Skip to main content
Erschienen in: Diabetologia 6/2014

01.06.2014 | Article

Maternal insulin sensitivity is associated with oral glucose-induced changes in fetal brain activity

verfasst von: Katarzyna Linder, Franziska Schleger, Caroline Ketterer, Louise Fritsche, Isabelle Kiefer-Schmidt, Anita Hennige, Hans-Ulrich Häring, Hubert Preissl, Andreas Fritsche

Erschienen in: Diabetologia | Ausgabe 6/2014

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Fetal programming plays an important role in the pathogenesis of type 2 diabetes. The aim of the present study was to investigate whether maternal metabolic changes during OGTT influence fetal brain activity.

Methods

Thirteen healthy pregnant women underwent an OGTT (75 g). Insulin sensitivity was determined by glucose and insulin measurements at 0, 60 and 120 min. At each time point, fetal auditory evoked fields were recorded with a fetal magnetoencephalographic device and response latencies were determined.

Results

Maternal insulin increased from a fasting level of 67 ± 25 pmol/l (mean ± SD) to 918 ± 492 pmol/l 60 min after glucose ingestion and glucose levels increased from 4.4 ± 0.3 to 7.4 ± 1.1 mmol/l. Over the same time period, fetal response latencies decreased from 297 ± 99 to 235 ± 84 ms (p = 0.01) and then remained stable until 120 min (235 ± 84 vs 251 ± 91 ms, p = 0.39). There was a negative correlation between maternal insulin sensitivity and fetal response latencies 60 min after glucose ingestion (r = 0.68, p = 0.02). After a median split of the group based on maternal insulin sensitivity, fetuses of insulin-resistant mothers showed a slower response to auditory stimuli (283 ± 79 ms) than those of insulin-sensitive mothers (178 ± 46 ms, p = 0.03).

