Skip to main content
Erschienen in: Inflammation 6/2014

01.12.2014

Mast Cells Kill Candida albicans in the Extracellular Environment but Spare Ingested Fungi from Death

verfasst von: Elisa Trevisan, Francesca Vita, Nevenka Medic, Maria Rosa Soranzo, Giuliano Zabucchi, Violetta Borelli

Erschienen in: Inflammation | Ausgabe 6/2014

Einloggen, um Zugang zu erhalten

Abstract

Mast cells (MCs) reside in tissues that are common targets of Candida spp. infections, and can exert bactericidal activity, but little is known about their fungicidal activity. MCs purified from rat peritoneum (RPMC) and a clinical isolate of C. albicans, were employed. Ingestion was evaluated by flow cytometry (FACS) and optical microscopy. The killing activity was assayed by FACS analysis and by colony forming unit method. RPMC degranulation was evaluated by β-hexosaminidase assay and phosphatidylserine externalization by FACS. Phagocytosing RPMC were also analyzed by transmission electron microscopy. Herein, we show that the killing of C. albicans by RPMC takes place in the extracellular environment, very likely through secreted granular components. Ultrastructural analysis of the ingestion process revealed an unusual RPMC–C. albicans interaction that could allow fungal survival. Our findings indicate that MCs have a positive role in the defense mechanism against Candida infections and should be included among the cell types involved in host-defense against this pathogen.
Literatur
1.
Zurück zum Zitat Brown, G.D., and M.G. Netea. 2007. Immunology of fungal infections. Dordrecht: Springer.CrossRef Brown, G.D., and M.G. Netea. 2007. Immunology of fungal infections. Dordrecht: Springer.CrossRef
2.
Zurück zum Zitat Smeekens, S.P., F.L. van de Veerdonk, B.J. Kullberg, and M.G. Netea. 2013. Genetic susceptibility to Candida infections. EMBO Molecular Medicine 5(6): 805–813.PubMedCentralPubMedCrossRef Smeekens, S.P., F.L. van de Veerdonk, B.J. Kullberg, and M.G. Netea. 2013. Genetic susceptibility to Candida infections. EMBO Molecular Medicine 5(6): 805–813.PubMedCentralPubMedCrossRef
3.
Zurück zum Zitat Gow, N.A., F.L. van de Veerdonk, A.J. Brown, and M.G. Netea. 2011. Candida albicans morphogenesis and host defence: Discriminating invasion from colonization. Nature Reviews Microbiology 10: 112–122.PubMedCentralPubMed Gow, N.A., F.L. van de Veerdonk, A.J. Brown, and M.G. Netea. 2011. Candida albicans morphogenesis and host defence: Discriminating invasion from colonization. Nature Reviews Microbiology 10: 112–122.PubMedCentralPubMed
4.
Zurück zum Zitat Cheng, S.C., L.A. Joosten, B.J. Kullberg, and M.G. Netea. 2012. Interplay between Candida albicans and the mammalian innate host defense. Infection and Immunity 80(4): 1304–1313.PubMedCentralPubMedCrossRef Cheng, S.C., L.A. Joosten, B.J. Kullberg, and M.G. Netea. 2012. Interplay between Candida albicans and the mammalian innate host defense. Infection and Immunity 80(4): 1304–1313.PubMedCentralPubMedCrossRef
5.
Zurück zum Zitat Miramón, P., L. Kasper, and B. Hube. 2013. Thriving within the host: Candida spp. interactions with phagocytic cells. Medical Microbiology and Immunology 202: 183–195.PubMedCrossRef Miramón, P., L. Kasper, and B. Hube. 2013. Thriving within the host: Candida spp. interactions with phagocytic cells. Medical Microbiology and Immunology 202: 183–195.PubMedCrossRef
6.
Zurück zum Zitat Kullberg, B.J., M.G. Netea, A.G. Vonk, and J.W. van der Meer. 1999. Modulation of neutrophil function in host defense against disseminated Candida albicans infection in mice. Immunology and Medical Microbiology 26: 299–307.PubMedCrossRef Kullberg, B.J., M.G. Netea, A.G. Vonk, and J.W. van der Meer. 1999. Modulation of neutrophil function in host defense against disseminated Candida albicans infection in mice. Immunology and Medical Microbiology 26: 299–307.PubMedCrossRef
7.
