Skip to main content
Erschienen in: Inflammation 5/2017

01.06.2017 | ORIGINAL ARTICLE

MeCP2 Regulates PTCH1 Expression Through DNA Methylation in Rheumatoid Arthritis

verfasst von: Zheng-hao Sun, Yan-hui Liu, Jun-da Liu, Dan-dan Xu, Xiao-feng Li, Xiao-ming Meng, Tao-tao Ma, Cheng Huang, Jun Li

Erschienen in: Inflammation | Ausgabe 5/2017

Einloggen, um Zugang zu erhalten

Abstract

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease, in which pathogenesis is not clear. Many research demonstrated that fibroblast-like synoviocytes (FLSs) play a key role in RA pathogenesis, join in the cartilage injury and hyperplasia of the synovium, and contribute to the release of inflammatory cytokines. We used adjuvant arthritis (AA) rats as RA animal models. The methyl-CpG-binding protein 2 (MeCP2) enables the suppressed chromatin structure to be selectively detected in AA FLSs. Overexpression of this protein leads to an increase of integral methylation levels. Some research has confirmed the hedgehog (Hh) signaling pathway plays an important role in RA pathogenesis; furthermore, patched 1 (PTCH1) is a negative fraction of Hh signaling pathway. We used 5-aza-2′-deoxycytidine (5-azadc) as DNA methylation inhibitor. In our research, we found MeCP2 reduced PTCH1 expression in AA FLSs; 5-azadc obstructed the loss of PTCH1 expression. 5-Azadc, treatment of AA FLSs, also blocks the release of inflammatory cytokines. In order to probe the potential molecular mechanism, we assumed the epigenetic participation in the regulation of PTCH1. Results demonstrated that PTCH1 hypermethylation is related to the persistent FLS activation and inflammation in AA rats. Knockdown of MeCP2 using small-interfering RNA technique added PTCH1 expression in AA FLSs. Our results indicate that DNA methylation may offer molecule mechanisms, and the reduced PTCH1 methylation level could regulate inflammation through knockdown of MeCP2.
Literatur
1.
Zurück zum Zitat McInnes, I.B., and G. Schett. 2007. Cytokines in the pathogenesis of rheumatoid arthritis. Nature Reviews Immunology 7: 429–442.CrossRefPubMed McInnes, I.B., and G. Schett. 2007. Cytokines in the pathogenesis of rheumatoid arthritis. Nature Reviews Immunology 7: 429–442.CrossRefPubMed
2.
Zurück zum Zitat Ma, Z., B. Wang, M. Wang, X. Sun, Y. Tang, M. Li, F. Li, and X. Li. 2016. TL1A increased IL-6 production on fibroblast-like synoviocytes by preferentially activating TNF receptor 2 in rheumatoid arthritis. Cytokine 83: 92–98.CrossRefPubMed Ma, Z., B. Wang, M. Wang, X. Sun, Y. Tang, M. Li, F. Li, and X. Li. 2016. TL1A increased IL-6 production on fibroblast-like synoviocytes by preferentially activating TNF receptor 2 in rheumatoid arthritis. Cytokine 83: 92–98.CrossRefPubMed
3.
Zurück zum Zitat Bartok, B., and G.S. Firestein. 2010. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunological Reviews 233: 233–255.CrossRefPubMedPubMedCentral Bartok, B., and G.S. Firestein. 2010. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunological Reviews 233: 233–255.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Choe, J.Y., J. Hun Kim, K.Y. Park, C.H. Choi, and S.K. Kim. 2016. Activation of dickkopf-1 and focal adhesion kinase pathway by tumour necrosis factor alpha induces enhanced migration of fibroblast-like synoviocytes in rheumatoid arthritis. Rheumatology 55: 928–938.CrossRefPubMed Choe, J.Y., J. Hun Kim, K.Y. Park, C.H. Choi, and S.K. Kim. 2016. Activation of dickkopf-1 and focal adhesion kinase pathway by tumour necrosis factor alpha induces enhanced migration of fibroblast-like synoviocytes in rheumatoid arthritis. Rheumatology 55: 928–938.CrossRefPubMed
