Skip to main content
Erschienen in: Abdominal Radiology 10/2019

06.06.2019 | Spleen

Measurement of spleen fat on MRI-proton density fat fraction arises from reconstruction of noise

verfasst von: Cheng William Hong, Gavin Hamilton, Catherine Hooker, Charlie C. Park, Calvin Andrew Tran, Walter C. Henderson, Jonathan C. Hooker, Soudabeh Fazeli Dehkordy, Jeffrey B. Schwimmer, Scott B. Reeder, Claude B. Sirlin

Erschienen in: Abdominal Radiology | Ausgabe 10/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose

This study compares splenic proton density fat fraction (PDFF) measured using confounder-corrected chemical shift-encoded (CSE)-MRI to magnetic resonance spectroscopy (MRS) in human patients at 3T.

Methods

This was a prospectively designed ancillary study to various previously described single-center studies performed in adults and children with known or suspected nonalcoholic fatty liver disease. Patients underwent magnitude-based MRI (MRI-M), complex-based MRI (MRI-C), high signal-to-noise variants (Hi-SNR MRI-M and Hi-SNR MRI-C), and MRS at 3T for spleen PDFF estimation. PDFF from CSE-MRI methods were compared to MRS-PDFF using Wilcoxon signed-rank tests. Demographics were summarized descriptively. Spearman’s rank correlations were computed pairwise between CSE-MRI methods. Individual patient measurements were plotted for qualitative assessment. A significance level of 0.05 was used.

Results

Forty-seven patients (20 female, 27 male) including 12 adults (median 55 years old) and 35 children (median 12 years old). Median PDFF estimated by MRS, MRI-M, Hi-SNR MRI-M, MRI-C, and Hi-SNR MRI-C was 1.0, 2.3, 1.9, 2.2, and 2.0%. The four CSE-MRI methods estimated statistically significant higher spleen PDFF values compared to MRS (p < 0.0001 for all). Pairwise associations in spleen PDFF values measured by different CSE-MRI methods were weak, with the highest Spearman’s rank correlations being 0.295 between MRI-M and Hi-SNR MRI-M; none were significant after correction for multiple comparisons. No qualitative relationship was observed between PDFF measurements among the various methods.