Zurück zum Zitat Fernández-Arenas, E., C.K. Bleck, C. Nombela, C. Gil, G. Griffiths, and R. Diez-Orejas. 2009. Candida albicans actively modulates intracellular membrane trafficking in mouse macrophage phagosomes. Cellular Microbiology 11: 560–589.PubMedCrossRef Fernández-Arenas, E., C.K. Bleck, C. Nombela, C. Gil, G. Griffiths, and R. Diez-Orejas. 2009. Candida albicans actively modulates intracellular membrane trafficking in mouse macrophage phagosomes. Cellular Microbiology 11: 560–589.PubMedCrossRef
8.
Zurück zum Zitat Saluja, R., M. Metz, and M. Maurer. 2012. Role and relevance of mast cells in fungal infections. Frontiers in Immunology 3: 1–11.CrossRef Saluja, R., M. Metz, and M. Maurer. 2012. Role and relevance of mast cells in fungal infections. Frontiers in Immunology 3: 1–11.CrossRef
10.
Zurück zum Zitat Frossi, B., M. De Carli, and C. Pucillo. 2004. The mast cell: An antenna of the microenvironment that directs the immune response. Journal of Leukocyte Biology 75: 579–585.PubMedCrossRef Frossi, B., M. De Carli, and C. Pucillo. 2004. The mast cell: An antenna of the microenvironment that directs the immune response. Journal of Leukocyte Biology 75: 579–585.PubMedCrossRef
11.
Zurück zum Zitat Hofmann, A.M., and S.N. Abraham. 2009. New roles for MC in modulating allergic reaction and immunity against pathogens. Current Opinion in Immunology 21: 679–686.PubMedCentralPubMedCrossRef Hofmann, A.M., and S.N. Abraham. 2009. New roles for MC in modulating allergic reaction and immunity against pathogens. Current Opinion in Immunology 21: 679–686.PubMedCentralPubMedCrossRef
12.
Zurück zum Zitat St John, A.L., and S.N. Abraham. 2013. Innate immunity and its regulation by mast cells. Journal of Immunology 190: 4458–4463.CrossRef St John, A.L., and S.N. Abraham. 2013. Innate immunity and its regulation by mast cells. Journal of Immunology 190: 4458–4463.CrossRef
13.
Zurück zum Zitat Féger, F., S. Varadaradjalou, Z. Gao, S.N. Abraham, and M. Arock. 2002. The role of mast cells in host defense and their subversion by bacterial pathogens. Trends in Immunology 23: 151–158.PubMedCrossRef Féger, F., S. Varadaradjalou, Z. Gao, S.N. Abraham, and M. Arock. 2002. The role of mast cells in host defense and their subversion by bacterial pathogens. Trends in Immunology 23: 151–158.PubMedCrossRef
14.
Zurück zum Zitat Gekara, N.O., and S. Weiss. 2008. Mast cells initiate early anti-Listeria host defences. Cellular Microbiology 10: 225–236.PubMed Gekara, N.O., and S. Weiss. 2008. Mast cells initiate early anti-Listeria host defences. Cellular Microbiology 10: 225–236.PubMed
15.
Zurück zum Zitat Malaviya, R., N.J. Twesten, E.A. Ross, S.N. Abraham, and J.D. Pfeifer. 1996. Mast cells process bacterial Ags through a phagocytic route for class I MHC presentation to T cells. Journal of Immunology 156: 1490–1496. Malaviya, R., N.J. Twesten, E.A. Ross, S.N. Abraham, and J.D. Pfeifer. 1996. Mast cells process bacterial Ags through a phagocytic route for class I MHC presentation to T cells. Journal of Immunology 156: 1490–1496.
16.
Zurück zum Zitat Suurmond, J., J. van Heemst, J. van Heiningen, A.L. Dorjée, M.W. Schilham, F.B. van der Beek, T.W. Huizinga, and A.J.R.E. Schuerwegh Toes. 2013. Communication between human mast cells and CD4(+) T cells through antigen-dependent interactions. European Journal of Immunology 43: 1758–1768.PubMedCrossRef Suurmond, J., J. van Heemst, J. van Heiningen, A.L. Dorjée, M.W. Schilham, F.B. van der Beek, T.W. Huizinga, and A.J.R.E. Schuerwegh Toes. 2013. Communication between human mast cells and CD4(+) T cells through antigen-dependent interactions. European Journal of Immunology 43: 1758–1768.PubMedCrossRef
17.
