMedCentral Mazziotta J et al (2001) A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 356:1293–1322CrossRefPubMedPubMedCentral
Zurück zum Zitat Mulert C et al (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22:83–94CrossRefPubMed Mulert C et al (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22:83–94CrossRefPubMed
Zurück zum Zitat Murphy M, Riedner BA, Huber R, Massimini M, Ferrarelli F, Tononi G (2009) Source modeling sleep slow waves. Proc Natl Acad Sci USA 106:1608–1613CrossRefPubMedPubMedCentral Murphy M, Riedner BA, Huber R, Massimini M, Ferrarelli F, Tononi G (2009) Source modeling sleep slow waves. Proc Natl Acad Sci USA 106:1608–1613CrossRefPubMedPubMedCentral
Zurück zum Zitat Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25CrossRefPubMed Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25CrossRefPubMed
Zurück zum Zitat Nir Y, Staba RJ, Andrillon T, Vyazovskiy VV, Cirelli C, Fried I, Tononi G (2011) Regional slow waves and spindles in human sleep. Neuron 70:153–169CrossRefPubMedPubMedCentral Nir Y, Staba RJ, Andrillon T, Vyazovskiy VV, Cirelli C, Fried I, Tononi G (2011) Regional slow waves and spindles in human sleep. Neuron 70:153–169CrossRefPubMedPubMedCentral
Zurück zum Zitat Parrino L, Spaggiari MC, Boselli M, Barusi R, Terzano MG (1993) Effects of prolonged wakefulness on cyclic alternating pattern (Cap) during sleep recovery at different circadian phases. J Sleep Res 2:91–95CrossRefPubMed Parrino L, Spaggiari MC, Boselli M, Barusi R, Terzano MG (1993) Effects of prolonged wakefulness on cyclic alternating pattern (Cap) during sleep recovery at different circadian phases. J Sleep Res 2:91–95CrossRefPubMed
Zurück zum Zitat Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12PubMed Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12PubMed
Zurück zum Zitat Pascual-Marqui RD (2009) Theory of the EEG inverse problem. In: Tong S, Thakor N (eds) Quantitative EEG analysis: methods and applications, Artech House, Boston, pp 121–140 Pascual-Marqui RD (2009) Theory of the EEG inverse problem. In: Tong S, Thakor N (eds) Quantitative EEG analysis: methods and applications, Artech House, Boston, pp 121–140
Zurück zum Zitat Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65CrossRefPubMed Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65CrossRefPubMed
Zurück zum Zitat Plummer C et al (2010) Clinical utility of distributed source modelling of interictal scalp EEG in focal epilepsy. Clin Neurophysiol 121:1726–1739CrossRefPubMed Plummer C et al (2010) Clinical utility of distributed source modelling of interictal scalp EEG in focal epilepsy. Clin Neurophysiol 121:1726–1739CrossRefPubMed
Zurück zum Zitat Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. National Institutes of Health, Bethesda, Maryland Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. National Institutes of Health, Bethesda, Maryland
Zurück zum Zitat Riedner BA, Vyazovskiy VV, Huber R, Massimini M, Esser S, Murphy M, Tononi G (2007) Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep 30:1643–1657CrossRefPubMedPubMedCentral Riedner BA, Vyazovskiy VV, Huber R, Massimini M, Esser S, Murphy M, Tononi G (2007) Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep 30:1643–1657CrossRefPubMedPubMedCentral
Zurück zum Zitat Steriade M, McCormick DA, Sejnowski TJ (1993a) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685CrossRefPubMed Steriade M, McCormick DA, Sejnowski TJ (1993a) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685CrossRefPubMed
Zurück zum Zitat Steriade M, Nuñez A, Amzica F (1993b) A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13:3252–3265PubMed Steriade M, Nuñez A, Amzica F (1993b) A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13:3252–3265PubMed
Zurück zum Zitat Steriade M, Nuñez A, Amzica F (1993c) Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci 13:3266–3283PubMed Steriade M, Nuñez A, Amzica F (1993c) Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci 13:3266–3283PubMed