5.
Zurück zum Zitat Miao, C.G., D. Qin, C.L. Du, H. Ye, W.J. Shi, Y.Y. Xiong, X.L. Zhang, H. Yu, J.F. Dou, S.T. Ma, et al. 2015. DNMT1 activates the canonical Wnt signaling in rheumatoid arthritis model rats via a crucial functional crosstalk between miR-152 and the DNMT1, MeCP2. International Immunopharmacology 28: 344–353.CrossRefPubMed Miao, C.G., D. Qin, C.L. Du, H. Ye, W.J. Shi, Y.Y. Xiong, X.L. Zhang, H. Yu, J.F. Dou, S.T. Ma, et al. 2015. DNMT1 activates the canonical Wnt signaling in rheumatoid arthritis model rats via a crucial functional crosstalk between miR-152 and the DNMT1, MeCP2. International Immunopharmacology 28: 344–353.CrossRefPubMed
6.
Zurück zum Zitat Boissier, M.C., L. Semerano, S. Challal, N. Saidenberg-Kermanac’h, and G. Falgarone. 2012. Rheumatoid arthritis: from autoimmunity to synovitis and joint destruction. Journal of Autoimmunity 39: 222–228.CrossRefPubMed Boissier, M.C., L. Semerano, S. Challal, N. Saidenberg-Kermanac’h, and G. Falgarone. 2012. Rheumatoid arthritis: from autoimmunity to synovitis and joint destruction. Journal of Autoimmunity 39: 222–228.CrossRefPubMed
7.
Zurück zum Zitat Li, X.F., W.W. Shen, Y.Y. Sun, W.X. Li, Z.H. Sun, Y.H. Liu, L. Zhang, C. Huang, X.M. Meng, and J. Li. 2016. MicroRNA-20a negatively regulates expression of NLRP3-inflammasome by targeting TXNIP in adjuvant-induced arthritis fibroblast-like synoviocytes. Joint, Bone, Spine 83: 695–700.CrossRefPubMed Li, X.F., W.W. Shen, Y.Y. Sun, W.X. Li, Z.H. Sun, Y.H. Liu, L. Zhang, C. Huang, X.M. Meng, and J. Li. 2016. MicroRNA-20a negatively regulates expression of NLRP3-inflammasome by targeting TXNIP in adjuvant-induced arthritis fibroblast-like synoviocytes. Joint, Bone, Spine 83: 695–700.CrossRefPubMed
8.
Zurück zum Zitat Baubec, T., R. Ivanek, F. Lienert, and D. Schubeler. 2013. Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell 153: 480–492.CrossRefPubMed Baubec, T., R. Ivanek, F. Lienert, and D. Schubeler. 2013. Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell 153: 480–492.CrossRefPubMed
9.
Zurück zum Zitat Devailly, G., M. Grandin, L. Perriaud, P. Mathot, J.G. Delcros, Y. Bidet, A.P. Morel, J.Y. Bignon, A. Puisieux, P. Mehlen, and R. Dante. 2015. Dynamics of MBD2 deposition across methylated DNA regions during malignant transformation of human mammary epithelial cells. Nucleic Acids Research 43: 5838–5854.CrossRefPubMedPubMedCentral Devailly, G., M. Grandin, L. Perriaud, P. Mathot, J.G. Delcros, Y. Bidet, A.P. Morel, J.Y. Bignon, A. Puisieux, P. Mehlen, and R. Dante. 2015. Dynamics of MBD2 deposition across methylated DNA regions during malignant transformation of human mammary epithelial cells. Nucleic Acids Research 43: 5838–5854.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Moore, L.D., T. Le, and G. Fan. 2013. DNA methylation and its basic function. Neuropsychopharmacology 38: 23–38.CrossRefPubMed Moore, L.D., T. Le, and G. Fan. 2013. DNA methylation and its basic function. Neuropsychopharmacology 38: 23–38.CrossRefPubMed