Zurück zum Zitat Di Nardo, A., A. Vitiello, and R.L. Gallo. 2003. Cutting edge: Mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. Journal of Immunology 170: 2274–2278.CrossRef Di Nardo, A., A. Vitiello, and R.L. Gallo. 2003. Cutting edge: Mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. Journal of Immunology 170: 2274–2278.CrossRef
18.
Zurück zum Zitat Den Hertog, A.L., J. van Marle, H.A. van Veen, W. Van't Hof, J.G. Bolscher, E.C. Veerman, and A.V. Nieuw Amerongen. 2005. Candidacidal effects of two antimicrobial peptides: Histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane. The Biochemical Journal 1: 689–695. Den Hertog, A.L., J. van Marle, H.A. van Veen, W. Van't Hof, J.G. Bolscher, E.C. Veerman, and A.V. Nieuw Amerongen. 2005. Candidacidal effects of two antimicrobial peptides: Histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane. The Biochemical Journal 1: 689–695.
19.
Zurück zum Zitat Den Hertog, A.L., J. Van Marle, H.A. Van Veen, W. Van't Hof, J.G. Bolscher, E.C. Veerman, A.V. Nieuw Amerongen, P.W. Tsai, C.Y. Yang, H.T. Chang, and C.Y. Lan. 2011. Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates. PloS One 14: e17755. Den Hertog, A.L., J. Van Marle, H.A. Van Veen, W. Van't Hof, J.G. Bolscher, E.C. Veerman, A.V. Nieuw Amerongen, P.W. Tsai, C.Y. Yang, H.T. Chang, and C.Y. Lan. 2011. Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates. PloS One 14: e17755.
20.
Zurück zum Zitat von Köckritz-Blickwede, M., O. Goldmann, P. Thulin, K. Heinemann, A. Norrby-Teglund, M. Rohde, and E. Medina. 2008. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood 111: 3070–3080.CrossRef von Köckritz-Blickwede, M., O. Goldmann, P. Thulin, K. Heinemann, A. Norrby-Teglund, M. Rohde, and E. Medina. 2008. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood 111: 3070–3080.CrossRef
21.
Zurück zum Zitat Malaviya, R., E.A. Ross, J.I. MacGregor, T. Ikeda, J.R. Little, B.A. Jakschik, and S.N. Abraham. 1994. Mast cell phagocytosis of FimH-expressing enterobacteria. Journal of Immunology 15(152): 1907–1914. Malaviya, R., E.A. Ross, J.I. MacGregor, T. Ikeda, J.R. Little, B.A. Jakschik, and S.N. Abraham. 1994. Mast cell phagocytosis of FimH-expressing enterobacteria. Journal of Immunology 15(152): 1907–1914.
22.
Zurück zum Zitat Arock, M., E. Ross, R. Lai-Kuen, G. Averlant, Z. Gao, and S.N. Abraham. 1998. Phagocytic and tumor necrosis factor alpha response of human mast cells following exposure to gram-negative and gram-positive bacteria. Infection and Immunity 66: 6030–6034.PubMedCentralPubMed Arock, M., E. Ross, R. Lai-Kuen, G. Averlant, Z. Gao, and S.N. Abraham. 1998. Phagocytic and tumor necrosis factor alpha response of human mast cells following exposure to gram-negative and gram-positive bacteria. Infection and Immunity 66: 6030–6034.PubMedCentralPubMed
23.
Zurück zum Zitat Wei, O.L., A. Hilliard, D. Kalman, and M. Sherman. 2005. Mast cells limit systemic bacterial dissemination but not colitis in response to Citrobacter rodentium. Infection and Immunity 73: 1978–1985.PubMedCentralPubMedCrossRef Wei, O.L., A. Hilliard, D. Kalman, and M. Sherman. 2005. Mast cells limit systemic bacterial dissemination but not colitis in response to Citrobacter rodentium. Infection and Immunity 73: 1978–1985.PubMedCentralPubMedCrossRef
24.
Zurück zum Zitat Padawer, J., and G.J. Fruhman. 1968. Phagocytosis of zymosan particles by mast cells. Experientia 15(24): 471–472.CrossRef Padawer, J., and G.J. Fruhman. 1968. Phagocytosis of zymosan particles by mast cells. Experientia 15(24): 471–472.CrossRef
25.
Zurück zum Zitat Padawer, J. 1971. Poxvirus phagocytosis in vivo: Electron microscopy of macrophages, mast cells, and leukocytes. Journal of the Reticuloendothelial Society 9: 23–41.PubMed Padawer, J. 1971. Poxvirus phagocytosis in vivo: Electron microscopy of macrophages, mast cells, and leukocytes. Journal of the Reticuloendothelial Society 9: 23–41.PubMed
26.
Zurück zum Zitat Fruhman, G.J. 1973. In vitro ingestion of zymosan particles by mast cells. Journal of the Reticuloendothelial Society 13: 424–435.PubMed Fruhman, G.J. 1973. In vitro ingestion of zymosan particles by mast cells. Journal of the Reticuloendothelial Society 13: 424–435.PubMed
27.
Zurück zum Zitat Malaviya, R., T. Ikeda, E.A. Ross, B.A. Jakschik, and S.N. Abraham. 1995. Bacteria–mast cell interactions in inflammatory disease. American Journal of Therapy 2: 787–792.CrossRef Malaviya, R., T. Ikeda, E.A. Ross, B.A. Jakschik, and S.N. Abraham. 1995. Bacteria–mast cell interactions in inflammatory disease. American Journal of Therapy 2: 787–792.CrossRef
28.
Zurück zum Zitat Sher, A., A. Hein, G. Moser, and J.P. Caulfield. 1979. Complement receptors promote the phagocytosis of bacteria by rat peritoneal mast cell. Laboratory Investigation 41: 490–499.PubMed Sher, A., A. Hein, G. Moser, and J.P. Caulfield. 1979. Complement receptors promote the phagocytosis of bacteria by rat peritoneal mast cell. Laboratory Investigation 41: 490–499.PubMed
29.
Zurück zum Zitat Katz, H.R., M.B. Raizman, C.S. Gartner, H.C. Scott, A.C. Benson, and K.F. Austen. 1992. Secretory granule mediator release and generation of oxidative metabolites of arachidonic acid via Fc-IgG receptor bridging in mouse mast cells. Journal of Immunology 148: 868–871. Katz, H.R., M.B. Raizman, C.S. Gartner, H.C. Scott, A.C. Benson, and K.F. Austen. 1992. Secretory granule mediator release and generation of oxidative metabolites of arachidonic acid via Fc-IgG receptor bridging in mouse mast cells. Journal of Immunology 148: 868–871.
30.
Zurück zum Zitat Otani, I., D.H. Conrad, J.R. Carlo, D.M. Segal, and S. Ruddy. 1982. Phagocytosis by rat peritoneal mast cells: Independence of IgG Fc-mediated and C3-mediated signals. Journal of Immunology 129: 2109–2112. Otani, I., D.H. Conrad, J.R. Carlo, D.M. Segal, and S. Ruddy. 1982. Phagocytosis by rat peritoneal mast cells: Independence of IgG Fc-mediated and C3-mediated signals. Journal of Immunology 129: 2109–2112.
31.
Zurück zum Zitat Baorto, D.M., Z. Gao, R. Malaviya, M.L. Dustin, A. van der Merwe, D.M. Lublin, and S.N. Abraham. 1997. Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic. Nature 389: 636–639.PubMedCrossRef Baorto, D.M., Z. Gao, R. Malaviya, M.L. Dustin, A. van der Merwe, D.M. Lublin, and S.N. Abraham. 1997. Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic. Nature 389: 636–639.PubMedCrossRef
32.
Zurück zum Zitat Shin, J.S., Z. Gao, and S.N. Abraham. 1999. Bacteria–host cell interaction mediated by cellular cholesterol/glycolipid-enriched microdomains. Bioscience Reports 19: 421–432.PubMedCrossRef Shin, J.S., Z. Gao, and S.N. Abraham. 1999. Bacteria–host cell interaction mediated by cellular cholesterol/glycolipid-enriched microdomains. Bioscience Reports 19: 421–432.PubMedCrossRef
33.
Zurück zum Zitat Shin, J.S., Z. Gao, and S.N. Abraham. 2000. Involvement of cellular caveolae in bacterial entry into mast cells. Science 289: 785–788.PubMedCrossRef Shin, J.S., Z. Gao, and S.N. Abraham. 2000. Involvement of cellular caveolae in bacterial entry into mast cells. Science 289: 785–788.PubMedCrossRef
34.
