Skip to main content
Erschienen in: Inflammation 3/2016

17.03.2016 | ORIGINAL ARTICLE

Mechanisms of the Macrolide-Induced Inhibition of Superoxide Generation by Neutrophils

verfasst von: Kohji Nozoe, Yoshitomi Aida, Takao Fukuda, Terukazu Sanui, Fusanori Nishimura

Erschienen in: Inflammation | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

ABSTRACT

The effect of macrolides on the superoxide (O2 ) production by neutrophils was studied. Resting neutrophils become primed by lipopolysaccharide (LPS) or N-formyl-methionyl-leucyl-phenylalanine (fMLP), and primed neutrophils generate O2 in response to fMLP or adhesion, respectively. Both LPS-primed fMLP-stimulated O2 generation by macrolide-treated neutrophils and adhesion-stimulated O2 generation by macrolide-treated fMLP-primed neutrophils were inhibited. Macrolide inhibition of O2 generation was dependent on serum or pH. Serum could be substituted by NaHCO3. The intensity of inhibition was azithromycin = roxithromycin > clarithromycin > erythromycin, in that order. Non-antimicrobial derivatives of erythromycin, that is, EM703 and EM900, inhibited O2 generation at pH 7.4. NH4Cl abolished the activity of azithromycin (AZ) only when added to neutrophils with AZ but not after incubation with AZ, suggesting that NH4Cl prevented the influx of AZ. AZ did not affect the expression of alkaline phosphatase, CD11b, and cytochrome b558 in both resting and LPS-primed neutrophils. These results suggested that macrolides did not affect granule mobilization but inhibited O2 generation selectively.
Literatur
1.
Zurück zum Zitat Labro, M.T. 2004. Cellular and molecular effects of macrolides on leukocyte function. Current Pharmaceutical Design 10: 3067–3080.CrossRefPubMed Labro, M.T. 2004. Cellular and molecular effects of macrolides on leukocyte function. Current Pharmaceutical Design 10: 3067–3080.CrossRefPubMed
2.
Zurück zum Zitat Ianaro, A., A. Ialenti, P. Maffia, L. Sautebin, L. Rombolaá, R. Carnuccio, T. Iuvone, F. D’Acquisto, and M. Di Rosa. 2000. Anti-inflammatory activity of macrolide antibiotics. The Journal of Pharmacology and Experimental Therapeutics 292: 156–163.PubMed Ianaro, A., A. Ialenti, P. Maffia, L. Sautebin, L. Rombolaá, R. Carnuccio, T. Iuvone, F. D’Acquisto, and M. Di Rosa. 2000. Anti-inflammatory activity of macrolide antibiotics. The Journal of Pharmacology and Experimental Therapeutics 292: 156–163.PubMed
3.
Zurück zum Zitat Desaki, M., H. Okazaki, T. Sunazuka, S. Omura, K. Yamamoto, and H. Takizawa. 2004. Molecular mechanisms of anti-inflammatory action of erythromycin in human bronchial epithelial cells: Possible role in the signaling pathway that regulates nuclear factor-κB activation. Antimicrobial Agents and Chemotherapy 48: 1581–1585.CrossRefPubMedPubMedCentral Desaki, M., H. Okazaki, T. Sunazuka, S. Omura, K. Yamamoto, and H. Takizawa. 2004. Molecular mechanisms of anti-inflammatory action of erythromycin in human bronchial epithelial cells: Possible role in the signaling pathway that regulates nuclear factor-κB activation. Antimicrobial Agents and Chemotherapy 48: 1581–1585.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Otsu, K., H. Ishinaga, S. Suzuki, A. Sugawara, T. Sunazuka, S. Omura, H. Jono, and K. Takeuchi. 2011. Effects of a novel nonantibiotic macrolide, EM900, on cytokine and mucin gene expression in a human airway epithelial cell line. Pharmacology 88: 327–332.CrossRefPubMed Otsu, K., H. Ishinaga, S. Suzuki, A. Sugawara, T. Sunazuka, S. Omura, H. Jono, and K. Takeuchi. 2011. Effects of a novel nonantibiotic macrolide, EM900, on cytokine and mucin gene expression in a human airway epithelial cell line. Pharmacology 88: 327–332.CrossRefPubMed
5.