11.
Zurück zum Zitat Berman, B.P., D.J. Weisenberger, J.F. Aman, T. Hinoue, Z. Ramjan, Y. Liu, H. Noushmehr, C.P. Lange, C.M. van Dijk, R.A. Tollenaar, et al. 2011. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nature Genetics 44: 40–46.CrossRefPubMedPubMedCentral Berman, B.P., D.J. Weisenberger, J.F. Aman, T. Hinoue, Z. Ramjan, Y. Liu, H. Noushmehr, C.P. Lange, C.M. van Dijk, R.A. Tollenaar, et al. 2011. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nature Genetics 44: 40–46.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Costello, J.F., M.C. Fruhwald, D.J. Smiraglia, L.J. Rush, G.P. Robertson, X. Gao, F.A. Wright, J.D. Feramisco, P. Peltomaki, J.C. Lang, et al. 2000. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature Genetics 24: 132–138.CrossRefPubMed Costello, J.F., M.C. Fruhwald, D.J. Smiraglia, L.J. Rush, G.P. Robertson, X. Gao, F.A. Wright, J.D. Feramisco, P. Peltomaki, J.C. Lang, et al. 2000. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature Genetics 24: 132–138.CrossRefPubMed
13.
Zurück zum Zitat Ehrlich, M., G. Jiang, E. Fiala, J.S. Dome, M.C. Yu, T.I. Long, B. Youn, O.S. Sohn, M. Widschwendter, G.E. Tomlinson, et al. 2002. Hypomethylation and hypermethylation of DNA in Wilms tumors. Oncogene 21: 6694–6702.CrossRefPubMed Ehrlich, M., G. Jiang, E. Fiala, J.S. Dome, M.C. Yu, T.I. Long, B. Youn, O.S. Sohn, M. Widschwendter, G.E. Tomlinson, et al. 2002. Hypomethylation and hypermethylation of DNA in Wilms tumors. Oncogene 21: 6694–6702.CrossRefPubMed
14.
Zurück zum Zitat Esteller, M., P.G. Corn, S.B. Baylin, and J.G. Herman. 2001. A gene hypermethylation profile of human cancer. Cancer Research 61: 3225–3229.PubMed Esteller, M., P.G. Corn, S.B. Baylin, and J.G. Herman. 2001. A gene hypermethylation profile of human cancer. Cancer Research 61: 3225–3229.PubMed
15.
Zurück zum Zitat Heichman, K.A., and J.D. Warren. 2012. DNA methylation biomarkers and their utility for solid cancer diagnostics. Clinical Chemistry and Laboratory Medicine 50: 1707–1721.CrossRefPubMed Heichman, K.A., and J.D. Warren. 2012. DNA methylation biomarkers and their utility for solid cancer diagnostics. Clinical Chemistry and Laboratory Medicine 50: 1707–1721.CrossRefPubMed
16.
Zurück zum Zitat Ai, R., D. Hammaker, D.L. Boyle, R. Morgan, A.M. Walsh, S. Fan, G.S. Firestein, and W. Wang. 2016. Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nature Communications 7: 11849.CrossRefPubMedPubMedCentral Ai, R., D. Hammaker, D.L. Boyle, R. Morgan, A.M. Walsh, S. Fan, G.S. Firestein, and W. Wang. 2016. Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nature Communications 7: 11849.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Richardson, B.C., and D.R. Patel. 2014. Epigenetics in 2013. DNA methylation and miRNA: key roles in systemic autoimmunity. Nature Review Rheumatology 10: 72–74.CrossRef Richardson, B.C., and D.R. Patel. 2014. Epigenetics in 2013. DNA methylation and miRNA: key roles in systemic autoimmunity. Nature Review Rheumatology 10: 72–74.CrossRef