Zurück zum Zitat Rosenkranz, A.R., A. Coxon, M. Maurer, M.F. Gurish, K.F. Austen, D.S. Friend, S.J. Galli, and T.N. Mayadas. 1998. Impaired mast cell development and innate immunity in Mac-1 (CD11b/CD18, CR3)-deficient mice. Journal of Immunology 15(161): 6463–6467. Rosenkranz, A.R., A. Coxon, M. Maurer, M.F. Gurish, K.F. Austen, D.S. Friend, S.J. Galli, and T.N. Mayadas. 1998. Impaired mast cell development and innate immunity in Mac-1 (CD11b/CD18, CR3)-deficient mice. Journal of Immunology 15(161): 6463–6467.
35.
Zurück zum Zitat Olynych, T.J., D.L. Jakeman, and J.S. Marshall. 2006. Fungal zymosan induces leukotriene production by human mast cells through a dectin-1-dependent mechanism. The Journal of Allergy and Clinical Immunology 118: 837–843.PubMedCrossRef Olynych, T.J., D.L. Jakeman, and J.S. Marshall. 2006. Fungal zymosan induces leukotriene production by human mast cells through a dectin-1-dependent mechanism. The Journal of Allergy and Clinical Immunology 118: 837–843.PubMedCrossRef
36.
Zurück zum Zitat Malbec, O., and M. Daeron. 2007. The mast cells IgG receptors and their role in tissue inflammation. Immunological Reviews 217: 206–221.PubMedCrossRef Malbec, O., and M. Daeron. 2007. The mast cells IgG receptors and their role in tissue inflammation. Immunological Reviews 217: 206–221.PubMedCrossRef
38.
Zurück zum Zitat Suzuki, Y., T. Inoue, T. Yoshimaru, and C. Ra. 2008. Galectin-3 but not galectin-1 induces mast cell death by oxidative stress and mitochondrial permeability transition. Biochimica et Biophysica Acta 1783: 924–934.PubMedCrossRef Suzuki, Y., T. Inoue, T. Yoshimaru, and C. Ra. 2008. Galectin-3 but not galectin-1 induces mast cell death by oxidative stress and mitochondrial permeability transition. Biochimica et Biophysica Acta 1783: 924–934.PubMedCrossRef
39.
Zurück zum Zitat Netea, M.G., and L. Maródi. 2010. Innate immune mechanisms for recognition and uptake of Candida species. Trends in Immunology 31: 346–353.PubMedCrossRef Netea, M.G., and L. Maródi. 2010. Innate immune mechanisms for recognition and uptake of Candida species. Trends in Immunology 31: 346–353.PubMedCrossRef
40.
Zurück zum Zitat Pietrzak, A., M. Wierzbicki, M. Wiktorska, and E. Brzezińska-Błaszczyk. 2011. Surface TLR2 and TLR4 expression on mature rat mast cells can be affected by some bacterial components and proinflammatory cytokines. Mediators of Inflammation 2: 1–11.CrossRef Pietrzak, A., M. Wierzbicki, M. Wiktorska, and E. Brzezińska-Błaszczyk. 2011. Surface TLR2 and TLR4 expression on mature rat mast cells can be affected by some bacterial components and proinflammatory cytokines. Mediators of Inflammation 2: 1–11.CrossRef
41.
Zurück zum Zitat Nosál, R. 1974. Histamine release from isolated rat mast cells due to glycoprotein from Candida albicans in vitro. Journal of Hygiene, Epidemiology, Microbiology, and Immunology 18(3): 377–378.PubMed Nosál, R. 1974. Histamine release from isolated rat mast cells due to glycoprotein from Candida albicans in vitro. Journal of Hygiene, Epidemiology, Microbiology, and Immunology 18(3): 377–378.PubMed
42.
Zurück zum Zitat Yamaguchi, N., R. Sugita, A. Miki, N. Takemura, J. Kawabata, J. Watanabe, and K. Sonoyama. 2006. Gastrointestinal Candida colonisation promotes sensitisation against food antigens by affecting the mucosal barrier in mice. Gut 55: 954–960.PubMedCentralPubMedCrossRef Yamaguchi, N., R. Sugita, A. Miki, N. Takemura, J. Kawabata, J. Watanabe, and K. Sonoyama. 2006. Gastrointestinal Candida colonisation promotes sensitisation against food antigens by affecting the mucosal barrier in mice. Gut 55: 954–960.PubMedCentralPubMedCrossRef
43.
