Skip to main content
main-content

29.01.2020 | Brief Communication

Matrix deformations around angiogenic sprouts correlate to sprout dynamics and suggest pulling activity

Zeitschrift:
Angiogenesis
Autoren:
Marie-Mo Vaeyens, Alvaro Jorge-Peñas, Jorge Barrasa-Fano, Christian Steuwe, Tommy Heck, Peter Carmeliet, Maarten Roeffaers, Hans Van Oosterwyck
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s10456-020-09708-y) contains supplementary material, which is available to authorized users.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Angiogenesis is the formation of new blood vessels from the pre-existing vasculature. It is essential for normal tissue growth and regeneration, and also plays a key role in many diseases [Carmeliet in Nat Med 9:653–660, 2003]. Cytoskeletal components have been shown to be important for angiogenic sprout initiation and maintenance [Kniazeva and Putnam in Am J Physiol 297:C179–C187, 2009] as well as endothelial cell shape control during invasion [Elliott et al. in Nat Cell Biol 17:137–147, 2015]. The exact nature of cytoskeleton-mediated forces for sprout initiation and progression, however, remains poorly understood. Questions on the importance of tip cell pulling versus stalk cell pushing are to a large extent unanswered, which among others has to do with the difficulty of quantifying and resolving those forces in time and space. We developed methods based on time-lapse confocal microscopy and image processing—further termed 4D displacement microscopy—to acquire detailed, spatially and temporally resolved extracellular matrix (ECM) deformations, indicative of cell-ECM mechanical interactions around invading sprouts. We demonstrate that matrix deformations dependent on actin-mediated force generation are spatio-temporally correlated with sprout morphological dynamics. Furthermore, sprout tips were found to exert radially pulling forces on the extracellular matrix, which were quantified by means of a computational model of collagen ECM mechanics. Protrusions from extending sprouts mostly increase their pulling forces, while retracting protrusions mainly reduce their pulling forces. Displacement microscopy analysis further unveiled a characteristic dipole-like deformation pattern along the sprout direction that was consistent among seemingly very different sprout shapes—with oppositely oriented displacements at sprout tip versus sprout base and a transition zone of negligible displacements in between. These results demonstrate that sprout-ECM interactions are dominated by pulling forces and underline the key role of tip cell pulling for sprouting angiogenesis.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt e.Med zum Sonderpreis bestellen!

Sichern Sie sich jetzt Ihr e.Med-Abo und sparen Sie 50 %!

Weitere Produktempfehlungen anzeigen
Zusatzmaterial
Literatur
Über diesen Artikel
  1. Sie können e.Med Innere Medizin 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.

  2. Sie können e.Med Chirurgie 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.