Skip to main content
Erschienen in: Insights into Imaging 4/2018

Open Access 15.05.2018 | Review

Masses of developmental and genetic origin affecting the paediatric craniofacial skeleton

verfasst von: Salvatore Stefanelli, Pravin Mundada, Anne-Laure Rougemont, Vincent Lenoir, Paolo Scolozzi, Laura Merlini, Minerva Becker

Erschienen in: Insights into Imaging | Ausgabe 4/2018

Abstract

Although rare, masses and mass-like lesions of developmental and genetic origin may affect the paediatric craniofacial skeleton. They represent a major challenge in clinical practice because they can lead to functional impairment, facial deformation and disfigurement. The most common lesions include fibrous dysplasia, dermoid cysts, vascular malformations and plexiform neurofibromas. Less common lesions include torus mandibularis and torus palatinus, cherubism, nevoid basal cell carcinoma syndrome, meningoencephalocele and nasal sinus tract. This article provides a comprehensive approach for the evaluation of children with masses or mass-like lesions of developmental and genetic origin affecting the craniofacial skeleton. Typical findings are illustrated and the respective roles of computed tomography (CT), cone beam CT (CBCT), magnetic resonance imaging (MRI) with diffusion-weighted imaging (DWI) sequences and ultrasonography (US) are discussed for the pre-therapeutic assessment, complex treatment planning and post-treatment surveillance. Key imaging findings and characteristic clinical manifestations are reviewed. Pitfalls of image interpretation are addressed and how to avoid them.

Teaching points

• Masses of developmental and genetic origin may severely impair the craniofacial skeleton.
• Although rare, these lesions have characteristic imaging features.
• CT, MRI and ultrasonography play a key role in their work-up.
• Recognition of pivotal imaging pearls and diagnostic pitfalls avoids interpretation errors.
Hinweise

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ADC
Apparent diffusion coefficient
AVM
Arterial vascular malformation
CBCT
Cone beam CT
CEMRI
Contrast-enhanced MRI
CISS
Constructive interference steady state
CNS
Central nervous system
CSF
Cerebrospinal fluid
CT
Computed tomography
DC
Dermoid cyst
DVM
Desmoplastic variant of medulloblastoma
DWI
Diffusion-weighted imaging
FD
Fibrous dysplasia
FDG
F18-Fluoro-deoxy-D-glucose
FLAIR
Fluid attenuation inversion recovery
H-E
Haematoxylin and eosin staining
LM
Lymphatic malformations
MPNST
Malignant peripheral nerve sheath tumour
MRI
Magnetic resonance imaging
NBCCS
Nevoid basal cell carcinoma syndrome
NDSC
Nasal dermoid sinus cyst
NF1
Neurofibromatosis type 1
OKC
Odontogenic keratocyst
OPT
Orthopantomography
PET-CT
Positron emission tomography computed tomography
PNF
Plexiform neurofibroma
TM
Torus mandibularis
TMax
Torus maxillaris
TMJ
Temporomandibular joint
TP
Torus palatinus
US
Ultrasonography
VM
Vascular malformation
VR
Volume rendering
VVM
Venous vascular malformation

Introduction

Masses and mass-like lesions related to various developmental and genetic conditions can affect the developing craniofacial skeleton. The majority of masses and mass-like conditions of developmental/genetic origin are benign. Some of these conditions, such as torus palatinus and torus mandibularis, require no treatment other than alleviation of parental anxiety. Other conditions affecting the developing craniofacial skeleton, such as fibrous dysplasia, ossifying fibroma, familial gigantiform cementoma, cemento-osseous dysplasia, hereditary multiple osteochondroma or plexiform neurofibroma, may cause functional impairments due to the proximity to important neurovascular structures, organs of special senses and developing dentition. Cosmetic deformities, due to the lesion itself or due to treatment-related asymmetric facial growth, may cause a significant psychosocial impact on the patient’s life. Management of these patients, therefore, often requires close interdisciplinary work-up, precise and often complex treatment planning strategies and post-treatment surveillance into adulthood. Radiologists, as part of an interdisciplinary team, play an important role in the management of these young patients. In addition, as these rare lesions may mimic neoplasms of the craniofacial skeleton and vice versa, it is imperative to be aware of their characteristic imaging features in order to avoid unnecessary biopsy and expensive follow-up examinations.
To the best of our knowledge, a review of the imaging features of these rare masses and their impact on treatment has not been published in the English literature during the past 20 years. Most published articles on the subject are isolated case reports or small case series dealing with the clinical presentation and with patient management. This article attempts to provide a comprehensive radiological review of the most common developmental masses involving the craniofacial skeleton, along with their multimodality imaging features, clinical manifestations and the role of imaging in their pluridisciplinary management [15].

Imaging techniques

The majority of masses and mass-like conditions of developmental/genetic origin are benign. Imaging narrows down the differential diagnosis and helps in planning patient management. Traditionally, ultrasonography (US) and conventional x-ray radiography have been the mainstays of imaging in paediatric lesions. US allows differentiation between solid and cystic lesions of the facial soft tissues and enables rapid assessment of the vascularisation and localisation of the extraosseous components. The US transducer types to be used should be adapted to the small parts investigated. High-frequency linear array transducers (> 8 MHz, often > 10 MHz) yield excellent spatial resolution, but at the expense of a shallower depth of penetration. US should be ideally coupled with a Doppler evaluation. Based on the Doppler flow waveform, differentiation between infantile haemangioma, a vascular tumour gradually involuting over the years, from low-flow (venous), lymphatic or high-flow (arteriovenous) vascular malformations is facilitated. However, US has a very limited role in the evaluation of the craniofacial skeleton itself. Imaging techniques using ionising radiation, including orthopantomography (OPT), computed tomography (CT) and cone beam CT (CBCT) warrant careful use in accordance with the ALARA (As Low As Reasonably Achievable) principle [6]. As OPT is associated with a modest radiation exposure and gives a reasonable overview of the facial skeleton, gross lesion features (osteolytic, osteosclerotic vs. mixed pattern), gross lesion margins (well-delineated vs. poorly delineated, expansile vs. non-expansile, effect on teeth structures, condyle or inferior alveolar canal), lesion location and overall effect on the skeletal growth (asymmetry and deformity) can already give important clues for the differential diagnosis. According to the size and age of the patient, a wide range of preset parameters (kV and mA) can be chosen according to vendor specifications.
After the initial evaluation, the first decision is whether to use CT or magnetic resonance imaging (MRI) for further work-up or whether the acquired US and OPT images enable reasonable patient management without further imaging. If the lesion is suspected to be of vascular nature, to have a large extraosseous component or of the type that may have a small intracranial connection (e.g. dermoid cyst), MRI is the modality of choice. Many times, however, the exact nature of the lesion is not known and the clinical presentation suggests a primary intraosseous lesion, in which case, CT becomes the imaging modality of choice. Nevertheless, it is important to note that, in cases with involvement of the skull base or prior to planning complex surgery, both MRI and CT/CBCT are required. High-resolution MRI, low-dose CT and CBCT are the standard of care for the assessment of facial masses with skeletal involvement or of primary craniofacial skeletal lesions. When performing CT or CBCT, the radiation dose is usually reduced as much as possible by limiting the scanned area to the absolute minimum, by avoiding the lens if possible and by applying a low-dose protocol [6]. In general, CBCT gives a 2–5 times lower radiation exposure than CT, which makes it a preferred imaging modality. Although CBCT provides superb resolution of the bony and dental structures, it has poor soft tissue resolution. Its long acquisition time (up to 20s for one rotation) limits the use in young children, where motion artefacts due to limited cooperation are common. For CT and CBCT, 0.6–1-mm thin sections through the lesion are required. Coronal and sagittal reformatted images are equally obtained to precisely depict the anatomic relationship of the lesion with the adjacent structures. Three-dimensional reformatted images allowing precise pre-surgical planning are usually acquired whenever required by the maxillofacial surgeons or neurosurgeons.
MRI, in addition to having excellent soft tissue contrast, offers the advantages of multiplanar imaging and early detection of marrow oedema, as well as accurate depiction of invasion by tumours and tumour-like lesions [7]. The use of surface coils enhances the usefulness of MRI in evaluating the intracranial connections of small lesions such as dermoid cysts and atretic encephaloceles. Multiphasic contrast-enhanced MRI (CEMRI) enables the assessment of vascular malformations, as well as tumoural and non-tumoural orbital and facial pathology [8]. Diffusion-weighted imaging (DWI) with at least two b values (b = 0 and b = 1000) and calculation of the apparent diffusion coefficient (ADC) facilitates tissue characterisation. Typically, malignant tumours, epidermoid cysts and abscesses show restricted diffusion (high signal on b = 1000 and low signal on ADC). Benign tumours, cysts (except epidermoid) and most vascular malformations show facilitated diffusion (high signal on b = 1000 and high signal on ADC) [7, 9].
F18-Fluoro-deoxy-D-glucose (FDG) positron emission tomography CT (PET-CT) has a limited role, reserved for suspected multifocal disease manifestations or suspected sarcomatous progression of a plexiform neurofibroma into a malignant peripheral nerve sheath tumour (MPNST) [10, 11]. As an alternative to PET-CT, hybrid PET MRI provides robust multiparametric anatomic, functional and metabolic information while significantly reducing radiation exposure [1216]. It also offers the possibility to accurately detect recurrent disease and to effectively follow patients in a non-invasive fashion by using a combined multiparametric approach once a malignant tumour has been identified [17].