Zurück zum Zitat Medic, N., F. Vita, R. Abbate, M.R. Soranzo, S. Pacor, E. Fabbretti, V. Borelli, and G. Zabucchi. 2008. Mast cell activation by myelin through scavenger receptor. Journal of Neuroimmunology 200: 27–40.PubMedCrossRef Medic, N., F. Vita, R. Abbate, M.R. Soranzo, S. Pacor, E. Fabbretti, V. Borelli, and G. Zabucchi. 2008. Mast cell activation by myelin through scavenger receptor. Journal of Neuroimmunology 200: 27–40.PubMedCrossRef
44.
Zurück zum Zitat Busetto, S., E. Trevisan, P. Patriarca, and R. Menegazzi. 2004. A single-step, sensitive flow cytofluorometric assay for the simultaneous assessment of membrane-bound and ingested Candida albicans in phagocytosing neutrophils. Cytometry 58: 201–206.PubMedCrossRef Busetto, S., E. Trevisan, P. Patriarca, and R. Menegazzi. 2004. A single-step, sensitive flow cytofluorometric assay for the simultaneous assessment of membrane-bound and ingested Candida albicans in phagocytosing neutrophils. Cytometry 58: 201–206.PubMedCrossRef
45.
Zurück zum Zitat Borelli, V., F. Vita, M.R. Soranzo, E. Banfi, and G. Zabucchi. 2002. Ultrastructure of the interaction between Mycobacterium tuberculosis-H37Rv-containing phagosomes and the lysosomal compartment in human alveolar macrophages. Experimental and Molecular Pathology 73: 128–134.PubMedCrossRef Borelli, V., F. Vita, M.R. Soranzo, E. Banfi, and G. Zabucchi. 2002. Ultrastructure of the interaction between Mycobacterium tuberculosis-H37Rv-containing phagosomes and the lysosomal compartment in human alveolar macrophages. Experimental and Molecular Pathology 73: 128–134.PubMedCrossRef
46.
Zurück zum Zitat Dri, P., M.R. Soranzo, R. Cramer, R. Menegazzi, V. Miotti, and P. Patriarca. 1985. Role of myeloperoxidase in respiratory burst of human polymorphonuclear leukocytes. Studies with myeloperoxidase-deficient subjects. Inflammation 9: 21–31.PubMedCrossRef Dri, P., M.R. Soranzo, R. Cramer, R. Menegazzi, V. Miotti, and P. Patriarca. 1985. Role of myeloperoxidase in respiratory burst of human polymorphonuclear leukocytes. Studies with myeloperoxidase-deficient subjects. Inflammation 9: 21–31.PubMedCrossRef
47.
Zurück zum Zitat Bjerknes, R. 1984. Flow cytometric assay for combined measurement of phagocytosis and intracellular killing of Candida albicans. Journal of Immunological Methods 72: 229–241.PubMedCrossRef Bjerknes, R. 1984. Flow cytometric assay for combined measurement of phagocytosis and intracellular killing of Candida albicans. Journal of Immunological Methods 72: 229–241.PubMedCrossRef
48.
Zurück zum Zitat Decleva, E., R. Menegazzi, S. Busetto, P. Patriarca, and P. Dri. 2006. Common methodology is inadequate for studies on the microbicidal activity of neutrophils. Journal of Leukocyte Biology 79: 87–94.PubMedCrossRef Decleva, E., R. Menegazzi, S. Busetto, P. Patriarca, and P. Dri. 2006. Common methodology is inadequate for studies on the microbicidal activity of neutrophils. Journal of Leukocyte Biology 79: 87–94.PubMedCrossRef
49.
Zurück zum Zitat Menegazzi, R., R. Cramer, P. Patriarca, P. Scheurich, and P. Dri. 1994. Evidence that tumor necrosis factor alpha (TNF)-induced activation of neutrophil respiratory burst on biologic surfaces is mediated by the p55 TNF receptor. Blood 84: 287–293.PubMed Menegazzi, R., R. Cramer, P. Patriarca, P. Scheurich, and P. Dri. 1994. Evidence that tumor necrosis factor alpha (TNF)-induced activation of neutrophil respiratory burst on biologic surfaces is mediated by the p55 TNF receptor. Blood 84: 287–293.PubMed
50.