Conclusion

Overestimation of PDFF by CSE-MRI compared to MRS and poor agreement between related CSE-MRI methods suggest that non-zero PDFF values in human spleen are artifactual.
Literatur
1.
Zurück zum Zitat Reeder SB, Cruite I, Hamilton G, Sirlin CB. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging. 2011;34(4):729–749.CrossRefPubMedPubMedCentral Reeder SB, Cruite I, Hamilton G, Sirlin CB. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging. 2011;34(4):729–749.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Reeder SB, Hu HH, Sirlin CB. Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging. 2012;36(5):1011–1014.CrossRefPubMedPubMedCentral Reeder SB, Hu HH, Sirlin CB. Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging. 2012;36(5):1011–1014.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Meisamy S, Hines CDG, Hamilton G, et al. Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology. 2011;258(3):767–775.CrossRefPubMedPubMedCentral Meisamy S, Hines CDG, Hamilton G, et al. Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology. 2011;258(3):767–775.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Yokoo T, Shiehmorteza M, Hamilton G, et al. Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T. Radiology. 2011;258(3):749–759. Yokoo T, Shiehmorteza M, Hamilton G, et al. Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T. Radiology. 2011;258(3):749–759.
5.
Zurück zum Zitat Yokoo T, Bydder M, Hamilton G, et al. Nonalcoholic fatty liver disease: diagnostic and fat-grading accuracy of low-flip-angle multiecho gradient-recalled-echo MR imaging at 1.5 T. Radiology. 2009;251(1):67–76. Yokoo T, Bydder M, Hamilton G, et al. Nonalcoholic fatty liver disease: diagnostic and fat-grading accuracy of low-flip-angle multiecho gradient-recalled-echo MR imaging at 1.5 T. Radiology. 2009;251(1):67–76.
6.
Zurück zum Zitat Hernando D, Sharma SD, Aliyari Ghasabeh M, et al. Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom. Magn Reson Med. 2016 Hernando D, Sharma SD, Aliyari Ghasabeh M, et al. Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom. Magn Reson Med. 2016
8.
Zurück zum Zitat Cassidy FH, Yokoo T, Aganovic L, et al. Fatty Liver Disease: MR Imaging Techniques for the Detection and Quantification of Liver Steatosis. RadioGraphics. Radiological Society of North America; 2009;29(1):231–260. Cassidy FH, Yokoo T, Aganovic L, et al. Fatty Liver Disease: MR Imaging Techniques for the Detection and Quantification of Liver Steatosis. RadioGraphics. Radiological Society of North America; 2009;29(1):231–260.
9.
Zurück zum Zitat İdilman İS, Gümrük F, Haliloğlu M, Karçaaltıncaba M. The Feasibility of Magnetic Resonance Imaging for Quantification of Liver, Pancreas, Spleen, Vertebral Bone Marrow, and Renal Cortex R2* and Proton Density Fat Fraction in Transfusion-Related Iron Overload. Turkish J Haematol Off J Turkish Soc Haematol. Galenos Yayinevi; 2016;33(1):21–27. İdilman İS, Gümrük F, Haliloğlu M, Karçaaltıncaba M. The Feasibility of Magnetic Resonance Imaging for Quantification of Liver, Pancreas, Spleen, Vertebral Bone Marrow, and Renal Cortex R2* and Proton Density Fat Fraction in Transfusion-Related Iron Overload. Turkish J Haematol Off J Turkish Soc Haematol. Galenos Yayinevi; 2016;33(1):21–27.
10.
Zurück zum Zitat Mamidipalli A, Hamilton G, Manning P, et al. Cross-sectional correlation between hepatic R2* and proton density fat fraction (PDFF) in children with hepatic steatosis. J Magn Reson Imaging. 2018;47(2):418–424.CrossRefPubMed Mamidipalli A, Hamilton G, Manning P, et al. Cross-sectional correlation between hepatic R2* and proton density fat fraction (PDFF) in children with hepatic steatosis. J Magn Reson Imaging. 2018;47(2):418–424.CrossRefPubMed
11.