Primary intraosseous lesions

Common developmental lesions of the facial skeleton include fibrous dysplasia, torus palatinus and torus mandibularis. They present as slowly progressing facial masses and palatal or mandibular palpable indurations. They may occasionally mimic neoplasms on clinical examination.

Fibrous dysplasia

Fibrous dysplasia (FD) is typically seen in children/adolescents, with a slight predilection for girls. It is a sporadic non-neoplastic disease of the bone-forming mesenchyme in which normal lamellar bone is replaced by immature woven bone with irregular trabeculae [18]. The condition is caused by a defect in the differentiation and maturation of osteoblasts. Histology may show secondary changes, such as aneurysmal-bone cyst-like features, or extensive myxoid changes; there is no nuclear atypia and mitoses are rare [18]. FD leads to progressive enlargement of the affected bone, thus resulting in facial deformity, exophthalmos, visual impairment or paraesthesia due to foraminal compression. In 70–80% of cases, FD is monostotic, and in the remaining 20–30%, it is polyostotic [18, 19]. When FD affects the skull and facial bones alone, the term craniofacial FD is used [19]. Whenever alkaline phosphatase increases dramatically in a patient with polyostotic FD, malignant degeneration should be ruled out.
In most patients with FD, CT and CBCT reveal characteristic bony expansion with a “ground-glass” appearance (Figs. 1 and 2) or mixed radiolucency, widened diploic space with outer table displacement or bubbling skull vault lesions (Fig. 2). The fibrous stroma and osteoid material are hypointense on T1, while on T2, the signal intensity may be variable. Marked or heterogeneous enhancement can be seen on CEMRI (Fig. 2). On DWI, FD typically has higher ADC values than malignant bone tumours (ADC mean in FD = 2 × 10−3 mm2/s); however, lower ADC values are not exceptional and they do not help in the differential diagnosis. On FDG PET-CT, FD may display high metabolism, mimicking malignancy [20]. However, the characteristic ground-glass appearance of FD on CT and, whenever present, high ADC values on diffusion-weighted MRI help in differentiation [18, 19]. Although the aspect of FD on CT/CBCT is most often characteristic, a sclerotic and osteolytic pattern (so-called “pagetoid pattern”) [19] can render differentiation from Paget’s disease difficult. Nevertheless, the latter affects the skull vault of elderly patients and typically spares the facial skeleton. Because of an increased vascularisation of the newly formed bone in Paget’s disease, a “cotton wool” CT appearance and heterogeneous enhancement on MRI are common. Cystic forms of FD may mimic ossifying fibroma, although the latter tends to appear more mass-like, with well-defined borders and more localised than FD [7]. Various intraosseous lesions with heterogeneous contrast enhancement may mimic FD on MRI, such as intraosseous meningioma, giant cell tumour and sclerotic metastases (prostate and lung cancer). The typical age of presentation and the characteristic CT/CBCT aspect, however, make differentiation from these entities straightforward in the paediatric age group. Although radiological findings are very characteristic but not pathognomonic of FD, they must always be correlated with patient demographics and, in rare cases, with histopathology [19].
The management of craniofacial FD includes a “wait and see” policy till the completion of the facial skeletal growth and surgery is performed in cases of persistent or increasing facial deformity (Fig. 1). Because complete surgical excision may lead to aesthetic and functional deficits, a more limited approach to reduce the size of the lesion is often carried out. Nevertheless, in cases with major facial disfigurement or severe optic nerve compression, resection before completion of facial growth is required [21]. Increased risk of malignant degeneration has rendered treatment with radiotherapy obsolete (Table 1).
Table 1
Summary of radiologic findings and differential diagnosis
 
US
RX
CT/CBCT
MRI
FDG PET
Differential diagnosis
Fibrous dysplasia (FD)
(Not indicated)
Expanded, thickened bone with ground-glass density
Occasionally areas of sclerosis or lucency
Expansile bone lesion in the medullary space with variable attenuation: sclerotic FD (ground-glass density), pagetoid FD (mixed radiopacity and radiolucency), cystic FD (centrally lucent lesions with thinned but sclerotic borders)
Low signal on T1 in ossified ± fibrous portions
Variable signal on T2. In the active phase, heterogeneous pattern
Usually, high ADC values on DWI
Fibrous components may enhance intensely
Variable FDG metabolism
Paget disease (adults)
Ossifying fibroma
Meningioma
Metastasis
Chondrosarcoma
Giant cell tumour
Cherubism
Submandibular lymph node enlargement may be present
Well-defined, bilateral, multilocular, expansile, radiolucent lesions of the jaws in children
Symmetrical enlargement of the mandible and maxilla
Teeth displacement, absence of dental follicles
Symmetrical, multilocular pseudocysts in the jaws, with few irregular bony septa, usually without other craniofacial involvement
Rounded scalloped lesion margins with marked bony expansion
Heterogeneous signal intensity
Signal intensity changes in areas that are apparently normal on radiographs or CT
(Not indicated)
Central giant cell granuloma
Noonan-like/multiple giant cell lesion syndrome
Hyperparathyroidism
Odontogenic keratocyst (OKC) in NBCCS
(Not indicated)
Multiple and expansile cystic masses of the jaws
Radiolucent with sclerotic rim
Unilocular or multilocular lesions
May displace developing teeth, resorb roots of erupted teeth, cause tooth extrusion
Rarely resorption of adjacent teeth
Corticated expansile cystic lesions with smooth or scalloped borders
Density varies with viscosity of contents
No detectable enhancement
Intermediate to high signal on T1 and heterogeneous signal on T2
May have low ADCs due to ortho-/parakeratin and/or haemorrhage
No solid enhancing tissue, thin or no enhancing rim
(Not indicated)
Periapical (radicular) cyst
Dentigerous (follicular) cyst
Ameloblastoma
Torus
(Not indicated)
Areas of increased bony density of variable size arising from the mid-portion of the hard palate (TP) or along the mandibular or maxilla margins (TM and TMax)
Often of fortuitous discovery
Typical localisation in oral cavity
Bone density of a non-infiltrating exophytic cortical bone lesion, without enhancement
Low signal intensity in T1 and T2
No soft tissue involvement and no enhancement
(Not indicated)
Osteoma
Dermoid and epidermoid cysts
Well demarcated avascular homogeneous mass in epidermoid type
Heterogeneous echostructure and minimal increase through transmission ± hyperechoic focus with posterior acoustical shadowing consistent with calcification in dermoid type
Pseudosolid appearance
(Not indicated)
Epidermoid: low-density, well-demarcated cystic mass with fluid density material inside the lesion
Dermoid: well-circumscribed cystic mass with fatty, fluid, calcified or mixed contents
Typical location, ovoid or tubular morphology
Depending on their location, DC may present as osteolytic lesions or may cause scalloping of the near bone
Epidermoid: homogeneous fluid signal (high signal on T2), diffuse high signal on T1 if high protein fluid. Typically restricted diffusion on DWI
Dermoid: heterogeneous high signal on T2 (intermediate signal if fat, focal areas of low signal if calcifications, complex fluid signal on T1). Fatty elements show focal or diffuse high signal on T1 and low signal if fat saturation is used. May have restricted diffusion on DWI. Thin rim enhancement or none
(Not indicated)
Depending on the location of DC:
Supraorbital region, floor of the mouth and cheek:
Thyroglossal duct cyst
Lymphatic malformation
Ranula
Abscess
Intraorbital:
Orbital infantile haemangioma
Orbital lymphatic malformation
Orbital venous malformation
Nose (see below)
Nasal dermoid sinus cyst (NDSC)
(See above)
No specific x-ray findings on the radiograph of the skull
Midline lesion anywhere from nasal tip to the anterior skull base at the foramen caecum
Fluid attenuation cyst and tract from nasal dorsum to skull base within nasal septum
Fat-containing mass (dermoid)
No specific enhancement
Bifid or deformed crista galli or cribriform plate with large foramen caecum
Morphology: ovoid mass ± tubular sinus tract
The lipomatous content of the NDSC appears hyperintense on T1 and hypointense on fat-suppressed images (dermoid)
Sagittal plane displays course of sinus tract from nasal dorsum to skull base
Restricted diffusion on DWI (epidermoid)
Rim enhancement or none
(Not indicated)
Nasal glioma
Fronto-ethmoidal cephalocele
Fatty marrow in crista galli
Non-ossified foramen caecum
Plexiform neurofibroma (PNF)
Lobular, serpiginous infiltrative soft tissue mass
Trophic changes and specific signs of bone involvement of the affected structures
Infiltrative trans-spatial appearance
Mild contrast enhancement
Target sign: central T2 hypointensity in the multilobulated hyperintense mass
Contrast enhancement of infiltrative solid mass (mild to moderate)
Hypermetabolism in sarcomatous transformation
Venous malformation
Lymphatic malformation
Sarcoma
Venous vascular malformation (VVM)
Variable size of multilobulated, solitary or multiple, spongy and compressible lesion with vascular channels
No arterial flow on colour Doppler
Hyperechoic foci with posterior acoustic shadowing consistent with phleboliths (if present)
Characteristic phleboliths
May show trophic changes of adjacent bones
Circumscribed or trans-spatial, lobulated soft tissue mass, isodense to muscle, with rounded calcifications (phleboliths), often drained by enlarged veins
Variable contrast enhancement: patchy and delayed or homogeneous and intense
No enlarged feeding arteries
Bone remodelling of the adjacent bone
Multilobulated mass with variable signal intensity on T1
Cyst-like appearance of large vascular channels, hyperintense on T2
Smaller vascular channels appear more solid and with intermediate signal intensity
Vascular signal voids on T2 due to enlarged dysplastic draining veins
Phleboliths appear as rounded or oval signal voids
Contrast enhancement is variable, may be mild to intense, delayed, heterogeneous or homogeneous
Lymphatic component of VM do not enhance
(Not indicated)
Arteriovenous malformation
Lymphatic malformation
Infantile haemangioma
Dermoid and epidermoid cyst
Lymphatic malformation (LM)
Multicystic paediatric soft tissue mass with fluid–fluid levels
Macrocystic LM (> 1 cm): soft, compressible anechoic cystic mass, usually with thin internal septations
High echogenicity if haemorrhage or proteinaceous fluid
Microcystic LM (< 1 cm): infiltrative solid-appearing mass of subcutaneous soft tissue, mildly hypo- or hyperechoic
(Not indicated)
Multilocular, fluid-attenuation mass, typically uniform, may contain foci of high attenuation due to haemorrhage or protein or low attenuation due to fat or lymph components
Subtle fluid–fluid levels of blood products
Contrast enhancement of septations in macrocystic LM
Largely bright fluid signal intensity mass with hypointense septa on T2
Fluid–fluid levels due to haemorrhage
Bright signal intensity on T1 due to haemorrhage, protein, fat and lymph components
Thin rim/septal contrast enhancement of macrocystic lesion. Confluent enhancement of infiltrating tissue in microcystic LM
No high-flow vessels intrinsic to lesion
(Not indicated)
Venous malformation
Infantile haemangioma
Soft tissue sarcoma
Soft tissue infection
Cephalocele
Obstetrical US: soft tissue mass through osseous defect
Fronto-ethmoidal: midline frontal, intranasal or medial orbital bony defect
Heterogeneous, mixed-density mass variable amounts of CSF and brain parenchyma, extending through bony defect
Intrathecal contrast fills subarachnoid space and surrounds soft tissue extending through bony defect (used only when MRI and CT still equivocal)
CT cisternography may be useful in localising CSF leak, especially if CSF rhinorrhoea or otorrhoea is present
Fronto-ethmoidal: crista galli may be bifid or absent. Deficient or absent cribriform plate
Skull base: depicts osseous defect in skull base
Temporal bone: focal bone defect in tegmen tympani or mastoid
Petrous apex: unilateral or bilateral smooth expansile petrous apex lesion due to herniation of posterolateral wall of Meckel cave
Enlarged petrous apex porus trigeminal notch
Soft tissue mass isointense to grey matter on T1
Hyperintense signal of CSF surrounds herniated soft tissue parenchyma on T2
Tissue may show hyperintense signal due to gliosis
Mass showing contiguity with intracranial brain parenchyma and CSF
No abnormal contrast enhancement or mild rim enhancement is noted within soft tissue
Meninges may enhance in case of infection or inflammation
(Not indicated)
Depending on the location of cephalocele:
Fronto-ethmoidal (frontonasal, nasoethmoidal, naso-orbital type) and skull base (nasopharyngeal, spheno-orbital and sphenomaxillary type):
Nasal glioma
Orbital dermoid and epidermoid
Nasal dermal sinus
Nasolacrimal duct mucocele
Teratoma
Temporal bone:
Cholesteatoma with tegmen dehiscence
Middle ear cholesterol granuloma
Temporal bone arachnoid granulation
Petrous apex:
Petrous apex cholesterol granuloma
Petrous apex congenital cholesteatoma
Petrous apex mucocele