Zurück zum Zitat Bosnar, M., Z. Kelnerić, V. Munić, V. Eraković, and M.J. Parnham. 2005. Cellular uptake and efflux of azithromycin, erythromycin, clarithromycin, telithromycin, and cethromycin. Antimicrobial Agents and Chemotherapy 49: 2372–2377.CrossRefPubMedPubMedCentral Bosnar, M., Z. Kelnerić, V. Munić, V. Eraković, and M.J. Parnham. 2005. Cellular uptake and efflux of azithromycin, erythromycin, clarithromycin, telithromycin, and cethromycin. Antimicrobial Agents and Chemotherapy 49: 2372–2377.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Hand, W.L., and D.L. Hand. 2001. Characteristics and mechanisms of azithromycin accumulation and efflux in human polymorphonuclear leukocytes. International Journal of Antimicrobial Agents 18: 419–425.CrossRefPubMed Hand, W.L., and D.L. Hand. 2001. Characteristics and mechanisms of azithromycin accumulation and efflux in human polymorphonuclear leukocytes. International Journal of Antimicrobial Agents 18: 419–425.CrossRefPubMed
7.
Zurück zum Zitat Gladue, R.P., and M.E. Snider. 1990. Intracellular accumulation of azithromycin by cultured human fibroblasts. Antimicrobial Agents and Chemotherapy 34: 1056–1060.CrossRefPubMedPubMedCentral Gladue, R.P., and M.E. Snider. 1990. Intracellular accumulation of azithromycin by cultured human fibroblasts. Antimicrobial Agents and Chemotherapy 34: 1056–1060.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Mittal, M., M.R. Siddiqui, K. Tran, S.P. Reddy, and A.B. Malik. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxidants and Redox Signaling 20: 1126–1167.CrossRefPubMedPubMedCentral Mittal, M., M.R. Siddiqui, K. Tran, S.P. Reddy, and A.B. Malik. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxidants and Redox Signaling 20: 1126–1167.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Sheppard, F.R., M.R. Kelher, E.E. Moore, N.J.D. Mclaughlin, A. Banerjee, and C.C. Silliman. 2005. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. Journal of Leukocyte Biology 78: 1025–1042.CrossRefPubMed Sheppard, F.R., M.R. Kelher, E.E. Moore, N.J.D. Mclaughlin, A. Banerjee, and C.C. Silliman. 2005. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. Journal of Leukocyte Biology 78: 1025–1042.CrossRefPubMed
10.
Zurück zum Zitat Labro, M.T., J. El Benna, and C. Babin-Chevayec. 1989. Comparison of the in-vitro effect of several macrolides on the oxidative burst of human neutrophils. Journal of Antimicrobial Chemotherapy 24: 561–572.CrossRefPubMed Labro, M.T., J. El Benna, and C. Babin-Chevayec. 1989. Comparison of the in-vitro effect of several macrolides on the oxidative burst of human neutrophils. Journal of Antimicrobial Chemotherapy 24: 561–572.CrossRefPubMed
11.
Zurück zum Zitat Hand, W.L., D.L. Hand, and N.L. King-Thompson. 1990. Antibiotic inhibition of the respiratory burst response in human polymorphonuclear leukocytes. Antimicrobial Agents and Chemotherapy 34: 863–870.CrossRefPubMedPubMedCentral Hand, W.L., D.L. Hand, and N.L. King-Thompson. 1990. Antibiotic inhibition of the respiratory burst response in human polymorphonuclear leukocytes. Antimicrobial Agents and Chemotherapy 34: 863–870.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Hand, W.L., and D.L. Hand. 1993. Interaction of dirithromycin with human polymorphonuclear leukocytes. Antimicrobial Agents and Chemotherapy 37: 2557–2562.CrossRefPubMedPubMedCentral Hand, W.L., and D.L. Hand. 1993. Interaction of dirithromycin with human polymorphonuclear leukocytes. Antimicrobial Agents and Chemotherapy 37: 2557–2562.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Anderson, R., A.J. Theron, and C. Feldman. 1996. Membrane-stabilizing, anti-inflammatory interactions of macrolides with human neutrophils. Inflammation 20: 693–705.CrossRefPubMed Anderson, R., A.J. Theron, and C. Feldman. 1996. Membrane-stabilizing, anti-inflammatory interactions of macrolides with human neutrophils. Inflammation 20: 693–705.CrossRefPubMed
14.