Zurück zum Zitat Loomba R, Sirlin CB, Ang B, et al. Ezetimibe for the treatment of nonalcoholic steatohepatitis: assessment by novel magnetic resonance imaging and magnetic resonance elastography in a randomized trial (MOZART trial). Hepatology. 2015;61(4):1239–1250.CrossRefPubMedPubMedCentral Loomba R, Sirlin CB, Ang B, et al. Ezetimibe for the treatment of nonalcoholic steatohepatitis: assessment by novel magnetic resonance imaging and magnetic resonance elastography in a randomized trial (MOZART trial). Hepatology. 2015;61(4):1239–1250.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Cui J, Philo L, Nguyen P, et al. Sitagliptin vs. placebo for non-alcoholic fatty liver disease: A randomized controlled trial. J Hepatol. 2016;65(2):369–376. Cui J, Philo L, Nguyen P, et al. Sitagliptin vs. placebo for non-alcoholic fatty liver disease: A randomized controlled trial. J Hepatol. 2016;65(2):369–376.
13.
Zurück zum Zitat Doycheva I, Cui J, Nguyen P, et al. Non-invasive screening of diabetics in primary care for NAFLD and advanced fibrosis by MRI and MRE. Aliment Pharmacol Ther. NIH Public Access; 2016;43(1):83–95. Doycheva I, Cui J, Nguyen P, et al. Non-invasive screening of diabetics in primary care for NAFLD and advanced fibrosis by MRI and MRE. Aliment Pharmacol Ther. NIH Public Access; 2016;43(1):83–95.
14.
Zurück zum Zitat Loomba R, Seguritan V, Li W, et al. Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metab. 2017;25(5):1054–1062.e5.CrossRefPubMedPubMedCentral Loomba R, Seguritan V, Li W, et al. Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metab. 2017;25(5):1054–1062.e5.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Motosugi U, Hernando D, Wiens C, Bannas P, Reeder SB. High SNR Acquisitions Improve the Repeatability of Liver Fat Quantification Using Confounder-corrected Chemical Shift-encoded MR Imaging. Magn Reson Med Sci. 2017 Motosugi U, Hernando D, Wiens C, Bannas P, Reeder SB. High SNR Acquisitions Improve the Repeatability of Liver Fat Quantification Using Confounder-corrected Chemical Shift-encoded MR Imaging. Magn Reson Med Sci. 2017
16.
Zurück zum Zitat Hamilton G, Yokoo T, Bydder M, et al. In vivo characterization of the liver fat 1H MR spectrum. NMR Biomed. 2011;24(7):784–790.CrossRefPubMed Hamilton G, Yokoo T, Bydder M, et al. In vivo characterization of the liver fat 1H MR spectrum. NMR Biomed. 2011;24(7):784–790.CrossRefPubMed
17.
Zurück zum Zitat Kühn J-P, Hernando D, Mensel B, et al. Quantitative chemical shift-encoded MRI is an accurate method to quantify hepatic steatosis. J Magn Reson Imaging. 2014;39(6):1494–1501.CrossRefPubMed Kühn J-P, Hernando D, Mensel B, et al. Quantitative chemical shift-encoded MRI is an accurate method to quantify hepatic steatosis. J Magn Reson Imaging. 2014;39(6):1494–1501.CrossRefPubMed
18.
Zurück zum Zitat Bydder M, Yokoo T, Hamilton G, et al. Relaxation effects in the quantification of fat using gradient echo imaging. Magn Reson Imaging. 2008;26(3):347–359.CrossRefPubMedPubMedCentral Bydder M, Yokoo T, Hamilton G, et al. Relaxation effects in the quantification of fat using gradient echo imaging. Magn Reson Imaging. 2008;26(3):347–359.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Hernando D, Hines CDG, Yu H, Reeder SB. Addressing phase errors in fat-water imaging using a mixed magnitude/complex fitting method. Magn Reson Med. NIH Public Access; 2012;67(3):638–644. Hernando D, Hines CDG, Yu H, Reeder SB. Addressing phase errors in fat-water imaging using a mixed magnitude/complex fitting method. Magn Reson Med. NIH Public Access; 2012;67(3):638–644.
20.
Zurück zum Zitat Yu H, Shimakawa A, Hines CDG, et al. Combination of complex-based and magnitude-based multiecho water-fat separation for accurate quantification of fat-fraction. Magn Reson Med. 2011;66(1):199–206.CrossRefPubMedPubMedCentral Yu H, Shimakawa A, Hines CDG, et al. Combination of complex-based and magnitude-based multiecho water-fat separation for accurate quantification of fat-fraction. Magn Reson Med. 2011;66(1):199–206.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Kühn J-P, Jahn C, Hernando D, et al. T1 bias in chemical shift-encoded liver fat-fraction: Role of the flip angle. J Magn Reson Imaging. 2014;40(4):875–883.CrossRefPubMed Kühn J-P, Jahn C, Hernando D, et al. T1 bias in chemical shift-encoded liver fat-fraction: Role of the flip angle. J Magn Reson Imaging. 2014;40(4):875–883.CrossRefPubMed