Cherubism

Cherubism is a rare autosomal dominant disorder with unknown prevalence. It results from a genetic mutation affecting bone metabolism and remodelling, and at least 15 mutation types have been identified so far [22, 23]. Multilocular pseudocysts progressively replace the lower and upper jaws, usually without other craniofacial involvement. Histology is not specific, showing fibrous tissue and osteoclast-like giant cells [22]. The affected children develop progressive, painless and symmetric enlargement of the mandible and maxilla, and, eventually, the typical cherub face. Dental abnormalities are the most common complications, whereas ophthalmological and respiratory complications are rare [22]. The dentomaxillofacial deformities tend to progress up to adolescence and then regress spontaneously after puberty [24].
OPT shows well-defined bilateral multilocular radiolucent lesions causing symmetrical bilateral enlargement of the mandible and maxilla (Fig. 3). CT/CBCT depicts expansile lytic jaw lesions separated by irregular bony septae, teeth displacement and narrowing of neural foramina (Fig. 3). MRI is reserved for complicated cases to evaluate orbital involvement and airway narrowing [25]. Nevertheless, it has been shown that MRI may reveal additional bone changes not seen on CT or conventional x-ray images [25]. These jaw lesions seen in cherubism have a typical “soap bubble” appearance on CT and OPT; they are of bone-related origin and should not be confused with lesions of odontogenic origin, despite involvement of the teeth and resulting dental abnormalities [5, 26].
The differential diagnosis of cherubism includes Noonan-like/multiple giant cell lesion syndrome, FD and central giant cell granuloma of the mandible and maxilla [27, 28]. Patients with Noonan-like/multiple giant cell lesion syndrome display cherubism-like jaw manifestations, short stature and developmental delay [29]. Central giant cell granuloma is unilocular and cystic, whereas FD causes asymmetric, poorly defined bone expansion, as described above [18]. Although cherubism spontaneously regresses after puberty, orthodontic and ophthalmologic surveillance is recommended.

Nevoid basal cell carcinoma syndrome

The triad of nevoid basal cell carcinomas, jaw cysts and bifid ribs is known as nevoid basal cell carcinoma syndrome (NBCCS) or Gorlin–Goltz syndrome [30, 31]. NBCCS is a rare autosomal dominant neurocutaneous syndrome caused by mutations in the PTCH1 gene on chromosome 9p22.3. This multisystemic disorder is characterised by predisposition to multiple basal cell carcinomas (BCCs), odontogenic keratocysts, desmoplastic variant of medulloblastoma (DVM) and skeletal, dental, ophthalmological and neurological abnormalities [3234]. NBCCS patients have a life expectancy similar to that of the general population, provided that tumours and BCCs are detected and treated early [34].
Odontogenic keratocysts (OKCs), formerly called keratocystic odontogenic tumours [26], are thought to originate from the dental lamina; OKCs are the hallmark of NBCCS [5, 32]. They are seen in 75% of NBCCS patients. Multiple OKCs occur in most patients before the age of 10 years, with a peak incidence in the second and third decades of life. Clinically, the lesions are asymptomatic until they become large enough to cause jaw swelling. Common locations include the mandibular molar-ramus region (44% of cases) and the mandibular incisor-canine region (18%) [32]. Malignant degeneration into ameloblastoma or squamous cell carcinoma has been reported [3537]. OPT and CT/CBCT in OKCs typically show unilocular or multilocular cystic lesions with smooth or scalloped borders (Figs. 4 and 5). Although OKCs are the most consistent and representative lesions of NBCCS in childhood [33], they can incorporate the crown of an unerupted and/or displaced tooth, mimicking dentigerous cysts [5]. Due to their extension into the soft tissues and the possibility of tooth resorption, the differentiation of OKC from ameloblastoma can be very challenging, if not impossible, on OPT, CT or CBCT. On MRI, the high signal on T2 and the weak enhancement of the thin and regular walls in OKC is very useful to differentiate these entities from multicystic forms of ameloblastoma; the latter typically show solid nodular components and irregular thick septae [5].
Treatment options in OKCs include surgical enucleation and cryotherapy. The reported recurrence rate after enucleation is as high as 60% [34]. NBCCS patients tend to have associated craniofacial skeletal abnormalities, such as high arched palate, prominent palatine ridges, cleft lip/palate, prognathism and mandibular coronoid process hyperplasia [32, 34]. Further anomalies include parietal/temporal bossing (50%), macrocephaly (40%) and brachycephaly.
CT and MRI of the central nervous system (CNS) in patients with NBCCS typically reveal ectopic calcifications of the falx cerebri and tentorium cerebelli, bony bridging of the sella turcica, spotted meningeal calcification, corpus callosum agenesis/dysgenesis with/without lipoma and vermian dysgenesis (Fig. 4). Other coexisting conditions include congenital communicating hydrocephalus, DVM or other brain tumours (meningioma, oligodendroglioma, glioblastoma, craniopharyngioma) [33, 34]. As opposed to classical medulloblastoma, DVM, which occurs in the first 2 years of life, has a more favourable prognosis [33, 34]. The tumour usually presents with hydrocephalus and tends to grow directly into the brainstem. It is hypointense on T1, hyperintense on T2 and may have characteristic peripheral cysts. Enhancement can be homogeneous/heterogeneous, multinodular or star-shaped and radiating. Because of the hypercellular nature, DVMs show low ADCs (0.629 ± 0.058 × 10−3 mm2/s), therefore, allowing differentiation from glial tumours, which tend to have high ADCs [38].
Conventional x-rays may detect other sites of musculoskeletal involvement, such as polyostotic bone cysts and flame-like finger lesions (hamartomas), bifid, fused, splayed or missing ribs, scoliosis, spina bifida occulta, pectus deformities, polydactyly, syndactyly and Sprengel type scapula involvement [33]. As suggested recently, radiological work-up in suspected NBCCS comprises brain MRI, OPT, cardiac and abdominal US, and skeletal survey. Major diagnostic criteria for NBCCS include multiple BCCs or one BCC before 20 years of age, jaw OKCs before 20 years of age, palmar/plantar pits, falx cerebri calcification, medulloblastoma and first-degree relatives with NBCCS. Minor criteria include rib anomalies, cleft lip/palate, other skeletal malformations, macrocephaly and ovarian/cardiac fibroma. One major criterion and molecular confirmation, two major criteria or one major and two minor criteria favour the diagnosis of NBCCS [34].

Torus palatinus, torus mandibularis and torus maxillaris

Torus palatinus (TP) is an exostosis occurring along either side of the midline suture of the hard palate. Torus mandibularis (TM) is an exostosis occurring along the lingual surface of the mandible, whereas torus maxillaris (TMax) occurs on the palatal or vestibular side of the alveolar process of the maxilla. According to anthropological studies, tori appear to be more common among populations living in the northern hemisphere as compared to those residing in the south [39]. Although both tori clinically present around the age of 20 years, they are thought to be detectable during infancy too. Since both tori present as an intraoral swelling covered by intact mucosa, they may constitute a diagnostic dilemma (Fig. 6). Although tori usually have no clinical significance, they can be a cause for major parental concern. Most tori do not undergo surgery unless they interfere with dentition and function. The radiologic aspect is straightforward on CT/CBCT or MRI, which depicts a classical exostosis in a typical location (Fig. 6). Although TM and TMax are often bilateral, they may be unilateral or asymmetric, thereby rendering the diagnosis more challenging [40]. Based on radiological findings, it is difficult to misinterpret tori as malignant bone lesions considering their typical aspect and position in association with absent involvement of the overlying soft tissues. However, in some cases, the soft tissues covering the bone growth can become ulcerated and the torus is perceived as new and worrisome, either by the patient him-/herself or at clinical examination.

Dermoid cysts

Although rare, together with Langerhans cell histiocytosis (LCH), dermoid cysts (DCs) are the most common lesions of the paediatric skull. They result from epithelial sequestration during midline union of the embryonic first and second branchial arches. The generic term “dermoid cysts” comprises three entities: (1) epidermoid cyst (stratified keratinised epithelial lining without skin appendages), (2) true dermoid cyst (stratified keratinised epithelial lining with skin appendages) and (3) teratoma (showing tissues derived from the primitive germ layers) [41]. Only about 7% of DCs are found in the head and neck region, mainly in the supraorbital region, followed by the floor of the mouth, nose, orbit and cheek [4143]. Common locations of intraosseous DCs include the frontal bone (Fig. 7), maxilla and mandible [42, 44, 45].
DCs are slow-growing lesions causing bone scalloping when arising in immediate bone vicinity (Fig. 8). When arising within the bone, they present as well-delineated osteolytic lesions with sclerotic borders expanding the outer table. On CT, intraosseous DCs may show fat or fluid attenuation and internal calcification, whereas epidermoid cysts have fluid density with no fat contents or calcifications [46]. In true dermoids, fatty components are often collected in nodules, thus giving a “sack-of-marbles” appearance [43]. On MRI, the identification of fat within the lesion differentiates DC from LCH or other intraosseous lesions [7]. Diffusion in DCs may be variable, and the epidermoid subgroup typically shows restricted diffusion (Fig. 7). Small asymptomatic intraosseous DCs do not require immediate treatment, whereas larger lesions may require surgery. When surgery is carried out, complete excision without rupturing the DC is mandatory to avoid recurrence or inflammation.

Nasal dermoid sinus cyst

Nasal dermoid (or dermal) sinus cyst (NDSC) includes all nasal lesions containing stratified squamous epithelium (ectoderm derivatives) and adnexal structures (mesoderm derivatives) [47]. It is the most common midline congenital nose lesion in children, followed by glioma and encephalocele [48]. NDSC is usually visible at birth or in early childhood. Familial cases and association with other congenital craniofacial anomalies have been described [4850]. The non-compressible swelling is localised anywhere from the glabella to the columella, and is associated with a sinus opening with intermittent secretions of sebaceous material. Hair protruding through a punctum over the nasal dorsum is pathognomonic; however, this feature is present in less than 50% of patients [47]. The cysts and sinuses may connect with an intracranial component via an abnormal foramen caecum. NDSC are, therefore, classified as superficial, intraosseous, intracranial extradural and intracranial intradural [49, 50]. Complications include recurrent infections, meningitis and brain abscess [48].
High-resolution CT and thin-section MRI (Fig. 9) are essential for preoperative surgical planning, and they must be performed to exclude involvement of the paranasal sinuses and intracranial extension [49]. Indirect signs of intracranial extension include bifid or deformed crista galli, widened foramen caecum and cribriform plate defect [49]. Contrast-enhanced MRI (Fig. 9) is essential for the differentiation between non-enhancing dermoid cyst, enhancing nasal mucosa and other masses, such as haemangioma, meningioma or teratoma [47]. Potential diagnostic pitfalls, especially on MRI, include normal fat deposition occurring during normal bone maturation and during frontal sinus pneumatisation. These fatty changes should not be mistaken for NDSC [51]. A further diagnostic pitfall consists in misinterpreting the normal crista galli as an NDSC. Due to the vicinity of the crista galli to the foramen caecum, it is easy to confuse the high signal intensity of the crista galli on MRI with a dermoid cyst with intracranial extension [51]. The treatment of NDSC requires complete surgical excision, including any associated sinus tract [48].

Masses with secondary bone involvement

Several developmental lesions of the face or genetic conditions with subsequent development of tumours may lead to bone remodelling and scalloping of the craniofacial skeleton, thereby leading to severe functional problems. These lesions include DCs (see above), vascular malformations (VMs) and plexiform neurofibroma (PNF) [52].

Plexiform neurofibroma

Neurofibromas are benign peripheral nerve sheath tumours with the nerve of origin usually incorporated within the lesion [53]. Neurofibromas include localised neurofibroma, diffuse neurofibroma and PNF [54]. Localised neurofibromas are solitary lesions which have no association with neurofibromatosis type 1 (NF1, von Recklinghausen’s disease) [55]. PNF is the hallmark of NF1 and is found in 30% of NF1 patients. PNF arises from major nerve branches and is characterised by diffuse long segment nerve involvement [55]. Clinically, PNFs present as subcutaneous masses with a “bag-of-worms” consistency on palpation. PNFs have the potential for malignant transformation in up to 10% of NF1 cases [56]. Whenever PNF shows an abrupt increase in size, a malignant transformation to MPNST needs to be ruled out [57].
PNF of the orbit, face and the temporal region is a rare but devastating complication of NF1. The disease is unilateral and leads to progressive bowing and scalloping of the maxillofacial skeleton (Fig. 10). Buphthalmos and sphenoid wing dysplasia (genetically determined) further contribute to vision loss, as there is prolonged compression and stretching of the optic nerve. PNFs of the orbit, temporal region and face are seen as large conglomerate masses on cross-sectional imaging. Sphenoid wing dysplasia, lambdoid suture defects, deformation and scalloping of the mandible are typical imaging findings, making the diagnosis of PNF in NF1 straightforward (Fig. 10) [58]. PNF shows mixed or increased diffusion on ADC maps and diffusion tensor imaging with tractography reconstruction can accurately detect displacement, stretching or interruption of nerve fascicles. FDG PET-CT is a sensitive and specific tool to detect sarcomatous transformation [59]. Sarcomatous transformation should be equally suspected in PNF with rapid increase in size.
As PNF can mimic a venous malformation on MRI, it is important to recognise the classic “target sign” of PNF (central T2 hypointensity within a multilobulated hyperintense mass). This characteristic aspect should not to be confused with phleboliths. Occasionally, PNF may be misdiagnosed as lymphatic malformation (LM) if no iv contrast material is administered. Unlike LM, PNF shows mild to moderate enhancement of the infiltrative and solid mass on contrast-enhanced CT and CEMRI.