Zurück zum Zitat Levert, H., B. Gressier, I. Moutard, C. Brunet, T. Dine, M. Luyckx, M. Cazin, and J.C. Cazin. 1998. Azithromycin impact on neutrophil oxidative metabolism depends on exposure time. Inflammation 22: 191–201.CrossRefPubMed Levert, H., B. Gressier, I. Moutard, C. Brunet, T. Dine, M. Luyckx, M. Cazin, and J.C. Cazin. 1998. Azithromycin impact on neutrophil oxidative metabolism depends on exposure time. Inflammation 22: 191–201.CrossRefPubMed
15.
Zurück zum Zitat Abdelghaffar, H., C. Babin-Chevaye, and M.T. Labro. 2005. The macrolide roxithromycin impairs NADPH oxidase activation and alters translocation of its cytosolic components to the neutrophil membrane in vitro. Antimicrobial Agents and Chemotherapy 49: 2986–2989.CrossRefPubMedPubMedCentral Abdelghaffar, H., C. Babin-Chevaye, and M.T. Labro. 2005. The macrolide roxithromycin impairs NADPH oxidase activation and alters translocation of its cytosolic components to the neutrophil membrane in vitro. Antimicrobial Agents and Chemotherapy 49: 2986–2989.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Hand, W.L., D.L. Hand, and Y. Vasquez. 2007. Increased polymorphonuclear leukocyte respiratory burst function in type 2 diabetes. Diabetes Research and Clinical Practice 76: 44–50.CrossRefPubMed Hand, W.L., D.L. Hand, and Y. Vasquez. 2007. Increased polymorphonuclear leukocyte respiratory burst function in type 2 diabetes. Diabetes Research and Clinical Practice 76: 44–50.CrossRefPubMed
17.
Zurück zum Zitat GLADUE, R.P., G.M. Bright, R.E. Isaacson, and M.F. Newborg. 1989. In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: Possible mechanism of delivery and release at sites of infection. Antimicrobial Agents and Chemotherapy 33: 277–282.CrossRefPubMedPubMedCentral GLADUE, R.P., G.M. Bright, R.E. Isaacson, and M.F. Newborg. 1989. In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: Possible mechanism of delivery and release at sites of infection. Antimicrobial Agents and Chemotherapy 33: 277–282.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Pascual, A., G. López-López, J. Aragón, and E.J. Perea. 1990. Effect of azithromycin, roxithromycin and erythromycin on human polymorphonuclear leukocyte function against Staphylococcus aureus. Chemotherapy 36: 422–427.CrossRefPubMed Pascual, A., G. López-López, J. Aragón, and E.J. Perea. 1990. Effect of azithromycin, roxithromycin and erythromycin on human polymorphonuclear leukocyte function against Staphylococcus aureus. Chemotherapy 36: 422–427.CrossRefPubMed
19.
Zurück zum Zitat Pascual, A., M. Carmen Conejo, I. Garcia, and E.J. Perea. 1995. Factors affecting the intracellular accumulation and activity of azithromycin. Journal of Antimicrobial Chemotherapy 35: 85–93.CrossRefPubMed Pascual, A., M. Carmen Conejo, I. Garcia, and E.J. Perea. 1995. Factors affecting the intracellular accumulation and activity of azithromycin. Journal of Antimicrobial Chemotherapy 35: 85–93.CrossRefPubMed
20.
Zurück zum Zitat Mcintire, F.C., G.H. Barlow, H.W. Sievert, R.A. Finley, and A.L. Yoo. 1969. Study on a lipopolysaccharide from Escherichia coli. Heterogeniety and mechanism of reversible inactivation by sodium deoxycholate. Biochemistry 8: 4063–4067.CrossRefPubMed Mcintire, F.C., G.H. Barlow, H.W. Sievert, R.A. Finley, and A.L. Yoo. 1969. Study on a lipopolysaccharide from Escherichia coli. Heterogeniety and mechanism of reversible inactivation by sodium deoxycholate. Biochemistry 8: 4063–4067.CrossRefPubMed
21.
Zurück zum Zitat Nakamura, M., M. Murakami, T. Koga, Y. Tanaka, and S. Minakami. 1987. Monoclonal antibody 7D5 raised to cytochrome b558 of human neutrophils: Immunocytochemical detection of the antigen in peripheral phagocytes of normal subjects, patients with chronic granulomatous disease, and their carrier mothers. Blood 69: 1404–1408.PubMed Nakamura, M., M. Murakami, T. Koga, Y. Tanaka, and S. Minakami. 1987. Monoclonal antibody 7D5 raised to cytochrome b558 of human neutrophils: Immunocytochemical detection of the antigen in peripheral phagocytes of normal subjects, patients with chronic granulomatous disease, and their carrier mothers. Blood 69: 1404–1408.PubMed
22.
Zurück zum Zitat Aida, Y., and M.J. Pabst. 1991. Neutrophil responses to lipopolysaccharide. Effect of adherence on triggering and priming of the respiratory burst. Journal of Immunology 146: 1271–1276. Aida, Y., and M.J. Pabst. 1991. Neutrophil responses to lipopolysaccharide. Effect of adherence on triggering and priming of the respiratory burst. Journal of Immunology 146: 1271–1276.
23.
Zurück zum Zitat Aida, Y., and M.J. Pabst. 1990. Priming of neutrophils by lipopolysaccharide for enhanced release of superoxide. Requirement for plasma but not for tumor necrosis factor-α. Journal of Immunology 145: 3017–3025. Aida, Y., and M.J. Pabst. 1990. Priming of neutrophils by lipopolysaccharide for enhanced release of superoxide. Requirement for plasma but not for tumor necrosis factor-α. Journal of Immunology 145: 3017–3025.
24.
Zurück zum Zitat Borregaard, N., and J.B. Cowland. 1997. Granules of human neutrophilic polymorphonuclear leukocyte. Blood 89: 3503–3521.PubMed Borregaard, N., and J.B. Cowland. 1997. Granules of human neutrophilic polymorphonuclear leukocyte. Blood 89: 3503–3521.PubMed
25.
Zurück zum Zitat Aida, Y., K. Kusumoto, K. Nakatomi, H. Takada, M.J. Pabst, and K. Maeda. 1995. An analogue of lipid A and LPS from Rhodobacter sphaeroides inhibits neutrophil response to LPS by blocking receptor recognition of LPS and by depleting LPS-binding protein in plasma. Journal of Leukocyte Biology 58: 675–682.PubMed Aida, Y., K. Kusumoto, K. Nakatomi, H. Takada, M.J. Pabst, and K. Maeda. 1995. An analogue of lipid A and LPS from Rhodobacter sphaeroides inhibits neutrophil response to LPS by blocking receptor recognition of LPS and by depleting LPS-binding protein in plasma. Journal of Leukocyte Biology 58: 675–682.PubMed
26.
Zurück zum Zitat Borregaard, N., L.J. Miller, and T.A. Springer. 1987. Chemoattractant-regulated mobilization of a novel intracellular compartment in human neutrophils. Science 237: 1204–1206.CrossRefPubMed Borregaard, N., L.J. Miller, and T.A. Springer. 1987. Chemoattractant-regulated mobilization of a novel intracellular compartment in human neutrophils. Science 237: 1204–1206.CrossRefPubMed
27.