22.
Zurück zum Zitat Johnson BL, Schroeder ME, Wolfson T, et al. Effect of flip angle on the accuracy and repeatability of hepatic proton density fat fraction estimation by complex data-based, T1-independent, T2*-corrected, spectrum-modeled MRI. J Magn Reson Imaging. 2014;39(2):440–447.CrossRefPubMed Johnson BL, Schroeder ME, Wolfson T, et al. Effect of flip angle on the accuracy and repeatability of hepatic proton density fat fraction estimation by complex data-based, T1-independent, T2*-corrected, spectrum-modeled MRI. J Magn Reson Imaging. 2014;39(2):440–447.CrossRefPubMed
23.
Zurück zum Zitat Reeder SB, Pineda AR, Wen Z, et al. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med. 2005;54(3):636–644.CrossRefPubMed Reeder SB, Pineda AR, Wen Z, et al. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med. 2005;54(3):636–644.CrossRefPubMed
24.
Zurück zum Zitat Reeder SB, McKenzie CA, Pineda AR, et al. Water–fat separation with IDEAL gradient-echo imaging. J Magn Reson Imaging. 2007;25(3):644–652.CrossRefPubMed Reeder SB, McKenzie CA, Pineda AR, et al. Water–fat separation with IDEAL gradient-echo imaging. J Magn Reson Imaging. 2007;25(3):644–652.CrossRefPubMed
25.
Zurück zum Zitat Reeder SB, Wen Z, Yu H, et al. Multicoil Dixon chemical species separation with an iterative least-squares estimation method. Magn Reson Med. 2004;51(1):35–45.CrossRefPubMed Reeder SB, Wen Z, Yu H, et al. Multicoil Dixon chemical species separation with an iterative least-squares estimation method. Magn Reson Med. 2004;51(1):35–45.CrossRefPubMed
26.
Zurück zum Zitat Hernando D, Haldar JP, Sutton BP, Ma J, Kellman P, Liang Z-P. Joint estimation of water/fat images and field inhomogeneity map. Magn Reson Med. 2008;59(3):571–580.CrossRefPubMedPubMedCentral Hernando D, Haldar JP, Sutton BP, Ma J, Kellman P, Liang Z-P. Joint estimation of water/fat images and field inhomogeneity map. Magn Reson Med. 2008;59(3):571–580.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med. NIH Public Access; 2008;60(5):1122–1134. Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med. NIH Public Access; 2008;60(5):1122–1134.
28.
Zurück zum Zitat Hamilton G, Middleton MS, Hooker JC, et al. In vivo breath-hold (1) H MRS simultaneous estimation of liver proton density fat fraction, and T1 and T2 of water and fat, with a multi-TR, multi-TE sequence. J Magn Reson Imaging. 2015;42(6):1538–1543.CrossRefPubMedPubMedCentral Hamilton G, Middleton MS, Hooker JC, et al. In vivo breath-hold (1) H MRS simultaneous estimation of liver proton density fat fraction, and T1 and T2 of water and fat, with a multi-TR, multi-TE sequence. J Magn Reson Imaging. 2015;42(6):1538–1543.CrossRefPubMedPubMedCentral
29.
30.
Zurück zum Zitat Vanhamme, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson. 1997;129(1):35–43. Vanhamme, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson. 1997;129(1):35–43.
31.
Zurück zum Zitat Naressi A, Couturier C, Devos JM, et al. Java-based graphical user interface for the MRUI quantitation package. MAGMA. 2001;12(2–3):141–152.CrossRefPubMed Naressi A, Couturier C, Devos JM, et al. Java-based graphical user interface for the MRUI quantitation package. MAGMA. 2001;12(2–3):141–152.CrossRefPubMed
32.
Zurück zum Zitat Haufe WM, Wolfson T, Hooker CA, et al. Accuracy of PDFF estimation by magnitude-based and complex-based MRI in children with MR spectroscopy as a reference. J Magn Reson Imaging. 2017 Haufe WM, Wolfson T, Hooker CA, et al. Accuracy of PDFF estimation by magnitude-based and complex-based MRI in children with MR spectroscopy as a reference. J Magn Reson Imaging. 2017
33.