Vascular malformations

Venous vascular malformations

Vascular malformations (VMs) of the face are rare congenital anomalies that do not regress over time and which may rapidly enlarge following trauma or endocrine changes. They are subdivided into capillary, venous, arterial and lymphatic malformations. Arterial vascular malformations (AVMs) are high-flow malformations with tortuous arteries and enlarged veins, resulting in serpiginous flow voids on T1 and T2. Capillary and venous vascular malformations (VVMs) are low-flow lesions with patchy to intense contrast enhancement and, occasionally, phleboliths. If the tissues under the skin are affected, the superficial, subcutaneous lesions may appear as slightly blue-coloured skin stains. However, most often, VVMs present as non-pulsatile compressible soft tissue swellings. As VVMs are present at birth, they usually grow with the child and may have long-term cosmetically and functionally disabling consequences, including pain, respiratory compromise and disfigurement. If the lesions are deeply located, there is only slight facial asymmetry, but no colour change. During a Valsalva manoeuvre, VVMs typically enlarge. The slow venous flow predisposes to repeated episodes of intralesional thrombosis, and sudden enlargement may occur [60]. Increased D-dimers have been reported in 42% of patients with VVMs and are highly correlated with pain caused by thrombosis [60]. Depending on patient symptoms, treatment includes multiple procedures (surgery, laser therapy and sclerotherapy).
The diagnosis of VVMs is made with colour Doppler US and with MRI (Fig. 11). On US, VVMs are often compressible and hypoechoic, and they present a heterogeneous sponge-like echotexture. Calcified phleboliths, although pathognomonic, are present only in 16% of cases [60]. Monophasic flow on colour Doppler US is seen in 78% of the cases, whereas absent flow due to thrombosis or sluggish flow below the limits of detection can be seen in 16% of lesions and represents a source of diagnostic confusion [60]. Arterial flow within the VVM is identified in 6% and is either caused by facial arteries traversing the VVM or by Masson tumour [60]. Masson tumour (intravascular papillary endothelial hyperplasia) is an unusual benign lesion thought to represent an atypical form of thrombus organisation [61]. On MRI, VVMs are hypointense on T1 and they occasionally display hyperintense areas caused by intralesional haemorrhage or fatty deposits. The lesions are strongly hyperintense on T2 and show variable patterns of enhancement: homogeneous/heterogeneous, slight/strong, rapid/delayed (Fig. 11). Phleboliths are present as round areas of signal voids on T1-, T2- and contrast-enhanced T1, and they can be confirmed on T2* due to the presence of calcifications and haemosiderin (Fig. 11) [60]. The absence of phleboliths, however, does not exclude a VVM. Following trauma or spontaneous haemorrhage, VVMs may lose their typical imaging appearance due to haematoma or thrombosis [60]. On CT, remodelling of the facial bones is common in larger lesions. Although phleboliths may be visible on conventional x-ray examinations, US and MRI, they are much better recognised on CT. Nevertheless, as mentioned above, phleboliths can be absent in VVMs, whereas rounded calcifications can also be seen in DCs. These calcifications should not be confused with phleboliths. Further diagnostic pitfalls include combined venous and lymphatic malformations and/or VVMs with large vascular channels that appear cyst-like on MRI. On MRI, the presence of vascular signal voids, which are atypical for VVMs, is due to enlarged dysplastic draining veins; the latter should not be confused with high-flow vascular lesions, i.e. AVM.

Lymphatic malformations

Lymphatic malformations (LMs; formerly called lymphangiomas or cystic hygromas) are benign vascular lesions, which tend to vary in size, location and extension [62, 63]. They are thought to be a developmental anomaly of the lymphatic system in which the drainage to the venous system is either poorly developed or absent, leading to stagnation of lymph with subsequent expansion and proliferation of the lymphatic system [64]. LMs can be subdivided into three types: macrocystic (cyst diameter > 0.5 cm), microcystic (smaller lymphatic channels permeating subcutaneous tissues) and combined (macro- and microcystic) [62]. The reported incidence of 1.2–2.8% is likely to be underestimated, as deep-seated LMs often remain undetected. Approximately 50–75% of LMs are present at birth, of which 80–90% are detected before 2 years of age and few on antenatal US. LMs, which are occult and asymptomatic at birth, may enlarge with hormonal changes, and secondary to trauma or infection [63]. Of all LMs, 45–52% occur in the head and neck region (oral cavity, orbit and deep neck spaces).
Clinical presentations of LMs are related to infection, haemorrhage and mass effect. Mass effect can cause displacement of vital structures, thus impairing vision, breathing or swallowing. Juxtaposed bones show scalloping, sutural widening and remodelling. Trauma and infection may cause spontaneous bleeding or purulent discharge.
Optimal evaluation of superficially located LMs is possible with Doppler US. Uncomplicated LMs appear as anechoic cystic lesions with internal septations and no vascularity on colour Doppler US. US allows differentiation between LM-LMVs and venous malformations, as well as other mixed vascular lesions [64]. CT and MRI accurately delineate the location, extent and size of LMs. On CT, LMs appear as low attenuation cystic lesions. On MRI (Fig. 12), cystic LMs display intermediate or low signal intensity on T1 and high signal intensity on T2. Intralesional fluid–fluid levels due to spontaneous haemorrhage show intermediate or high signal intensity on T1 and low signal intensity on T2. In the case of infection, DWI demonstrates restricted diffusion. LMs display slight contrast-material enhancement along cyst walls and internal septae, without opacification of dilated lymphatic channels, as opposed to slow-flowing vascular malformations, which show centripetal progressive enhancement and phleboliths (Fig. 12). As LMs may show spontaneous regression in very young children, whenever possible, treatment should be delayed until the age of 2–3 years [64]. The management of complex cases can be challenging and requires a multidisciplinary approach. It often involves a combination of surgical resection, sclerotherapy and laser therapy [62].

Cephalocele

A cephalocele is a generic term applied to several congenital or acquired conditions. Encephalocele is herniation of brain parenchyma through an osseous-dural defect of the skull base or cranial vault, whereas meningocele is herniation of meninges alone. Meningoencephalocele comprises herniation of brain parenchyma along with meninges, whereas a meningoencephalocystocele includes herniation of ventricle besides the other two [65]. Gliocele implies herniation of gliotic brain parenchyma. Concomitant CSF leak with these conditions is common [66]. The estimated incidence of cephalocele is 0.8–4/10,000 live births, with a well-recognised geographical variation between subtypes and female preponderance [67, 68]. Congenital cephalocele is caused by closure defect of the neural tube or by a focal failure of cartilage formation or ossification of the skull base. Common locations are the occipital and parietal bone, frontoethmoidal junction, and sphenoid and temporal bone [69]. Although congenital cephaloceles are present at birth, they may remain clinically occult until adulthood. The clinical presentation depends on the amount of herniated cerebral tissue, on the topography of the lesion and on the associated cerebral and craniofacial anomalies [70]. It includes CSF rhinorrhoea, facial deformity, pulsating proptosis and exophthalmos, middle ear effusion, conductive hearing loss, headache, epilepsy and ascending infections (osteomyelitis, meningitis, encephalitis and abscesses). Migrational abnormalities, corpus callosum agenesis, cleft lip and palate, coloboma and microphthalmia are common concomitant developmental anomalies [68]. Naso-ethmoidal encephalocele should be differentiated from nasal glioma, which is a congenital non-neoplastic lesion composed of dysplastic glial tissue usually not connected to the brain and without direct communication with the subarachnoid spaces.
Imaging plays a major role for the delineation of parenchymal and bone abnormalities, and helps in determining the surgical approach (Fig. 13). High-resolution CT depicts the bony defect and shows herniation of brain parenchyma and meninges. MRI illustrates the contents of the cephalocele and the associated brain abnormalities. High-resolution three-dimensional T2 sequences, such as constructive interference steady state (CISS), fluid attenuation inversion recovery (FLAIR) and three-dimensional T1 sequences, are useful to depict the degree of parenchymal herniation [69]. In patients with CSF rhinorrhoea and otorrhoea, detection of the site of the CSF leak is challenging and may involve several imaging modalities, including invasive procedures such as CT and MRI cisternography [68]. For the diagnosis of active CSF leak, CT cisternography has a sensitivity of 80–85% [68]. MRI cisternography is a better choice for patients with recurrent or inactive CSF fistulas, with a reported sensitivity as high as 100%. Laboratory studies are helpful by evaluating the content of beta-2 transferrin in nasal secretions [68]. Occasionally, intraorbital cephaloceles can mimic an orbital dermoid or epidermoid cyst. In these situations, cephaloceles present as extraconal masses in the medial orbit without clearly identifiable connection to the intracranial contents. The treatment of cephaloceles involves a multidisciplinary approach and various surgical techniques to treat the cause, symptoms and secondary complications [70].