Conclusions/interpretation

Lower maternal insulin sensitivity is associated with slower fetal brain responses. These findings provide the first evidence of a direct effect of maternal metabolism on fetal brain activity and suggest that central insulin resistance may be programmed during fetal development.
Literatur
1.
Zurück zum Zitat Hallschmid M, Schultes B (2009) Central nervous insulin resistance: a promising target in the treatment of metabolic and cognitive disorders? Diabetologia 52:2264–2269PubMedCrossRef Hallschmid M, Schultes B (2009) Central nervous insulin resistance: a promising target in the treatment of metabolic and cognitive disorders? Diabetologia 52:2264–2269PubMedCrossRef
3.
Zurück zum Zitat Porte D, Baskin DG, Schwartz MW (2005) Insulin signaling in the central nervous system: a critical role in metabolic homeostasis and disease from C. elegans to humans. Diabetes 54:1264–1276PubMedCrossRef Porte D, Baskin DG, Schwartz MW (2005) Insulin signaling in the central nervous system: a critical role in metabolic homeostasis and disease from C. elegans to humans. Diabetes 54:1264–1276PubMedCrossRef
4.
Zurück zum Zitat Benedict C, Brede S, Schiöth HB et al (2011) Intranasal insulin enhances postprandial thermogenesis and lowers postprandial serum insulin levels in healthy men. Diabetes 60:114–118PubMedCentralPubMedCrossRef Benedict C, Brede S, Schiöth HB et al (2011) Intranasal insulin enhances postprandial thermogenesis and lowers postprandial serum insulin levels in healthy men. Diabetes 60:114–118PubMedCentralPubMedCrossRef
5.
Zurück zum Zitat Heni M, Kullmann S, Ketterer C et al (2012) Nasal insulin changes peripheral insulin sensitivity simultaneously with altered activity in homeostatic and reward-related human brain regions. Diabetologia 55:1773–1782PubMedCrossRef Heni M, Kullmann S, Ketterer C et al (2012) Nasal insulin changes peripheral insulin sensitivity simultaneously with altered activity in homeostatic and reward-related human brain regions. Diabetologia 55:1773–1782PubMedCrossRef
6.
Zurück zum Zitat Tschritter O, Preissl H, Hennige AM et al (2012) High cerebral insulin sensitivity is associated with loss of body fat during lifestyle intervention. Diabetologia 55:175–182PubMedCrossRef Tschritter O, Preissl H, Hennige AM et al (2012) High cerebral insulin sensitivity is associated with loss of body fat during lifestyle intervention. Diabetologia 55:175–182PubMedCrossRef
7.
Zurück zum Zitat Tschritter O, Preissl H, Hennige AM et al (2006) The cerebrocortical response to hyperinsulinemia is reduced in overweight humans: a magnetoencephalographic study. Proc Natl Acad Sci U S A 103:12103–12108PubMedCentralPubMedCrossRef Tschritter O, Preissl H, Hennige AM et al (2006) The cerebrocortical response to hyperinsulinemia is reduced in overweight humans: a magnetoencephalographic study. Proc Natl Acad Sci U S A 103:12103–12108PubMedCentralPubMedCrossRef
8.
Zurück zum Zitat Tschritter O, Preissl H, Hennige AM et al (2009) The insulin effect on cerebrocortical theta activity is associated with serum concentrations of saturated nonesterified fatty acids. J Clin Endocrinol Metab 94:4600–4607PubMedCrossRef Tschritter O, Preissl H, Hennige AM et al (2009) The insulin effect on cerebrocortical theta activity is associated with serum concentrations of saturated nonesterified fatty acids. J Clin Endocrinol Metab 94:4600–4607PubMedCrossRef
9.
Zurück zum Zitat Nolan CJ, Damm P, Prentki M (2009) Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet 378:169–181CrossRef Nolan CJ, Damm P, Prentki M (2009) Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet 378:169–181CrossRef
10.
Zurück zum Zitat Plagemann A (2008) A matter of insulin: developmental programming of body weight regulation. J Matern Fetal Neonatal Med 21:143–148PubMedCrossRef Plagemann A (2008) A matter of insulin: developmental programming of body weight regulation. J Matern Fetal Neonatal Med 21:143–148PubMedCrossRef
11.
Zurück zum Zitat Barker DJ, Osmond C, Simmonds SJ, Wield GA (1993) The relation of small head circumference and thinness at birth to death from cardiovascular disease in adult life. BMJ 306:422–426PubMedCentralPubMedCrossRef Barker DJ, Osmond C, Simmonds SJ, Wield GA (1993) The relation of small head circumference and thinness at birth to death from cardiovascular disease in adult life. BMJ 306:422–426PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Rao S, Yajnik CS, Kanade A et al (2001) Intake of micronutrient-rich foods in rural Indian mothers is associated with the size of their babies at birth: Pune Maternal Nutrition Study. J Nutr 131:1217–1224PubMed Rao S, Yajnik CS, Kanade A et al (2001) Intake of micronutrient-rich foods in rural Indian mothers is associated with the size of their babies at birth: Pune Maternal Nutrition Study. J Nutr 131:1217–1224PubMed
14.
Zurück zum Zitat Yajnik CS (2004) Early life origins of insulin resistance and type 2 diabetes in India and other Asian countries. J Nutr 134:205–210PubMed Yajnik CS (2004) Early life origins of insulin resistance and type 2 diabetes in India and other Asian countries. J Nutr 134:205–210PubMed
15.
Zurück zum Zitat Schaefer-Graf UM, Pawliczak J, Passow D et al (2005) Birth weight and parental BMI predict overweight in children from mothers with gestational diabetes. Diabetes Care 28:1745–1750PubMedCrossRef Schaefer-Graf UM, Pawliczak J, Passow D et al (2005) Birth weight and parental BMI predict overweight in children from mothers with gestational diabetes. Diabetes Care 28:1745–1750PubMedCrossRef
16.
Zurück zum Zitat Sobngwi E, Boudou P, Mauvais-Jarvis F et al (2003) Effect of a diabetic environment in utero on predisposition to type 2 diabetes. Lancet 361:1861–1865PubMedCrossRef Sobngwi E, Boudou P, Mauvais-Jarvis F et al (2003) Effect of a diabetic environment in utero on predisposition to type 2 diabetes. Lancet 361:1861–1865PubMedCrossRef