Zurück zum Zitat Martin, S., I. Pombo, P. Poncet, B. David, M. Arock, and U. Blank. 2000. Immunologic stimulation of mast cells leads to the reversible exposure of phosphatidylserine in the absence of apoptosis. International Archives of Allergy and Immunology 123: 249–258.PubMedCrossRef Martin, S., I. Pombo, P. Poncet, B. David, M. Arock, and U. Blank. 2000. Immunologic stimulation of mast cells leads to the reversible exposure of phosphatidylserine in the absence of apoptosis. International Archives of Allergy and Immunology 123: 249–258.PubMedCrossRef
51.
Zurück zum Zitat Saresella, M., K. Roda, L. Speciale, D. Taramelli, E. Mendozzi, F. Guerini, and P. Ferrante. 1997. A rapid evaluation of phagocytosis and killing of Candida albicans by CD13+ leukocytes. Journal of Immunological Methods 210(2): 227–234.PubMedCrossRef Saresella, M., K. Roda, L. Speciale, D. Taramelli, E. Mendozzi, F. Guerini, and P. Ferrante. 1997. A rapid evaluation of phagocytosis and killing of Candida albicans by CD13+ leukocytes. Journal of Immunological Methods 210(2): 227–234.PubMedCrossRef
52.
Zurück zum Zitat Blank, U. 2011. The mechanisms of exocytosis in mast cells. Advances in Experimental Medicine and Biology 716: 107–122.PubMedCrossRef Blank, U. 2011. The mechanisms of exocytosis in mast cells. Advances in Experimental Medicine and Biology 716: 107–122.PubMedCrossRef
53.
Zurück zum Zitat Swindle, E.J., and D.D. Metcalfe. 2007. The role of reactive oxygen species and nitric oxide in mast cell dependent inflammatory processes. Immunological Reviews 217: 186–205.PubMedCrossRef Swindle, E.J., and D.D. Metcalfe. 2007. The role of reactive oxygen species and nitric oxide in mast cell dependent inflammatory processes. Immunological Reviews 217: 186–205.PubMedCrossRef
54.
Zurück zum Zitat Marquis, G., S. Garzon, S. Montplaisir, H. Strykowski, and N. Benhamou. 1991. Histochemical and immunochemical study of the fate of Candida albicans inside human neutrophil phagolysosomes. Journal of Leukocyte Biology 50(6): 587–599.PubMed Marquis, G., S. Garzon, S. Montplaisir, H. Strykowski, and N. Benhamou. 1991. Histochemical and immunochemical study of the fate of Candida albicans inside human neutrophil phagolysosomes. Journal of Leukocyte Biology 50(6): 587–599.PubMed
55.
Zurück zum Zitat Busetto, S., E. Trevisan, E. Decleva, P. Dri, and R. Menegazzi. 2007. Chloride movements in human neutrophils during phagocytosis: Characterization and relationship to granule release. Journal of Immunology 15(179): 4110–4124.CrossRef Busetto, S., E. Trevisan, E. Decleva, P. Dri, and R. Menegazzi. 2007. Chloride movements in human neutrophils during phagocytosis: Characterization and relationship to granule release. Journal of Immunology 15(179): 4110–4124.CrossRef
56.
Zurück zum Zitat Abel, J., O. Goldmann, C. Ziegler, C. Höltje, M.S. Smeltzer, A.L. Cheung, D. Bruhn, M. Rohde, and E. Medina. 2011. Staphylococcus aureus evades the extracellular antimicrobial activity of mast cells by promoting its own uptake. Journal of Innate Immunity 3: 495–507.PubMedCrossRef Abel, J., O. Goldmann, C. Ziegler, C. Höltje, M.S. Smeltzer, A.L. Cheung, D. Bruhn, M. Rohde, and E. Medina. 2011. Staphylococcus aureus evades the extracellular antimicrobial activity of mast cells by promoting its own uptake. Journal of Innate Immunity 3: 495–507.PubMedCrossRef
Metadaten
Titel
Mast Cells Kill Candida albicans in the Extracellular Environment but Spare Ingested Fungi from Death
verfasst von
Elisa Trevisan
Francesca Vita
Nevenka Medic
Maria Rosa Soranzo
Giuliano Zabucchi
Violetta Borelli
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2014
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-9951-9

Weitere Artikel der Ausgabe 6/2014

Inflammation 6/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.