Conclusion

This article provides a comprehensive approach to the understanding of the clinical, radiologic and histologic features of masses and mass-like lesions of developmental and genetic origin involving the craniofacial skeleton, with emphasis on the imaging findings that are essential for diagnosis, treatment and surveillance.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Perry KS, Tkaczuk AT, Caccamese JF Jr, Ord RA, Pereira KD (2015) Tumors of the pediatric maxillofacial skeleton: a 20-year clinical study. JAMA Otolaryngol Head Neck Surg 141:40–44CrossRefPubMed Perry KS, Tkaczuk AT, Caccamese JF Jr, Ord RA, Pereira KD (2015) Tumors of the pediatric maxillofacial skeleton: a 20-year clinical study. JAMA Otolaryngol Head Neck Surg 141:40–44CrossRefPubMed
2.
Zurück zum Zitat Tanrikulu R, Erol B, Haspolat K (2004) Tumors of the maxillofacial region in children: retrospective analysis and long-term follow-up outcomes of 90 patients. Turk J Pediatr 46:60–66PubMed Tanrikulu R, Erol B, Haspolat K (2004) Tumors of the maxillofacial region in children: retrospective analysis and long-term follow-up outcomes of 90 patients. Turk J Pediatr 46:60–66PubMed
3.
Zurück zum Zitat Iatrou I, Theologie-Lygidakis N, Tzerbos F, Schoinohoriti OK (2013) Oro-facial tumours and tumour-like lesions in Greek children and adolescents: an 11-year retrospective study. J Craniomaxillofac Surg 41:437–443CrossRefPubMed Iatrou I, Theologie-Lygidakis N, Tzerbos F, Schoinohoriti OK (2013) Oro-facial tumours and tumour-like lesions in Greek children and adolescents: an 11-year retrospective study. J Craniomaxillofac Surg 41:437–443CrossRefPubMed
4.
Zurück zum Zitat Trosman SJ, Krakovitz PR (2015) Pediatric maxillary and mandibular tumors. Otolaryngol Clin North Am 48:101–119CrossRefPubMed Trosman SJ, Krakovitz PR (2015) Pediatric maxillary and mandibular tumors. Otolaryngol Clin North Am 48:101–119CrossRefPubMed
5.
Zurück zum Zitat Avril L, Lombardi T, Ailianou A et al (2014) Radiolucent lesions of the mandible: a pattern-based approach to diagnosis. Insights Imaging 5:85–101CrossRefPubMed Avril L, Lombardi T, Ailianou A et al (2014) Radiolucent lesions of the mandible: a pattern-based approach to diagnosis. Insights Imaging 5:85–101CrossRefPubMed
6.
Zurück zum Zitat Greenwood TJ, Lopez-Costa RI, Rhoades PD et al (2015) CT dose optimization in pediatric radiology: a multiyear effort to preserve the benefits of imaging while reducing the risks. Radiographics 35:1539–1554CrossRefPubMed Greenwood TJ, Lopez-Costa RI, Rhoades PD et al (2015) CT dose optimization in pediatric radiology: a multiyear effort to preserve the benefits of imaging while reducing the risks. Radiographics 35:1539–1554CrossRefPubMed
7.
Zurück zum Zitat Becker M, Stefanelli S, Rougemont AL, Poletti PA, Merlini L (2017) Non-odontogenic tumors of the facial bones in children and adolescents: role of multiparametric imaging. Neuroradiology 59:327–342CrossRefPubMedPubMedCentral Becker M, Stefanelli S, Rougemont AL, Poletti PA, Merlini L (2017) Non-odontogenic tumors of the facial bones in children and adolescents: role of multiparametric imaging. Neuroradiology 59:327–342CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Purohit BS, Vargas MI, Ailianou A et al (2016) Orbital tumours and tumour-like lesions: exploring the armamentarium of multiparametric imaging. Insights Imaging 7:43–68CrossRefPubMed Purohit BS, Vargas MI, Ailianou A et al (2016) Orbital tumours and tumour-like lesions: exploring the armamentarium of multiparametric imaging. Insights Imaging 7:43–68CrossRefPubMed
9.
Zurück zum Zitat Abdel Razek AA, Gaballa G, Elhawarey G, Megahed AS, Hafez M, Nada N (2009) Characterization of pediatric head and neck masses with diffusion-weighted MR imaging. Eur Radiol 19:201–208CrossRefPubMed Abdel Razek AA, Gaballa G, Elhawarey G, Megahed AS, Hafez M, Nada N (2009) Characterization of pediatric head and neck masses with diffusion-weighted MR imaging. Eur Radiol 19:201–208CrossRefPubMed
13.
Zurück zum Zitat Varoquaux A, Rager O, Poncet A et al (2014) Detection and quantification of focal uptake in head and neck tumours: (18)F-FDG PET/MR versus PET/CT. Eur J Nucl Med Mol Imaging 41:462–475CrossRefPubMed Varoquaux A, Rager O, Poncet A et al (2014) Detection and quantification of focal uptake in head and neck tumours: (18)F-FDG PET/MR versus PET/CT. Eur J Nucl Med Mol Imaging 41:462–475CrossRefPubMed
14.
Zurück zum Zitat Schäfer JF, Gatidis S, Schmidt H et al (2014) Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology 273:220–231CrossRefPubMed Schäfer JF, Gatidis S, Schmidt H et al (2014) Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology 273:220–231CrossRefPubMed
15.
Zurück zum Zitat Zaidi H, Becker M (2016) The promise of hybrid PET\/MRI: technical advances and clinical applications. IEEE Signal Process Mag 33:67–85CrossRef Zaidi H, Becker M (2016) The promise of hybrid PET\/MRI: technical advances and clinical applications. IEEE Signal Process Mag 33:67–85CrossRef
16.
Zurück zum Zitat Vargas MI, Becker M, Garibotto V et al (2013) Approaches for the optimization of MR protocols in clinical hybrid PET/MRI studies. MAGMA 26:57–69CrossRefPubMed Vargas MI, Becker M, Garibotto V et al (2013) Approaches for the optimization of MR protocols in clinical hybrid PET/MRI studies. MAGMA 26:57–69CrossRefPubMed
17.
Zurück zum Zitat Becker M, Varoquaux AD, Combescure C et al (2018) Local recurrence of squamous cell carcinoma of the head and neck after radio(chemo)therapy: diagnostic performance of FDG-PET/MRI with diffusion-weighted sequences. Eur Radiol 28:651–663CrossRefPubMed Becker M, Varoquaux AD, Combescure C et al (2018) Local recurrence of squamous cell carcinoma of the head and neck after radio(chemo)therapy: diagnostic performance of FDG-PET/MRI with diffusion-weighted sequences. Eur Radiol 28:651–663CrossRefPubMed
18.
Zurück zum Zitat Fitzpatrick KA, Taljanovic MS, Speer DP et al (2004) Imaging findings of fibrous dysplasia with histopathologic and intraoperative correlation. AJR Am J Roentgenol 182:1389–1398CrossRefPubMed Fitzpatrick KA, Taljanovic MS, Speer DP et al (2004) Imaging findings of fibrous dysplasia with histopathologic and intraoperative correlation. AJR Am J Roentgenol 182:1389–1398CrossRefPubMed
19.
Zurück zum Zitat Hanifi B, Samil KS, Yasar C, Cengiz C, Ercan A, Ramazan D (2013) Craniofacial fibrous dysplasia. Clin Imaging 37:1109–1115CrossRefPubMed Hanifi B, Samil KS, Yasar C, Cengiz C, Ercan A, Ramazan D (2013) Craniofacial fibrous dysplasia. Clin Imaging 37:1109–1115CrossRefPubMed
20.
Zurück zum Zitat Stegger L, Juergens KU, Kliesch S, Wormanns D, Weckesser M (2007) Unexpected finding of elevated glucose uptake in fibrous dysplasia mimicking malignancy: contradicting metabolism and morphology in combined PET/CT. Eur Radiol 17:1784–1786CrossRefPubMed Stegger L, Juergens KU, Kliesch S, Wormanns D, Weckesser M (2007) Unexpected finding of elevated glucose uptake in fibrous dysplasia mimicking malignancy: contradicting metabolism and morphology in combined PET/CT. Eur Radiol 17:1784–1786CrossRefPubMed
21.
Zurück zum Zitat Kolomvos N, Theologie-Lygidakis N, Christopoulos P, Iatrou I (2013) Benign fibro-osseous lesions of the jaws in children. A 12-year retrospective study. J Craniomaxillofac Surg 41:574–580 Kolomvos N, Theologie-Lygidakis N, Christopoulos P, Iatrou I (2013) Benign fibro-osseous lesions of the jaws in children. A 12-year retrospective study. J Craniomaxillofac Surg 41:574–580
22.
Zurück zum Zitat Baskin B, Bowdin S, Ray PN (2011) Cherubism. GeneReviews® [Internet] Baskin B, Bowdin S, Ray PN (2011) Cherubism. GeneReviews® [Internet]
23.
Zurück zum Zitat Jiao Y, Zhou M, Yang Y, Zhou J, Duan X (2015) Cherubism misdiagnosed as giant cell tumor: a case report and review of literature. Int J Clin Exp Med 8:4656–4663PubMedPubMedCentral Jiao Y, Zhou M, Yang Y, Zhou J, Duan X (2015) Cherubism misdiagnosed as giant cell tumor: a case report and review of literature. Int J Clin Exp Med 8:4656–4663PubMedPubMedCentral