17.
18.
Zurück zum Zitat Preissl H, Lowery CL, Eswaran H (2004) Fetal magnetoencephalography: current progress and trends. Exp Neurol 190(Suppl 1):28–36CrossRef Preissl H, Lowery CL, Eswaran H (2004) Fetal magnetoencephalography: current progress and trends. Exp Neurol 190(Suppl 1):28–36CrossRef
19.
Zurück zum Zitat Eswaran H, Wilson JD, Preissl H et al (2002) Magnetoencephalographic recordings of visual evoked brain activity in the human fetus. Lancet 360:779–780PubMedCrossRef Eswaran H, Wilson JD, Preissl H et al (2002) Magnetoencephalographic recordings of visual evoked brain activity in the human fetus. Lancet 360:779–780PubMedCrossRef
20.
Zurück zum Zitat Eswaran H, Preissl H, Wilson JD et al (2002) Short-term serial magnetoencephalography recordings of fetal auditory evoked responses. Neurosci Lett 331:128–132PubMedCrossRef Eswaran H, Preissl H, Wilson JD et al (2002) Short-term serial magnetoencephalography recordings of fetal auditory evoked responses. Neurosci Lett 331:128–132PubMedCrossRef
21.
Zurück zum Zitat Schneider U, Schleussner E, Haueisen J, Nowak H, Seewald HJ (2001) Signal analysis of auditory evoked cortical fields in fetal magnetoencephalography. Brain Topogr 14:69–80PubMedCrossRef Schneider U, Schleussner E, Haueisen J, Nowak H, Seewald HJ (2001) Signal analysis of auditory evoked cortical fields in fetal magnetoencephalography. Brain Topogr 14:69–80PubMedCrossRef
22.
Zurück zum Zitat Holst M, Eswaran H, Lowery C, Murphy P, Norton J, Preissl H (2005) Development of auditory evoked fields in human fetuses and newborns: a longitudinal MEG study. Clin Neurophysiol 116:1949–1955PubMedCrossRef Holst M, Eswaran H, Lowery C, Murphy P, Norton J, Preissl H (2005) Development of auditory evoked fields in human fetuses and newborns: a longitudinal MEG study. Clin Neurophysiol 116:1949–1955PubMedCrossRef
23.
Zurück zum Zitat Kiefer ID, Siegel ER, Preissl H et al (2008) Delayed maturation of auditory evoked responses in growth-restricted fetuses revealed by magnetoencephalographic recordings. Am J Obstet Gynecol 199:503.e1–503.e7CrossRef Kiefer ID, Siegel ER, Preissl H et al (2008) Delayed maturation of auditory evoked responses in growth-restricted fetuses revealed by magnetoencephalographic recordings. Am J Obstet Gynecol 199:503.e1–503.e7CrossRef
24.
Zurück zum Zitat Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRef Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRef
25.
Zurück zum Zitat Stumvoll M, van Haeften T, Fritsche A, Gerich J (2001) Oral glucose tolerance test indexes for insulin sensitivity and secretion based on various availabilities of sampling times. Diabetes Care 24:796–797PubMedCrossRef Stumvoll M, van Haeften T, Fritsche A, Gerich J (2001) Oral glucose tolerance test indexes for insulin sensitivity and secretion based on various availabilities of sampling times. Diabetes Care 24:796–797PubMedCrossRef
26.
Zurück zum Zitat Querleu D, Renard X, Versyp F, Paris-Delrue L, Crèpin G (1988) Fetal hearing. Eur J Obstet Gynecol Reprod Biol 29:191–212CrossRef Querleu D, Renard X, Versyp F, Paris-Delrue L, Crèpin G (1988) Fetal hearing. Eur J Obstet Gynecol Reprod Biol 29:191–212CrossRef
27.
Zurück zum Zitat McCubbin J, Robinson SE, Cropp R et al (2006) Optimal reduction of MCG in fetal MEG recordings. IEEE Trans Biomed Eng 53:1720–1724PubMedCrossRef McCubbin J, Robinson SE, Cropp R et al (2006) Optimal reduction of MCG in fetal MEG recordings. IEEE Trans Biomed Eng 53:1720–1724PubMedCrossRef
28.
Zurück zum Zitat Vrba J, Robinson SE, Mccubbin J et al (2004) Fetal MEG redistribution by projection operators. IEEE Trans Biomed Eng 51:1207–1218PubMedCrossRef Vrba J, Robinson SE, Mccubbin J et al (2004) Fetal MEG redistribution by projection operators. IEEE Trans Biomed Eng 51:1207–1218PubMedCrossRef
29.
Zurück zum Zitat Vrba J, Robinson SE, McCubbin J et al (2004) Human fetal brain imaging by magnetoencephalography: verification of fetal brain signals by comparison with fetal brain models. NeuroImage 21:1009–1020PubMedCrossRef Vrba J, Robinson SE, McCubbin J et al (2004) Human fetal brain imaging by magnetoencephalography: verification of fetal brain signals by comparison with fetal brain models. NeuroImage 21:1009–1020PubMedCrossRef
30.
Zurück zum Zitat Pedersen J (1967) The pregnant diabetic and her newborn: problems and management. William & Wilkins, Baltimore Pedersen J (1967) The pregnant diabetic and her newborn: problems and management. William & Wilkins, Baltimore
31.
Zurück zum Zitat Catalano PM, Hauguel-De Mouzon S (2011) Is it time to revisit the Pedersen hypothesis in the face of the obesity epidemic? Am J Obstet Gynecol 204:479–487PubMedCentralPubMedCrossRef Catalano PM, Hauguel-De Mouzon S (2011) Is it time to revisit the Pedersen hypothesis in the face of the obesity epidemic? Am J Obstet Gynecol 204:479–487PubMedCentralPubMedCrossRef
32.
Zurück zum Zitat Silverman BL, Metzger BE, Cho NH, Loeb CA (1995) Impaired glucose tolerance in adolescent offspring of diabetic mothers. Relationship to fetal hyperinsulinism. Diabetes Care 18:611–617PubMedCrossRef Silverman BL, Metzger BE, Cho NH, Loeb CA (1995) Impaired glucose tolerance in adolescent offspring of diabetic mothers. Relationship to fetal hyperinsulinism. Diabetes Care 18:611–617PubMedCrossRef
Metadaten
Titel
Maternal insulin sensitivity is associated with oral glucose-induced changes in fetal brain activity
verfasst von
Katarzyna Linder
Franziska Schleger
Caroline Ketterer
Louise Fritsche
Isabelle Kiefer-Schmidt
Anita Hennige
Hans-Ulrich Häring
Hubert Preissl
Andreas Fritsche
Publikationsdatum
01.06.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 6/2014
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-014-3217-9

Weitere Artikel der Ausgabe 6/2014

Diabetologia 6/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.