Zurück zum Zitat Deleo, F.R., J. Renee, S. Mccormik, M. Nakamura, M. Apicella, J.P. Weiss, and W.M. Nauseef. 1998. Neutrophils exposed to bacterial lipopolysaccharide upregulate NADPH oxidase assembly. Journal of Clinical Investigation 101: 455–463.CrossRefPubMedPubMedCentral Deleo, F.R., J. Renee, S. Mccormik, M. Nakamura, M. Apicella, J.P. Weiss, and W.M. Nauseef. 1998. Neutrophils exposed to bacterial lipopolysaccharide upregulate NADPH oxidase assembly. Journal of Clinical Investigation 101: 455–463.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Hand, W.L., N. King-Thompson, and J.W. Holman. 1987. Entry of roxithromycin (RU 965), imipenem, cefotaxime, trimethoprim, and metronidazole into human polymorphonuclear leukocytes. Antimicrobial Agents and Chemotherapy 31: 1553–1557.CrossRefPubMedPubMedCentral Hand, W.L., N. King-Thompson, and J.W. Holman. 1987. Entry of roxithromycin (RU 965), imipenem, cefotaxime, trimethoprim, and metronidazole into human polymorphonuclear leukocytes. Antimicrobial Agents and Chemotherapy 31: 1553–1557.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Li, Y.J.L., A. Azuma, J. Usuki, S. Abe, K. Matsuda, T. Sunazuka, T. Shimizu, Y. Hirata, H. Inagaki, T. Kawada, S. Takahashi, S. Kudoh, and S. Omura. 2006. EM703 improves bleomycin-induced pulmonary fibrosis in mice by the inhibition of TGF-β signaling in lung fibroblasts. Respiratory Research 7: 16–28.CrossRefPubMedPubMedCentral Li, Y.J.L., A. Azuma, J. Usuki, S. Abe, K. Matsuda, T. Sunazuka, T. Shimizu, Y. Hirata, H. Inagaki, T. Kawada, S. Takahashi, S. Kudoh, and S. Omura. 2006. EM703 improves bleomycin-induced pulmonary fibrosis in mice by the inhibition of TGF-β signaling in lung fibroblasts. Respiratory Research 7: 16–28.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Ikeda, H., T. Sunazuka, H. Suzuki, Y. Hamasaki, S. Yamazaki, S. Omura, and A. Hatamochi. 2008. EM703, the new derivative of erythromycin, inhibits transcription of type I collagen in normal and scleroderma fibroblasts. Journal of Dermatological Science 49: 195–205.CrossRefPubMed Ikeda, H., T. Sunazuka, H. Suzuki, Y. Hamasaki, S. Yamazaki, S. Omura, and A. Hatamochi. 2008. EM703, the new derivative of erythromycin, inhibits transcription of type I collagen in normal and scleroderma fibroblasts. Journal of Dermatological Science 49: 195–205.CrossRefPubMed
31.
Zurück zum Zitat Klempner, M.S., and B. Styrt. 1983. Alkalinizing the intralysosomal pH inhibits degranulation of human neutrophils. Journal of Clinical Investigation 72: 1793–1800.CrossRefPubMedPubMedCentral Klempner, M.S., and B. Styrt. 1983. Alkalinizing the intralysosomal pH inhibits degranulation of human neutrophils. Journal of Clinical Investigation 72: 1793–1800.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Jinnouchi, A., Y. Aida, K. Nozoe, K. Maeda, and M.J. Pabst. 2005. Local anesthetics inhibit priming of neutrophils by lipopolysaccharide for enhanced release of superoxide: suppression of cytochrome b558 expression by disparate mechanisms. Journal of Leukocyte Biology 78: 1356–1365.CrossRefPubMed Jinnouchi, A., Y. Aida, K. Nozoe, K. Maeda, and M.J. Pabst. 2005. Local anesthetics inhibit priming of neutrophils by lipopolysaccharide for enhanced release of superoxide: suppression of cytochrome b558 expression by disparate mechanisms. Journal of Leukocyte Biology 78: 1356–1365.CrossRefPubMed
Metadaten
Titel
Mechanisms of the Macrolide-Induced Inhibition of Superoxide Generation by Neutrophils
verfasst von
Kohji Nozoe
Yoshitomi Aida
Takao Fukuda
Terukazu Sanui
Fusanori Nishimura
Publikationsdatum
17.03.2016
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2016
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0333-3

Weitere Artikel der Ausgabe 3/2016

Inflammation 3/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.