18.
Zurück zum Zitat Mor, A., S.B. Abramson, and M.H. Pillinger. 2005. The fibroblast-like synovial cell in rheumatoid arthritis: a key player in inflammation and joint destruction. Clinical Immunology 115: 118–128.CrossRefPubMed Mor, A., S.B. Abramson, and M.H. Pillinger. 2005. The fibroblast-like synovial cell in rheumatoid arthritis: a key player in inflammation and joint destruction. Clinical Immunology 115: 118–128.CrossRefPubMed
19.
Zurück zum Zitat Ecke, I., F. Petry, A. Rosenberger, S. Tauber, S. Monkemeyer, I. Hess, C. Dullin, S. Kimmina, J. Pirngruber, S.A. Johnsen, et al. 2009. Antitumor effects of a combined 5-aza-2′deoxycytidine and valproic acid treatment on rhabdomyosarcoma and medulloblastoma in Ptch mutant mice. Cancer Research 69: 887–895.CrossRefPubMed Ecke, I., F. Petry, A. Rosenberger, S. Tauber, S. Monkemeyer, I. Hess, C. Dullin, S. Kimmina, J. Pirngruber, S.A. Johnsen, et al. 2009. Antitumor effects of a combined 5-aza-2′deoxycytidine and valproic acid treatment on rhabdomyosarcoma and medulloblastoma in Ptch mutant mice. Cancer Research 69: 887–895.CrossRefPubMed
20.
Zurück zum Zitat Spicer, L.J., S. Sudo, P.Y. Aad, L.S. Wang, S.Y. Chun, I. Ben-Shlomo, C. Klein, and A.J. Hsueh. 2009. The hedgehog-patched signaling pathway and function in the mammalian ovary: a novel role for hedgehog proteins in stimulating proliferation and steroidogenesis of theca cells. Reproduction 138: 329–339.CrossRefPubMed Spicer, L.J., S. Sudo, P.Y. Aad, L.S. Wang, S.Y. Chun, I. Ben-Shlomo, C. Klein, and A.J. Hsueh. 2009. The hedgehog-patched signaling pathway and function in the mammalian ovary: a novel role for hedgehog proteins in stimulating proliferation and steroidogenesis of theca cells. Reproduction 138: 329–339.CrossRefPubMed
21.
22.
Zurück zum Zitat Li, R., L. Cai, C.M. Hu, T.N. Wu, and J. Li. 2015. Expression of hedgehog signal pathway in articular cartilage is associated with the severity of cartilage damage in rats with adjuvant-induced arthritis. Journal of Inflammation-London 12: 24.CrossRef Li, R., L. Cai, C.M. Hu, T.N. Wu, and J. Li. 2015. Expression of hedgehog signal pathway in articular cartilage is associated with the severity of cartilage damage in rats with adjuvant-induced arthritis. Journal of Inflammation-London 12: 24.CrossRef
23.
Zurück zum Zitat Wang, M., S. Zhu, W. Peng, Q. Li, Z. Li, M. Luo, X. Feng, Z. Lin, and J. Huang. 2014. Sonic hedgehog signaling drives proliferation of synoviocytes in rheumatoid arthritis: a possible novel therapeutic target. Journal of Immunology Research 2014: 401903.PubMedPubMedCentral Wang, M., S. Zhu, W. Peng, Q. Li, Z. Li, M. Luo, X. Feng, Z. Lin, and J. Huang. 2014. Sonic hedgehog signaling drives proliferation of synoviocytes in rheumatoid arthritis: a possible novel therapeutic target. Journal of Immunology Research 2014: 401903.PubMedPubMedCentral
24.
Zurück zum Zitat Huber, L.C., O. Distler, I. Tarner, R.E. Gay, S. Gay, and T. Pap. 2006. Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology 45: 669–675.CrossRefPubMed Huber, L.C., O. Distler, I. Tarner, R.E. Gay, S. Gay, and T. Pap. 2006. Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology 45: 669–675.CrossRefPubMed