24.
Zurück zum Zitat Cariati P, Monsalve Iglesias F, Fernández Solís J, Valencia Laseca A, Martinez Lara I (2017) Cherubism. A case report. Reumatol Clin 13:352–353CrossRefPubMed Cariati P, Monsalve Iglesias F, Fernández Solís J, Valencia Laseca A, Martinez Lara I (2017) Cherubism. A case report. Reumatol Clin 13:352–353CrossRefPubMed
25.
Zurück zum Zitat Jain V, Sharma R (2006) Radiographic, CT and MRI features of cherubism. Pediatr Radiol 36:1099–1104CrossRefPubMed Jain V, Sharma R (2006) Radiographic, CT and MRI features of cherubism. Pediatr Radiol 36:1099–1104CrossRefPubMed
26.
Zurück zum Zitat Wright JM, Vered M (2017) Update from the 4th edition of the World Health Organization Classification of Head and Neck Tumours: odontogenic and maxillofacial bone tumors. Head Neck Pathol 11:68–77CrossRefPubMedPubMedCentral Wright JM, Vered M (2017) Update from the 4th edition of the World Health Organization Classification of Head and Neck Tumours: odontogenic and maxillofacial bone tumors. Head Neck Pathol 11:68–77CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Romano AA, Allanson JE, Dahlgren J et al (2010) Noonan syndrome: clinical features, diagnosis, and management guidelines. Pediatrics 126:746–759CrossRefPubMed Romano AA, Allanson JE, Dahlgren J et al (2010) Noonan syndrome: clinical features, diagnosis, and management guidelines. Pediatrics 126:746–759CrossRefPubMed
28.
Zurück zum Zitat Eyselbergs M, Vanhoenacker F, Hintjens J, Dom M, Devriendt K, Van Dijck H (2014) Unilateral giant cell lesion of the jaw in Noonan syndrome. JBR-BTR 97:90–93PubMed Eyselbergs M, Vanhoenacker F, Hintjens J, Dom M, Devriendt K, Van Dijck H (2014) Unilateral giant cell lesion of the jaw in Noonan syndrome. JBR-BTR 97:90–93PubMed
30.
Zurück zum Zitat Gorlin RJ, Goltz RW (1960) Multiple nevoid basal-cell epithelioma, jaw cysts and bifid rib. A syndrome. N Engl J Med 262:908–912CrossRefPubMed Gorlin RJ, Goltz RW (1960) Multiple nevoid basal-cell epithelioma, jaw cysts and bifid rib. A syndrome. N Engl J Med 262:908–912CrossRefPubMed
31.
32.
34.
Zurück zum Zitat Thalakoti S, Geller T (2015) Basal cell nevus syndrome or Gorlin syndrome. Handb Clin Neurol 132:119–128CrossRefPubMed Thalakoti S, Geller T (2015) Basal cell nevus syndrome or Gorlin syndrome. Handb Clin Neurol 132:119–128CrossRefPubMed
35.
Zurück zum Zitat Jalali E, Ferneini EM, Rengasamy K, Tadinada A (2017) Squamous cell carcinoma arising within a maxillary odontogenic keratocyst: a rare occurrence. Imaging Sci Dent 47:135–140CrossRefPubMedPubMedCentral Jalali E, Ferneini EM, Rengasamy K, Tadinada A (2017) Squamous cell carcinoma arising within a maxillary odontogenic keratocyst: a rare occurrence. Imaging Sci Dent 47:135–140CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Eversole LR, Sabes WR, Rovin S (1975) Aggressive growth and neoplastic potential of odontogenic cysts: with special reference to central epidermoid and mucoepidermoid carcinomas. Cancer 35:270–282CrossRefPubMed Eversole LR, Sabes WR, Rovin S (1975) Aggressive growth and neoplastic potential of odontogenic cysts: with special reference to central epidermoid and mucoepidermoid carcinomas. Cancer 35:270–282CrossRefPubMed
37.
Zurück zum Zitat Moubayed SP, Khorsandi A, Urken ML (2016) Radiological challenges in distinguishing keratocystic odontogenic tumor from ameloblastoma: an extraordinary occurrence in the same patient. Am J Otolaryngol 37:362–364CrossRefPubMed Moubayed SP, Khorsandi A, Urken ML (2016) Radiological challenges in distinguishing keratocystic odontogenic tumor from ameloblastoma: an extraordinary occurrence in the same patient. Am J Otolaryngol 37:362–364CrossRefPubMed
38.
Zurück zum Zitat Liu HQ, Yin X, Li Y et al (2012) MRI features in children with desmoplastic medulloblastoma. J Clin Neurosci 19:281–285CrossRefPubMed Liu HQ, Yin X, Li Y et al (2012) MRI features in children with desmoplastic medulloblastoma. J Clin Neurosci 19:281–285CrossRefPubMed
39.
Zurück zum Zitat Haugen LK (1992) Palatine and mandibular tori. A morphologic study in the current Norwegian population. Acta Odontol Scand 50:65–77CrossRefPubMed Haugen LK (1992) Palatine and mandibular tori. A morphologic study in the current Norwegian population. Acta Odontol Scand 50:65–77CrossRefPubMed
40.
Zurück zum Zitat Kün-Darbois JD, Guillaume B, Chappard D (2017) Asymmetric bone remodeling in mandibular and maxillary tori. Clin Oral Investig 21:2781–2788CrossRefPubMed Kün-Darbois JD, Guillaume B, Chappard D (2017) Asymmetric bone remodeling in mandibular and maxillary tori. Clin Oral Investig 21:2781–2788CrossRefPubMed
41.
Zurück zum Zitat Brown RE, Harave S (2016) Diagnostic imaging of benign and malignant neck masses in children-a pictorial review. Quant Imaging Med Surg 6:591–604CrossRefPubMedPubMedCentral Brown RE, Harave S (2016) Diagnostic imaging of benign and malignant neck masses in children-a pictorial review. Quant Imaging Med Surg 6:591–604CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Sahoo NK, Choudhary AK, Srinivas V, Tomar K (2015) Dermoid cysts of maxillofacial region. Med J Armed Forces India 71:S389–S394CrossRefPubMed Sahoo NK, Choudhary AK, Srinivas V, Tomar K (2015) Dermoid cysts of maxillofacial region. Med J Armed Forces India 71:S389–S394CrossRefPubMed
43.
Zurück zum Zitat La’porte SJ, Juttla JK, Lingam RK (2011) Imaging the floor of the mouth and the sublingual space. Radiographics 31:1215–1230CrossRefPubMed La’porte SJ, Juttla JK, Lingam RK (2011) Imaging the floor of the mouth and the sublingual space. Radiographics 31:1215–1230CrossRefPubMed
44.
Zurück zum Zitat Ciappetta P, Artico M, Salvati M, Raco A, Gagliardi FM (1990) Intradiploic epidermoid cysts of the skull: report of 10 cases and review of the literature. Acta Neurochir (Wien) 102:33–37CrossRef Ciappetta P, Artico M, Salvati M, Raco A, Gagliardi FM (1990) Intradiploic epidermoid cysts of the skull: report of 10 cases and review of the literature. Acta Neurochir (Wien) 102:33–37CrossRef
45.
Zurück zum Zitat Stokes RB, Saunders CJ, Thaller SR (1996) Bregmatic epidermoid inclusion cyst eroding both calvarial tables. J Craniofac Surg 7:148–150CrossRefPubMed Stokes RB, Saunders CJ, Thaller SR (1996) Bregmatic epidermoid inclusion cyst eroding both calvarial tables. J Craniofac Surg 7:148–150CrossRefPubMed
46.
Zurück zum Zitat Woo EK, Connor SE (2007) Computed tomography and magnetic resonance imaging appearances of cystic lesions in the suprahyoid neck: a pictorial review. Dentomaxillofac Radiol 36:451–458CrossRefPubMed Woo EK, Connor SE (2007) Computed tomography and magnetic resonance imaging appearances of cystic lesions in the suprahyoid neck: a pictorial review. Dentomaxillofac Radiol 36:451–458CrossRefPubMed
47.
Zurück zum Zitat Re M, Tarchini P, Macrì G, Pasquini E (2012) Endonasal endoscopic approach for intracranial nasal dermoid sinus cysts in children. Int J Pediatr Otorhinolaryngol 76:1217–1222CrossRefPubMed Re M, Tarchini P, Macrì G, Pasquini E (2012) Endonasal endoscopic approach for intracranial nasal dermoid sinus cysts in children. Int J Pediatr Otorhinolaryngol 76:1217–1222CrossRefPubMed
48.
Zurück zum Zitat El-Fattah AM, Naguib A, El-Sisi H, Kamal E, Tawfik A (2016) Midline nasofrontal dermoids in children: a review of 29 cases managed at Mansoura University Hospitals. Int J Pediatr Otorhinolaryngol 83:88–92CrossRefPubMed El-Fattah AM, Naguib A, El-Sisi H, Kamal E, Tawfik A (2016) Midline nasofrontal dermoids in children: a review of 29 cases managed at Mansoura University Hospitals. Int J Pediatr Otorhinolaryngol 83:88–92CrossRefPubMed
49.
50.
Zurück zum Zitat Hartley BE, Eze N, Trozzi M et al (2015) Nasal dermoids in children: a proposal for a new classification based on 103 cases at Great Ormond Street Hospital. Int J Pediatr Otorhinolaryngol 79:18–22CrossRefPubMed Hartley BE, Eze N, Trozzi M et al (2015) Nasal dermoids in children: a proposal for a new classification based on 103 cases at Great Ormond Street Hospital. Int J Pediatr Otorhinolaryngol 79:18–22CrossRefPubMed