Zurück zum Zitat Tarokh L, Rusterholz T, Achermann P, Van Dongen HP (2015) The spectrum of the non-rapid eye movement sleep electroencephalogram following total sleep deprivation is trait-like. J Sleep Res 24:360–363. doi:10.1111/jsr.12279 CrossRefPubMed Tarokh L, Rusterholz T, Achermann P, Van Dongen HP (2015) The spectrum of the non-rapid eye movement sleep electroencephalogram following total sleep deprivation is trait-like. J Sleep Res 24:360–363. doi:10.​1111/​jsr.​12279 CrossRefPubMed
Zurück zum Zitat Vitacco D, Brandeis D, Pascual-Marqui R, Martin E (2002) Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Hum Brain Mapp 17:4–12CrossRefPubMed Vitacco D, Brandeis D, Pascual-Marqui R, Martin E (2002) Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Hum Brain Mapp 17:4–12CrossRefPubMed
Zurück zum Zitat Vyazovskiy VV, Riedner BA, Cirelli C, Tononi G (2007) Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat. Sleep 30:1631–1642CrossRefPubMedPubMedCentral Vyazovskiy VV, Riedner BA, Cirelli C, Tononi G (2007) Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat. Sleep 30:1631–1642CrossRefPubMedPubMedCentral
Zurück zum Zitat Vyazovskiy VV, Faraguna U, Cirelli C, Tononi G (2009a) Triggering slow waves during NREM sleep in the rat by intracortical electrical stimulation: effects of sleep/wake history and background activity. J Neurophysiol 101:1921–1931CrossRefPubMedPubMedCentral Vyazovskiy VV, Faraguna U, Cirelli C, Tononi G (2009a) Triggering slow waves during NREM sleep in the rat by intracortical electrical stimulation: effects of sleep/wake history and background activity. J Neurophysiol 101:1921–1931CrossRefPubMedPubMedCentral
Zurück zum Zitat Worrell GA, Lagerlund TD, Sharbrough FW, Brinkmann BH, Busacker NE, Cicora KM, O’Brien TJ (2000) Localization of the epileptic focus by low-resolution electromagnetic tomography in patients with a lesion demonstrated by MRI. Brain Topogr 12:273–282CrossRefPubMed Worrell GA, Lagerlund TD, Sharbrough FW, Brinkmann BH, Busacker NE, Cicora KM, O’Brien TJ (2000) Localization of the epileptic focus by low-resolution electromagnetic tomography in patients with a lesion demonstrated by MRI. Brain Topogr 12:273–282CrossRefPubMed
Zurück zum Zitat Zumsteg D, Wennberg RA, Treyer V, Buck A, Wieser HG (2005) H2 15O or 13NH3 PET and electromagnetic tomography (LORETA) during partial status epilepticus. Neurology 65:1657–1660CrossRefPubMed Zumsteg D, Wennberg RA, Treyer V, Buck A, Wieser HG (2005) H2 15O or 13NH3 PET and electromagnetic tomography (LORETA) during partial status epilepticus. Neurology 65:1657–1660CrossRefPubMed
Zurück zum Zitat Zumsteg D, Friedman A, Wieser HG, Wennberg RA (2006a) Propagation of interictal discharges in temporal lobe epilepsy: correlation of spatiotemporal mapping with intracranial foramen ovale electrode recordings. Clin Neurophysiol 117:2615–2626CrossRefPubMed Zumsteg D, Friedman A, Wieser HG, Wennberg RA (2006a) Propagation of interictal discharges in temporal lobe epilepsy: correlation of spatiotemporal mapping with intracranial foramen ovale electrode recordings. Clin Neurophysiol 117:2615–2626CrossRefPubMed
Zurück zum Zitat Zumsteg D, Lozano AM, Wennberg RA (2006b) Depth electrode recorded cerebral responses with deep brain stimulation of the anterior thalamus for epilepsy. Clin Neurophysiol 117:1602–1609CrossRefPubMed Zumsteg D, Lozano AM, Wennberg RA (2006b) Depth electrode recorded cerebral responses with deep brain stimulation of the anterior thalamus for epilepsy. Clin Neurophysiol 117:1602–1609CrossRefPubMed
Zurück zum Zitat Zumsteg D, Lozano AM, Wieser HG, Wennberg RA (2006c) Cortical activation with deep brain stimulation of the anterior thalamus for epilepsy. Clin Neurophysiol 117:192–207CrossRefPubMed Zumsteg D, Lozano AM, Wieser HG, Wennberg RA (2006c) Cortical activation with deep brain stimulation of the anterior thalamus for epilepsy. Clin Neurophysiol 117:192–207CrossRefPubMed
Metadaten
Titel
Mapping Slow Waves by EEG Topography and Source Localization: Effects of Sleep Deprivation
verfasst von
Alessia Bersagliere
Roberto D. Pascual-Marqui
Leila Tarokh
Peter Achermann
Publikationsdatum
05.10.2017
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 2/2018
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-017-0595-6

Weitere Artikel der Ausgabe 2/2018

Brain Topography 2/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.