25.
Zurück zum Zitat Cerf, A., B.R. Cipriany, J.J. Benitez, and H.G. Craighead. 2011. Single DNA molecule patterning for high-throughput epigenetic mapping. Analytical Chemistry 83: 8073–8077.CrossRefPubMedPubMedCentral Cerf, A., B.R. Cipriany, J.J. Benitez, and H.G. Craighead. 2011. Single DNA molecule patterning for high-throughput epigenetic mapping. Analytical Chemistry 83: 8073–8077.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Lim, S.F., A. Karpusenko, J.J. Sakon, J.A. Hook, T.A. Lamar, and R. Riehn. 2011. DNA methylation profiling in nanochannels. Biomicrofluidics 5: 34106–341068.CrossRefPubMed Lim, S.F., A. Karpusenko, J.J. Sakon, J.A. Hook, T.A. Lamar, and R. Riehn. 2011. DNA methylation profiling in nanochannels. Biomicrofluidics 5: 34106–341068.CrossRefPubMed
27.
Zurück zum Zitat Qin, S., D. Sun, H. Li, X. Li, W. Pan, C. Yan, R. Tang, and X. Liu. 2016. The effect of SHH-Gli signaling pathway on the synovial fibroblast proliferation in rheumatoid arthritis. Inflammation 39: 503–512.CrossRefPubMed Qin, S., D. Sun, H. Li, X. Li, W. Pan, C. Yan, R. Tang, and X. Liu. 2016. The effect of SHH-Gli signaling pathway on the synovial fibroblast proliferation in rheumatoid arthritis. Inflammation 39: 503–512.CrossRefPubMed
28.
Zurück zum Zitat Nakamura, M., H. Tanaka, Y. Nagayoshi, H. Nakashima, K. Tsutsumi, T. Ohtsuka, S. Takahata, M. Tanaka, and H. Okada. 2012. Targeting the hedgehog signaling pathway with interacting peptides to patched-1. Journal of Gastroenterology 47: 452–460.CrossRefPubMed Nakamura, M., H. Tanaka, Y. Nagayoshi, H. Nakashima, K. Tsutsumi, T. Ohtsuka, S. Takahata, M. Tanaka, and H. Okada. 2012. Targeting the hedgehog signaling pathway with interacting peptides to patched-1. Journal of Gastroenterology 47: 452–460.CrossRefPubMed
29.
Zurück zum Zitat Qu, Y., S. Dang, and P. Hou. 2013. Gene methylation in gastric cancer. Clinica Chimica Acta 424: 53–65.CrossRef Qu, Y., S. Dang, and P. Hou. 2013. Gene methylation in gastric cancer. Clinica Chimica Acta 424: 53–65.CrossRef
30.
Zurück zum Zitat Rauscher, G.H., J.K. Kresovich, M. Poulin, L. Yan, V. Macias, A.M. Mahmoud, U. Al-Alem, A. Kajdacsy-Balla, E.L. Wiley, D. Tonetti, and M. Ehrlich. 2015. Exploring DNA methylation changes in promoter, intragenic, and intergenic regions as early and late events in breast cancer formation. BMC Cancer 15: 816.CrossRefPubMedPubMedCentral Rauscher, G.H., J.K. Kresovich, M. Poulin, L. Yan, V. Macias, A.M. Mahmoud, U. Al-Alem, A. Kajdacsy-Balla, E.L. Wiley, D. Tonetti, and M. Ehrlich. 2015. Exploring DNA methylation changes in promoter, intragenic, and intergenic regions as early and late events in breast cancer formation. BMC Cancer 15: 816.CrossRefPubMedPubMedCentral
Metadaten
Titel
MeCP2 Regulates PTCH1 Expression Through DNA Methylation in Rheumatoid Arthritis
verfasst von
Zheng-hao Sun
Yan-hui Liu
Jun-da Liu
Dan-dan Xu
Xiao-feng Li
Xiao-ming Meng
Tao-tao Ma
Cheng Huang
Jun Li
Publikationsdatum
01.06.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2017
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0591-8

Weitere Artikel der Ausgabe 5/2017

Inflammation 5/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.