51.
Zurück zum Zitat Barkovich AJ, Vandermarck P, Edwards MS, Cogen PH (1991) Congenital nasal masses: CT and MR imaging features in 16 cases. AJNR Am J Neuroradiol 12:105–116PubMedPubMedCentral Barkovich AJ, Vandermarck P, Edwards MS, Cogen PH (1991) Congenital nasal masses: CT and MR imaging features in 16 cases. AJNR Am J Neuroradiol 12:105–116PubMedPubMedCentral
52.
Zurück zum Zitat Boyd JB, Mulliken JB, Kaban LB, Upton J 3rd, Murray JE (1984) Skeletal changes associated with vascular malformations. Plast Reconstr Surg 74:789–797CrossRefPubMed Boyd JB, Mulliken JB, Kaban LB, Upton J 3rd, Murray JE (1984) Skeletal changes associated with vascular malformations. Plast Reconstr Surg 74:789–797CrossRefPubMed
54.
Zurück zum Zitat Coulon A, Milin S, Laban E, Debiais C, Jamet C, Goujon JM (2009) Pathologic characteristics of the most frequent peripheral nerve tumors. Neurochirurgie 55:454–458CrossRefPubMed Coulon A, Milin S, Laban E, Debiais C, Jamet C, Goujon JM (2009) Pathologic characteristics of the most frequent peripheral nerve tumors. Neurochirurgie 55:454–458CrossRefPubMed
55.
Zurück zum Zitat Zhu Y, Ghosh P, Charnay P, Burns DK, Parada LF (2002) Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 296:920–922CrossRefPubMedPubMedCentral Zhu Y, Ghosh P, Charnay P, Burns DK, Parada LF (2002) Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 296:920–922CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Prada CE, Rangwala FA, Martin LJ et al (2012) Pediatric plexiform neurofibromas: impact on morbidity and mortality in neurofibromatosis type 1. J Pediatr 160:461–467CrossRefPubMed Prada CE, Rangwala FA, Martin LJ et al (2012) Pediatric plexiform neurofibromas: impact on morbidity and mortality in neurofibromatosis type 1. J Pediatr 160:461–467CrossRefPubMed
57.
Zurück zum Zitat Hosoi K (1931) Multiple neurofibromatosis (von Recklinghausen’s disease): with special reference to malignant transformation. Arch Surg 22:258–281CrossRef Hosoi K (1931) Multiple neurofibromatosis (von Recklinghausen’s disease): with special reference to malignant transformation. Arch Surg 22:258–281CrossRef
58.
Zurück zum Zitat Jacquemin C, Bosley TM, Liu D, Svedberg H, Buhaliqa A (2002) Reassessment of sphenoid dysplasia associated with neurofibromatosis type 1. AJNR Am J Neuroradiol 23:644–648PubMedPubMedCentral Jacquemin C, Bosley TM, Liu D, Svedberg H, Buhaliqa A (2002) Reassessment of sphenoid dysplasia associated with neurofibromatosis type 1. AJNR Am J Neuroradiol 23:644–648PubMedPubMedCentral
59.
Zurück zum Zitat Basu S, Nair N (2006) Potential clinical role of FDG-PET in detecting sarcomatous transformation in von Recklinghausen’s disease: a case study and review of the literature. J Neurooncol 80:91–95CrossRefPubMed Basu S, Nair N (2006) Potential clinical role of FDG-PET in detecting sarcomatous transformation in von Recklinghausen’s disease: a case study and review of the literature. J Neurooncol 80:91–95CrossRefPubMed
60.
Zurück zum Zitat Olivieri B, White CL, Restrepo R, McKeon B, Karakas SP, Lee EY (2016) Low-flow vascular malformation pitfalls: from clinical examination to practical imaging evaluation—part 2, venous malformation mimickers. AJR Am J Roentgenol 206:952–962CrossRefPubMed Olivieri B, White CL, Restrepo R, McKeon B, Karakas SP, Lee EY (2016) Low-flow vascular malformation pitfalls: from clinical examination to practical imaging evaluation—part 2, venous malformation mimickers. AJR Am J Roentgenol 206:952–962CrossRefPubMed
61.
Zurück zum Zitat Craig KA, Escobar E, Inwards CY, Kransdorf MJ (2016) Imaging characteristics of intravascular papillary endothelial hyperplasia. Skeletal Radiol 45:1467–1472CrossRefPubMed Craig KA, Escobar E, Inwards CY, Kransdorf MJ (2016) Imaging characteristics of intravascular papillary endothelial hyperplasia. Skeletal Radiol 45:1467–1472CrossRefPubMed
62.
Zurück zum Zitat Elluru RG, Balakrishnan K, Padua HM (2014) Lymphatic malformations: diagnosis and management. Semin Pediatr Surg 23:178–185CrossRefPubMed Elluru RG, Balakrishnan K, Padua HM (2014) Lymphatic malformations: diagnosis and management. Semin Pediatr Surg 23:178–185CrossRefPubMed
63.
Zurück zum Zitat Zhou Q, Zheng JW, Mai HM et al (2011) Treatment guidelines of lymphatic malformations of the head and neck. Oral Oncol 47:1105–1109CrossRefPubMed Zhou Q, Zheng JW, Mai HM et al (2011) Treatment guidelines of lymphatic malformations of the head and neck. Oral Oncol 47:1105–1109CrossRefPubMed
64.
Zurück zum Zitat Colbert SD, Seager L, Haider F, Evans BT, Anand R, Brennan PA (2013) Lymphatic malformations of the head and neck-current concepts in management. Br J Oral Maxillofac Surg 51:98–102CrossRefPubMed Colbert SD, Seager L, Haider F, Evans BT, Anand R, Brennan PA (2013) Lymphatic malformations of the head and neck-current concepts in management. Br J Oral Maxillofac Surg 51:98–102CrossRefPubMed
65.
Zurück zum Zitat Settecase F, Harnsberger HR, Michel MA, Chapman P, Glastonbury CM (2014) Spontaneous lateral sphenoid cephaloceles: anatomic factors contributing to pathogenesis and proposed classification. AJNR Am J Neuroradiol 35:784–789CrossRefPubMedPubMedCentral Settecase F, Harnsberger HR, Michel MA, Chapman P, Glastonbury CM (2014) Spontaneous lateral sphenoid cephaloceles: anatomic factors contributing to pathogenesis and proposed classification. AJNR Am J Neuroradiol 35:784–789CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Vaezi A, Snyderman CH, Saleh HA, Carrau RL, Zanation A, Gardner P (2011) Pseudomeningoceles of the sphenoid sinus masquerading as sinus pathology. Laryngoscope 121:2507–2513CrossRefPubMedPubMedCentral Vaezi A, Snyderman CH, Saleh HA, Carrau RL, Zanation A, Gardner P (2011) Pseudomeningoceles of the sphenoid sinus masquerading as sinus pathology. Laryngoscope 121:2507–2513CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Naidich TP, Altman NR, Braffman BH, McLone DG, Zimmerman RA (1992) Cephaloceles and related malformations. AJNR Am J Neuroradiol 13:655–690PubMedPubMedCentral Naidich TP, Altman NR, Braffman BH, McLone DG, Zimmerman RA (1992) Cephaloceles and related malformations. AJNR Am J Neuroradiol 13:655–690PubMedPubMedCentral
68.
Zurück zum Zitat Wind JJ, Caputy AJ, Roberti F (2008) Spontaneous encephaloceles of the temporal lobe. Neurosurg Focus 25:E11CrossRefPubMed Wind JJ, Caputy AJ, Roberti F (2008) Spontaneous encephaloceles of the temporal lobe. Neurosurg Focus 25:E11CrossRefPubMed
69.
Zurück zum Zitat Stefanelli S, Barnaure I, Momjian S et al (2014) Incidental intrasphenoidal encephalocele(ise). J Neuroradiol 41:358–360CrossRefPubMed Stefanelli S, Barnaure I, Momjian S et al (2014) Incidental intrasphenoidal encephalocele(ise). J Neuroradiol 41:358–360CrossRefPubMed
70.
Zurück zum Zitat Ma J, Huang Q, Li X et al (2015) Endoscopic transnasal repair of cerebrospinal fluid leaks with and without an encephalocele in pediatric patients: from infants to children. Childs Nerv Syst 31:1493–1498CrossRefPubMed Ma J, Huang Q, Li X et al (2015) Endoscopic transnasal repair of cerebrospinal fluid leaks with and without an encephalocele in pediatric patients: from infants to children. Childs Nerv Syst 31:1493–1498CrossRefPubMed
Metadaten
Titel
Masses of developmental and genetic origin affecting the paediatric craniofacial skeleton
verfasst von
Salvatore Stefanelli
Pravin Mundada
Anne-Laure Rougemont
Vincent Lenoir
Paolo Scolozzi
Laura Merlini
Minerva Becker
Publikationsdatum
15.05.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Insights into Imaging / Ausgabe 4/2018
Elektronische ISSN: 1869-4101
DOI
https://doi.org/10.1007/s13244-018-0623-4

Weitere Artikel der Ausgabe 4/2018

Insights into Imaging 4/2018 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.