Zurück zum Zitat Bashir MR, Huang R, Mayes N, et al. Concordance of hypervascular liver nodule characterization between the organ procurement and transplant network and liver imaging reporting and data system classifications. J Magn Reson Imaging. 2015;42(2):305–314.CrossRefPubMed Bashir MR, Huang R, Mayes N, et al. Concordance of hypervascular liver nodule characterization between the organ procurement and transplant network and liver imaging reporting and data system classifications. J Magn Reson Imaging. 2015;42(2):305–314.CrossRefPubMed
34.
Zurück zum Zitat Karlsson M, Ekstedt M, Dahlström N, et al. Liver R2* is affected by both iron and fat: A dual biopsy-validated study of chronic liver disease. J Magn Reson Imaging. 2019 Karlsson M, Ekstedt M, Dahlström N, et al. Liver R2* is affected by both iron and fat: A dual biopsy-validated study of chronic liver disease. J Magn Reson Imaging. 2019
35.
Zurück zum Zitat Roberts NT, Hernando D, Holmes JH, Wiens CN, Reeder SB. Noise properties of proton density fat fraction estimated using chemical shift-encoded MRI. Magn Reson Med. 2018;80(2):685–695.CrossRefPubMedPubMedCentral Roberts NT, Hernando D, Holmes JH, Wiens CN, Reeder SB. Noise properties of proton density fat fraction estimated using chemical shift-encoded MRI. Magn Reson Med. 2018;80(2):685–695.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Liu C-Y, McKenzie CA, Yu H, Brittain JH, Reeder SB. Fat quantification with IDEAL gradient echo imaging: correction of bias from T(1) and noise. Magn Reson Med. 2007;58(2):354–364.CrossRefPubMed Liu C-Y, McKenzie CA, Yu H, Brittain JH, Reeder SB. Fat quantification with IDEAL gradient echo imaging: correction of bias from T(1) and noise. Magn Reson Med. 2007;58(2):354–364.CrossRefPubMed
37.
Zurück zum Zitat Colgan TJ, Hernando D, Sharma SD, Reeder SB. The effects of concomitant gradients on chemical shift encoded MRI. Magn Reson Med. 2017;78(2):730–738.CrossRefPubMed Colgan TJ, Hernando D, Sharma SD, Reeder SB. The effects of concomitant gradients on chemical shift encoded MRI. Magn Reson Med. 2017;78(2):730–738.CrossRefPubMed
38.
Zurück zum Zitat Yokoo T, Serai SD, Pirasteh A, et al. Linearity, Bias, and Precision of Hepatic Proton Density Fat Fraction Measurements by Using MR Imaging: A Meta-Analysis. Radiology. 2017;170550. Yokoo T, Serai SD, Pirasteh A, et al. Linearity, Bias, and Precision of Hepatic Proton Density Fat Fraction Measurements by Using MR Imaging: A Meta-Analysis. Radiology. 2017;170550.
39.
Zurück zum Zitat Nasr P, Forsgren MF, Ignatova S, et al. Using a 3% Proton Density Fat Fraction as a Cut-Off Value Increases Sensitivity of Detection of Hepatic Steatosis, Based on Results From Histopathology Analysis. Gastroenterology. 2017;153(1):53–55.e7.CrossRefPubMed Nasr P, Forsgren MF, Ignatova S, et al. Using a 3% Proton Density Fat Fraction as a Cut-Off Value Increases Sensitivity of Detection of Hepatic Steatosis, Based on Results From Histopathology Analysis. Gastroenterology. 2017;153(1):53–55.e7.CrossRefPubMed
40.
Zurück zum Zitat Idilman IS, Tuzun A, Savas B, et al. Quantification of liver, pancreas, kidney, and vertebral body MRI-PDFF in non-alcoholic fatty liver disease. Abdom Imaging. 2015;40(6):1512–1519.CrossRefPubMed Idilman IS, Tuzun A, Savas B, et al. Quantification of liver, pancreas, kidney, and vertebral body MRI-PDFF in non-alcoholic fatty liver disease. Abdom Imaging. 2015;40(6):1512–1519.CrossRefPubMed
41.
Metadaten
Titel
Measurement of spleen fat on MRI-proton density fat fraction arises from reconstruction of noise
verfasst von
Cheng William Hong
Gavin Hamilton
Catherine Hooker
Charlie C. Park
Calvin Andrew Tran
Walter C. Henderson
Jonathan C. Hooker
Soudabeh Fazeli Dehkordy
Jeffrey B. Schwimmer
Scott B. Reeder
Claude B. Sirlin
Publikationsdatum
06.06.2019
Verlag
Springer US
Erschienen in
Abdominal Radiology / Ausgabe 10/2019
Print ISSN: 2366-004X
Elektronische ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-019-02079-z

Weitere Artikel der Ausgabe 10/2019

Abdominal Radiology 10/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.