Skip to main content
main-content

01.12.2013 | Research article | Ausgabe 1/2013 Open Access

BMC Medical Research Methodology 1/2013

Measurement error in time-series analysis: a simulation study comparing modelled and monitored data

Zeitschrift:
BMC Medical Research Methodology > Ausgabe 1/2013
Autoren:
Barbara K Butland, Ben Armstrong, Richard W Atkinson, Paul Wilkinson, Mathew R Heal, Ruth M Doherty, Massimo Vieno
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2288-13-136) contains supplementary material, which is available to authorized users.

Competing interests

MRH, RMD and MV have an academic interest in the EMEP-WRF CTM and its development. There are no other conflicts of interest.

Authors’ contributions

BKB contributed to the design of the study, analysed the data, carried out the simulations and took the lead in drafting the paper. BA provided theoretical statistical expertise and contributed to the design and concept of the study. RWA and PW contributed to the design and concept of the study. MRH and RMD assembled the model data and the model-monitor comparison data sets. MV is the main developer of the EMEP-WRF regional chemistry-transport model and produced the model output. All authors contributed to the drafting of the paper, the interpretation of results and read and approved the final manuscript.

Abstract

Background

Assessing health effects from background exposure to air pollution is often hampered by the sparseness of pollution monitoring networks. However, regional atmospheric chemistry-transport models (CTMs) can provide pollution data with national coverage at fine geographical and temporal resolution. We used statistical simulation to compare the impact on epidemiological time-series analysis of additive measurement error in sparse monitor data as opposed to geographically and temporally complete model data.

Methods

Statistical simulations were based on a theoretical area of 4 regions each consisting of twenty-five 5 km × 5 km grid-squares. In the context of a 3-year Poisson regression time-series analysis of the association between mortality and a single pollutant, we compared the error impact of using daily grid-specific model data as opposed to daily regional average monitor data. We investigated how this comparison was affected if we changed the number of grids per region containing a monitor. To inform simulations, estimates (e.g. of pollutant means) were obtained from observed monitor data for 2003–2006 for national network sites across the UK and corresponding model data that were generated by the EMEP-WRF CTM. Average within-site correlations between observed monitor and model data were 0.73 and 0.76 for rural and urban daily maximum 8-hour ozone respectively, and 0.67 and 0.61 for rural and urban loge(daily 1-hour maximum NO2).

Results

When regional averages were based on 5 or 10 monitors per region, health effect estimates exhibited little bias. However, with only 1 monitor per region, the regression coefficient in our time-series analysis was attenuated by an estimated 6% for urban background ozone, 13% for rural ozone, 29% for urban background loge(NO2) and 38% for rural loge(NO2). For grid-specific model data the corresponding figures were 19%, 22%, 54% and 44% respectively, i.e. similar for rural loge(NO2) but more marked for urban loge(NO2).

Conclusion

Even if correlations between model and monitor data appear reasonably strong, additive classical measurement error in model data may lead to appreciable bias in health effect estimates. As process-based air pollution models become more widely used in epidemiological time-series analysis, assessments of error impact that include statistical simulation may be useful.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Zusatzmaterial
Additional file 1: Estimating instrument/location error (example urban ozone).(DOCX 16 KB)
12874_2013_1017_MOESM1_ESM.docx
Additional file 2: Predicting bias in the health effect estimate from theory.(DOCX 17 KB)
12874_2013_1017_MOESM2_ESM.docx
Additional file 3: Investigating the magnitude and components of measurement error.(DOCX 21 KB)
12874_2013_1017_MOESM3_ESM.docx
Authors’ original file for figure 1
12874_2013_1017_MOESM4_ESM.tif
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2013

BMC Medical Research Methodology 1/2013 Zur Ausgabe

Neu im Fachgebiet AINS

Meistgelesene Bücher aus dem Fachgebiet AINS

  • 2014 | Buch

    Komplikationen in der Anästhesie

    Fallbeispiele Analyse Prävention

    Aus Fehlern lernen und dadurch Zwischenfälle vermeiden! Komplikationen oder Zwischenfälle in der Anästhesie können für Patienten schwerwiegende Folgen haben. Häufig sind sie eine Kombination menschlicher, organisatorischer und technischer Fehler.

    Herausgeber:
    Matthias Hübler, Thea Koch
  • 2013 | Buch

    Anästhesie Fragen und Antworten

    1655 Fakten für die Facharztprüfung und das Europäische Diplom für Anästhesiologie und Intensivmedizin (DESA)

    Mit Sicherheit erfolgreich in Prüfung und Praxis! Effektiv wiederholen und im entscheidenden Moment die richtigen Antworten parat haben - dafür ist dieses beliebte Prüfungsbuch garantiert hilfreich. Anhand der Multiple-Choice-Fragen ist die optimale Vorbereitung auf das Prüfungsprinzip der D.E.A.A. gewährleistet.

    Autoren:
    Prof. Dr. Franz Kehl, Dr. Hans-Joachim Wilke
  • 2011 | Buch

    Pharmakotherapie in der Anästhesie und Intensivmedizin

    Wie und wieso wirken vasoaktive Substanzen und wie werden sie wirksam eingesetzt Welche Substanzen eignen sich zur perioperativen Myokardprojektion? 
    Kenntnisse zur Pharmakologie und deren Anwendung sind das notwendige Rüstzeug für den Anästhesisten und Intensivmediziner. Lernen Sie von erfahrenen Anästhesisten und Pharmakologen.

    Herausgeber:
    Prof. Dr. Peter H. Tonner, Prof. Dr. Lutz Hein
  • 2013 | Buch

    Anästhesie und Intensivmedizin – Prüfungswissen

    für die Fachpflege

    Fit in Theorie, Praxis und Prüfung! In diesem Arbeitsbuch werden alle Fakten der Fachweiterbildung abgebildet. So können Fachweiterbildungsteilnehmer wie auch langjährige Mitarbeiter in der Anästhesie und Intensivmedizin ihr Wissen gezielt überprüfen, vertiefen und festigen.

    Autor:
    Prof. Dr. Reinhard Larsen

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update AINS und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise