Skip to main content
Erschienen in: Fibrogenesis & Tissue Repair 1/2014

Open Access 01.12.2014 | Review

Medical therapy of stricturing Crohn’s disease: what the gut can learn from other organs - a systematic review

verfasst von: Dominik Bettenworth, Florian Rieder

Erschienen in: Fibrogenesis & Tissue Repair | Ausgabe 1/2014

Abstract

Crohn’s disease (CD) is a chronic remitting and relapsing disease. Fibrostenosing complications such as intestinal strictures, stenosis and ultimately obstruction are some of its most common long-term complications. Despite recent advances in the pathophysiological understanding of CD and a significant improvement of anti-inflammatory therapeutics, medical therapy for stricturing CD is still inadequate. No specific anti-fibrotic therapy exists and the incidence rate of strictures has essentially remained unchanged. Therefore, the current therapy of established fibrotic strictures comprises mainly endoscopic dilation as well as surgical approaches. However, these treatment options are associated with major complications as well as high recurrence rates. Thus, a specific anti-fibrotic therapy for CD is urgently needed. Importantly, there is now a growing body of evidence for prevention as well as effective medical treatment of fibrotic diseases of other organs such as the skin, lung, kidney and liver. In face of the similarity of molecular mechanisms of fibrogenesis across these organs, translation of therapeutic approaches from other fibrotic diseases to the intestine appears to be a promising treatment strategy. In particular transforming growth factor beta (TGF-β) neutralization, selective tyrosine kinase inhibitors, blockade of components of the renin-angiotensin system, IL-13 inhibitors and mammalian target of rapamycin (mTOR) inhibitors have emerged as potential drug candidates for anti-fibrotic therapy and may retard progression or even reverse established intestinal fibrosis. However, major challenges have to be overcome in the translation of novel anti-fibrotics into intestinal fibrosis therapy, such as the development of appropriate biomarkers that predict the development and accurately monitor therapeutic responses. Future clinical studies are a prerequisite to evaluate the optimal timing for anti-fibrotic treatment approaches, to elucidate the best routes of application, and to evaluate the potential of drug candidates to reach the ultimate goal: the prevention or reversal of established fibrosis and strictures in CD patients.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1755-1536-7-5) contains supplementary material, which is available to authorized users.
Dominik Bettenworth and Florian Rieder contributed equally to this work.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

DB and FR developed the review concept, performed the literature review and wrote the manuscript. Both authors read and approved the final version of the manuscript.
Abkürzungen
6-MP
6-Mercaptopurine
ACE
Angiotensin-converting enzyme
ALK
Activin receptor-like kinase
AT II
Angiotensin II
AZA
Azathioprine
bFGF
Basic fibroblast growth factor
c-Abl
c-Abelson
CD
Crohn’s disease
CTGF
Connective tissue growth factor
DSS
Dextran sulfate sodium
ECM
Extracellular matrix
ED
Endoscopic dilation
EMT
Epithelial-mesenchymal transition
EndoMT
Endothelial-mesenchymal transition
HMG-CoA
3-Hydroxy-3-methyl-glutaryl-coenzyme A
IBD
Inflammatory bowel disease
IGF
Insulin-like growth factor
IL
Interleukin
IPF
Idiopathic pulmonary fibrosis
MAPK
Mitogen-activated protein kinase
MMP
Matrix metalloproteinase
mTOR
Mammalian target of rapamycin
NF-κB
Nuclear factor kappa-light-chain-enhancer of activated B cells
NIH
National Institutes of Health
NLM
National Library of Medicine
PDGF
Platelet-derived growth factor
PG-PS
Peptidoglycan-polysaccharide
PPAR
Peroxisome proliferator-activated receptor
RAS
Renin-angiotensin system
ROCK
Rho-associated protein kinase
SAP
Serum amyloid P component
TGF
Transforming growth factor
THBS
Thrombospondin
TIMP
Tissue inhibitor of metalloproteinase
TLR
Toll-like receptor
TNBS
2,4,6-Trinitrobenzene sulfonic acid
TNF
Tumor necrosis factor
VEGF
Vascular endothelial growth factor.

Methods

Literature search and data selection

A comprehensive literature search was performed to assess all relevant citations found in Embase, Medline (service of the US National Library of Medicine (NLM) and the National Institutes of Health (NIH)) and the Cochrane Library for the following key words: (‘Crohn’s disease (CD’) OR ‘Crohn’s’ AND (‘stricture’ OR ‘fibrosis’), (‘kidney’ OR ‘liver’ OR ‘skin’ OR ‘lung’ OR ‘systemic nephrogenic’ AND ‘fibrosis’ OR ‘anti-fibrotic therapy’). Additionally, references of cited original articles and reviews were further assessed for relevant work. The search included studies between 1960 and 2013. These data together with the authors’ personal experience in the field represent the basis of this review.

Introduction

Crohn’s disease (CD) is a chronic remitting and relapsing disease[1]. During acute flares, CD patients may present with mainly inflammation driven symptoms such as diarrhea, abdominal pain and weight loss[2]. However, over the long-term, the naturally progressive disease course often culminates in stricture formation. For example, around 40% of CD patients with ileal disease develop clinically apparent strictures[3]. Strictures may be subdivided into fibrotic and inflammatory as well as mixed forms[4]. Accordingly, strictures including inflammatory alterations might benefit from anti-inflammatory therapy through a reduction of the inflammation-mediated edema[5]. During the last two decades, the therapeutic armamentarium for CD has expanded significantly, especially with the use of anti-tumor necrosis factor alpha (TNF-α)-based strategies that can lead to sustained clinical response rates in a substantial proportion of CD patients[68]. The success of anti-TNF antibodies fueled the hope for altering the natural course of CD. Most recent epidemiological data, however, revealed that despite the establishment of early immunosuppressive therapy in CD patients with an increased risk of disabling disease, the frequency of fibrostenosing complications did not significantly change[9]. Thus, a specific anti-fibrotic therapy for stricturing complications in CD patients is needed. Despite recent advances in the pathophysiological understanding of intestinal fibrosis in CD[10, 11] and in contrast to fibrotic complications in other organs, no specific anti-fibrotic drugs for intestinal strictures are currently available, and all existing therapies used in clinically apparent CD-associated stenosis are the same that are prescribed for active luminal disease. The same holds true for the treatment of penetrating CD, another inflammatory bowel disease (IBD)-associated complication that is linked to impaired intestinal remodeling and healing. Available drugs for the treatment of fibrostenosing or penetrating IBD are depicted in Figure 1. Consequently, the therapy of choice for fibrostenosing CD, in conjunction with purely anti-inflammatory therapy, comprises endoscopic dilation (ED) procedures as well as surgical approaches, with all their associated limitations and morbidity[1214]. A significant number of patients have to undergo multiple surgeries, with the subsequent risk of developing intestinal failure. In general, isolated strictures with a length of 4 cm or less[12] which are devoid of ulcers[15] and are accessible by colonoscopy[16] or double-balloon enteroscopy[17] qualify for ED. Although ED procedures for stricturing CD are usually technically successful, more than one third of patients will still undergo surgery within the next years due to insufficient response to ED[1214]. In addition, major complications such as bowel perforation, bleeding or infection are reported in a range of 2 to 5%[12, 18]. In those CD patients where endoscopic stricture therapy is technically not feasible or not indicated, surgical approaches including resection and strictureplasty are recommended. While repeated surgical bowel resections bear the risk for induction of deficiencies in gastrointestinal functions and ultimately may manifest short bowel syndrome and intestinal failure, strictureplasty can treat intestinal obstruction without reducing intestinal length[10]. Here, the incidence of major complications including anastomotic leakage, abscess, fistula or sepsis is present in about 6%[19]. The recurrence rates differ between various forms of strictureplasty from 23 to 41%[2022]. To date, no head to head comparison between ED and strictureplasty has been performed yet. Taken together, the insufficient therapeutic impact of currently available anti-inflammatory drugs on stricture prevention and treatment, the complications associated with ED or surgical treatment approaches associated with high socioeconomic burden[23] as well as the high recurrence rates of stricturing CD after procedures demand the development and evaluation of specific anti-fibrotic agents for stricturing CD.

Review

A basic overview of mechanisms of intestinal fibrosis

Fibrosis is defined as the accumulation of collagen-rich extracellular matrix (ECM) in response to tissue damage and is a common complication of multiple chronic diseases[24]. Repetitive or persistent injury of the intestinal epithelium and subsequently deeper layers of the intestinal wall may initiate, perpetuate or maintain progressive fibrosis[24]. With regard to the gastrointestinal tract, acute, short-lived epithelial damage may occur as a consequence of peptic ulcers, infectious enteritis or mild diverticulitis, leading to a full restitution of tissue structure. In contrast, in CD, the gastrointestinal mucosa is exposed to chronic remitting or continuous pro-inflammatory and environmental stimuli. Pleiotropic mechanisms are activated like cellular stress, increased production of inflammatory cytokines and chemokines such as IL-13 or IL-17[25, 26] and growth factors, such as transforming growth factor beta 1 (TGF-β1)[27], insulin-like growth factor (IGF)[28], platelet-derived growth factor (PDGF)[29] and basic fibroblast growth factor (bFGF)[30]. These mediators crucially contribute to morphological and functional alterations within the bowel wall that may finally culminate in stricture formation and loss of physiological gut functions[31, 32]. In the murine model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, inhibition of IL-13 signaling by administration of small interfering RNA targeting the IL-13-α2 receptor attenuated inflammation-associated intestinal fibrosis[25]. This observation was corroborated by work from the same group, indicating that TGF-β1 secretion by macrophages was increased upon IL-13 stimulation in vitro and in vivo[33]. Contractility of isolated intestinal smooth muscle from CD patients was enhanced after pre-stimulation with IL-13[34]. Additionally, increased IL-13 transcripts were detected in muscle extracts from intestinal samples of fibrotic CD patients compared to samples from non-inflamed areas, which results in inhibition of fibroblast matrix metalloproteinase (MMP) synthesis[35]. In contrary to these findings, there was no difference in IL-13 production in mucosal explants and lamina propria mononuclear cells between patients with stricturing CD and control subjects in a different study[36].
IL-17A was found to possess pro-fibrotic activity in various cell types including cardiac fibroblasts[37], hepatic stellate cells[38], skin fibroblasts[39] and lung epithelial cells[40]. In addition, IL-17E was shown to increase collagen production in lung fibroblasts[41]. Consistent with a role of IL-17 in fibrosis IL-17 tissue levels were increased in a murine model of intestinal fibrosis[26]. In human fibrotic CD, IL-17A, but not IL-17E, was overexpressed within tissue samples from CD strictures as compared to non-strictured CD areas and healthy gut. IL-17 secretion from cultured intestinal explants from strictured CD patients was significantly increased as compared to non-strictured CD samples. Moreover, myofibroblasts from CD strictures, expressing the IL-17A receptor, generated more collagen and tissue inhibitor of metalloproteinase 1 (TIMP-1) and revealed inhibitory effects on myofibroblast migration[42]. In a clinical trial of patients with inflammatory CD, however, blockade of anti-IL-17A by administration of the anti-IL-17A antibody secukinumab failed to improve disease activity, was associated with a high rate of serious adverse events and had to be stopped prematurely since predefined criteria for futility were met[43], indicating that further studies are necessary before using anti-IL-17-based strategies in the therapy of intestinal fibrosis.
The core mediator in various organs for both, the initiation as well as the maintenance of fibrosis is TGF-β[44]. This growth factor is produced by a vast majority of cells and organs in mammals and is stored in large amounts extracellularly through chemical cross-links to the ECM[45]. The TGF-β/Smad signaling pathway appears pivotal for the development of fibrosis[44]. Canonical intracellular signal transduction is mediated by Smad2/3 phosphorylation by TGF-β receptor I kinase leading to binding of Smad4. This complex translocates into the nucleus and induces TGF-β-specific pro-fibrotic gene expression[46]. Inhibitory members of the Smad family such as Smad6/7 block the phosphorylation of Smad2/3 via competition with the TGF-β receptor I kinase[47, 48].
In addition to the above mentioned mediators, the imbalance of MMPs and TIMPs, which are physiologically involved in maintaining a state of ‘healthy’ remodeling and restitution, can aggravate structural changes of the bowel wall[48, 49].
Restoring the integrity of the intestinal barrier, culminating in epithelial wound closure may help to resolute and regress fibrosis, since continuous barrier defects appear to be one potential trigger for chronic inflammation promoting pro-fibrotic alterations. To this aim ECM-producing mesenchymal cells are recruited. These cells may migrate from neighboring tissue[50], originate from circulating mesenchymal cell precursors or bone marrow stem cell-derived mesenchymal cells[51], arise by proliferation from existing mesenchymal cells[30] or result from epithelial- or endothelial-mesenchymal transition (EMT and EndoMT, respectively)[52]. Recently, the intestinal microbiota has been identified as a key pro-fibrotic factor, as suggested by several lines of evidence: 1) Ligands to Toll-like receptor 4 (TLR4) (predominantly from gram-negative bacteria) or TLR2 (predominantly from gram-positive bacteria) activate NF-κB, resulting in cytokine and chemokine secretion by intestinal mesenchymal cells[53]. 2) In several experimental colitis models, microbes initiate or perpetuate gut inflammation and fibrosis, such as in SAMP1/YitFc mice, the IL-10 knock out mice, TNBS and peptidoglycan-polysaccharide (PG-PS)-induced colitis[54]. 3) In humans, gene variants that affect innate immunity, located in or near genes involved in bacterial recognition and processing, are genetically associated to IBD or CD as well as complicated CD courses[55]. 4) Finally, circulating antibodies against microbial components are commonly found in IBD patients and are believed to arise from an immune response towards the luminal microbiota. These antibodies are qualitatively and quantitatively associated with and predictive of a more complicated disease phenotype including fibrostenosis[50, 5658].
Beside chronic inflammation as a major driver of intestinal fibrosis, inflammation-independent mechanisms deserve closer attention. In particular, activated mesenchymal cells, also referred to as disease-activated myofibroblasts, produce and secrete high levels of several collagen types, such as type I, III and V[5961] and ECM compounds, such as fibronectin or tenascin C[62, 63] which get deposited, linked and subsequently form matrix networks that can lead to increased tissue stiffness[64]. Stiffness in itself in the absence of inflammation activates further mesenchymal cells in the form of a positive feedback loop[64]. The ability of myofibroblasts to contract might further increase the luminal narrowing of the intestine and contraction can be induced by factors other than inflammatory mediators[65]. Interestingly, latent matrix-bound TGF-β1 can be activated by mesenchymal cells’ traction forces, pulling against a mechanically resistant ECM. This leads to a conformation change of the latency-associated peptide liberating the active TGF-β1[66].
In summary, despite different physiological functions and unique features of the human gut, such as the high load of microbial components, intestinal fibrosis shares pathological core features with fibrosis of other organs, such as the lung, kidney, skin or liver[24]. Consequently, anti-fibrotic agents with proven efficacy in fibrotic disease of these organs may represent promising candidates for stricturing CD and will be discussed in the following section.

Anti-fibrotic therapeutic approaches in other organs

Commonly used drugs for the anti-inflammatory therapy of CD have been observed to possess at least minor anti-fibrotic properties in other organs. For example, corticosteroids were found to decrease pro-collagen expression in vivo and in vitro[67] as well as to inhibit collagenase activity[68]. Corticosteroids show some effect in retroperitoneal fibrosis[69], systemic sclerosis[70] and idiopathic pulmonary fibrosis (IPF)[71]. In contrast, human intestinal myofibroblasts respond to corticosteroids with enhanced pro-collagen expression upon dexamethasone stimulation[72]. In stricturing CD, small case series report variable therapeutic success rates of intralesional steroid injection[73]. The long-term systemic administration of corticosteroids in CD, however, is obsolete due to severe and pleiotropic side effects. Azathioprine, one of most commonly prescribed immunosuppressive drugs for maintenance of remission in CD patients, is beneficial in the treatment of retroperitoneal fibrosis[74] and fibrotic pulmonary disease[75, 76]. In CD patients, azathioprine may delay postoperative, fibrotic complications[77], however, the early use of immunosuppressive treatment regimens does not reduce the occurrence of intestinal strictures and frequency of surgical interventions in the long-term[9, 78]. TNF-α is a critical cytokine in the pathogenesis of IBD and to date four anti-TNF antibodies have shown clinical efficacy as anti-inflammatory agents[7982] and are available for clinical use. Several reports from liver fibrosis[83], pulmonary fibrosis[84] and systemic sclerosis[85] suggest an anti-fibrotic effect of anti-TNF treatment. This could be explained by TNF-α-mediated myofibroblast activation, increased collagen production and TIMP-1 expression as well as inhibition of MMP-2 activity and collagen degradation[86]. In contrast, human intestinal myofibroblasts from CD patients show increased expression of TIMP-1 and decreased collagen production upon exposure to infliximab[87]. After initially conflicting data in patients with CD with a possible pro-fibrotic effect of anti-TNF therapy in vivo, recent data revealed no link between anti-TNF administration with intestinal stricture formation[88]. Information derived from a small retrospective study points towards at least a partial amelioration of stricture formation with anti-TNF therapy[89] and anti-TNF treatment may delay the time to surgery in CD[90].
In daily clinical practice, most CD patients present with established strictures, representing the end-stage of the fibrotic process, and most clinicians see this scenario as an inevitable progression to a likely surgical intervention. This does not have to be so, as the theoretical and practical feasibility to stop or even reverse intestinal fibrosis is supported by the observation that tissue alterations in experimental models of intestinal fibrosis disappear after elimination of the pro-fibrotic stimulus[54]. No therapeutic medical strategy for pre-existing intestinal strictures exists at the moment, but this clinical scenario could greatly improve by looking at existing knowledge derived from other organ systems.
Anti-fibrotic strategies used in the kidney, lung, liver, heart or skin can be grouped into strategies modulating growth factors, inflammation or oxidative stress, intracellular enzymes, and ECM production or assembly (Figure 2). We herein provide a summary of currently available experimental anti-fibrotics that have been tested for indications outside of the intestine. We selected promising mechanisms and agents that could be applicable to stricture therapy of CD in the near future and describe them in greater detail.

Growth factors

Feasibility of TGF-β1 blockade to treat fibrotic diseases has been shown in IPF. In this condition, TGF-β is driving fibrotic alterations and epithelium-dependent fibroblast activation[44]. In murine models of IPF, antagonizing TGF-β action via Tβ-RII (as a ligand decoy), P144, an inhibitor of TGF-β activity, or P17, an anti-TGF-β peptide, resulted in potent anti-fibrotic effects[9193]. In human IPF patients, two phase III trials have shown that treatment with pirfenidone, an agent inhibiting TGF-β activity and p38 mitogen-activated protein kinase (MAPK) signaling, improved pulmonary function[94, 95]. Pirfenidone is expected to be approved for IPF in Europe soon[96]. Another example for the potential of anti-TGF-β-based strategies is scleroderma, a disease characterized by enhanced expression of TβRI and TβRII in fibroblasts leading to increased collagen I production and ECM deposition in the skin and internal organs[97]. Topical treatment with P144 has shown efficacy in patients with systemic sclerosis, and multiple trials with this agent are currently ongoing. Fresolimumab (GC1008) is a humanized antibody targeting anti-TGF-β1,2 and 3 and was recently evaluated in a phase I trial in patients with treatment-resistant primary focal segmental glomerulosclerosis[98]. The humanized αVβ6 integrin-blocking antibody STX-100, which inhibits the activation of latent TGF-β on epithelial cells, is currently being examined in a phase II trial in IPF patients[24, 99]. Comparable results have been reported from kidney fibrosis: preclinical in vitro and in vivo studies indicate an anti-fibrotic activity using anti-TGF-β antibodies, soluble TGF-β receptor, blockade of TGF-β activation by decorin, a small-molecule inhibitor of TGF-β receptors[100], administration of inhibitory protein Smad7[101] and thrombospondin-1 (THBS-1) blocking agent inhibiting TGF-β activation[102]. In human patients with focal segmental glomerulosclerosis, a phase I trial with fresolimumab revealed promising results[98]. Moreover, hepatic growth factor, acting as an inhibitor of Smad2/3 translocation in fibroblasts[103] was observed to mediate anti-fibrotic effects in experimental models of renal and liver fibrosis but was also associated with an increased risk of hepatocellular carcinoma[104]. Substrate specificity of therapeutics needs to be taken into consideration as well. In an experimental model of scleroderma, blocking activin receptor-like kinase 5 (ALK5), which is involved in phosphorylation of Smad2/3, leads to decreased fibroblast activation. However, ALK5 blockade in clinical trials was associated with adverse events due to cross-reactivity with other kinase inhibitors[105].
In addition to the Smad-signaling cascade, non-Smad pathways comprising TGF-β1 activated MAPKs and several tyrosine kinases have been targeted for anti-fibrotic actions. For example, c-Abelson (c-Abl), a component of the Bcr-Abl oncogene, can be effectively blocked by selective tyrosine kinase inhibitors such as imatinib. This agent inhibits PDGF as well and thus potentially regulates fibroblast proliferation and transformation[106]. Despite promising results from in vitro and in vivo studies, to date limited experience with tyrosine kinases in human fibrotic diseases is available[107, 108]. Of note, novel tyrosine kinase inhibitors such as nilotinib and dasatinib mediate dose-dependent decreases in ECM production and reveal even greater efficacy as compared to that of imatinib[109], while being well tolerated by the patients[110]. In contrast to TGF-β1, other members of the TGF family such as TGF-β3 possess anti-fibrotic properties. Avotermin is a recombinant bioactive human TGF-β3 that has been tested for treatment of dermal scars and significantly reduces the scar size by intradermal injection therapy[111]. In addition, further growth factors such as serum amyloid P (SAP) have been proven effective in experimental models[112, 113] of fibrosis and have already entered phase I clinical trials in human patients[114].
The scientific rationale to target TGF-β signaling in stricturing CD comes from in vitro as well as in vivo observations. For example, intestinal TGF-β overexpression in mice leads to colonic fibrosis and obstruction[27], while disruption of the TGF-β/Smad signaling cascade protects animals from intestinal fibrosis[115]. In human tissue samples from colonic CD strictures, TGF-β and its receptors as well as pSmad2/3 expression are increased, while Smad7 expression was significantly reduced[116]. Although targeting TGF-β signaling for fibrotic diseases has a strong scientific rationale, it has to be taken into account that this growth factor is not only crucially involved in fibrogenesis but additionally functions as a key regulator of cellular processes including differentiation, proliferation, transformation, tumor suppression as well as immunoregulation and its actions may be context-dependent[96, 117]. For example, TGF-β1-deficient mice develop severe multiorgan inflammation and expire by 5 weeks of age[118, 119]. This outcome occurs even under germ-free conditions[120] and is mediated by CD4+ T cells[121]. Similarly, targeted deletion of Smad2 and Smad4 is associated with early death in mice[122, 123]. Furthermore, administration of metelimumab, a monoclonal antibody against TFG-β1, in human systemic sclerosis patients was associated with significantly more serious adverse events than placebo treatment including musculoskeletal pain, progression of skin involvement and death[124]. Possible side effects during anti-TGF-β therapy would have to be carefully monitored, in particular in case of pre-existing inflammation. Therefore, neutralizing TGF-β 1 in vivo, as an anti-fibrotic approach in CD may be highly problematic, as this may actually lead to disease exacerbation given the potent anti-inflammatory and immunoregulatory properties of this cytokine.

HMG-CoA reductase inhibitors

HMG-CoA reductase inhibitors were developed with the intention to decrease cholesterol levels. More recently, they were found to mediate anti-inflammatory as well as anti-fibrotic effects in vitro[125], including decreased proliferation of mesangial cells, lower fibronectin as well as type IV collagen expression and decreased secretion of TGF-β1 and connective tissue growth factor (CTGF)[126128]. Corroborating these in vitro findings, HMG-CoA reductase inhibitors revealed various anti-fibrotic effects in murine models of nephropathy and fibrosis[126, 127]. In CD patients, HMG-CoA reductase inhibitor atorvastatin was shown to mediate anti-inflammatory effects such as inhibition of T cell recruitment via reduced CXCL10 levels[129] and reduce surrogate inflammatory markers such as calprotectin, C-reactive protein and TNF-α expression[130]. Furthermore, it was demonstrated that simvastatin reduced TGF-β1 expression in human fibroblasts by inhibition of Smad3 phosphorylation[131] leading, together with induced apoptosis in fibroblast and myofibroblasts, to a significant amelioration of experimental fibrosis[132]. In addition, mesenchymal cells isolated from patients with radiation-induced intestinal fibrosis respond to pravastatin treatment with significantly decreased production of fibronectin and type-1 collagen through Rho-/ROCK-dependent reduction of CTGF expression[133]. Nevertheless, the exact anti-fibrotic potential of statin treatment in stricturing CD still needs to be defined by the use of hard clinical endpoints, but this drug class has an already established safety profile for routine clinical use and could serve as a potential anti-fibrotic treatment approach.

Renin-angiotensin system (RAS) modulators

Angiotensin II (AT II) is the major mediator of the renin-angiotensin system (RAS). AT II may increase ECM accumulation through plasminogen activator inhibitor-1-mediated decrease of MMPs and enhance TGF-β1 production in cardiac and renal fibrosis[134, 135]. The impact of AT II can also be observed in liver fibrosis. In hepatic stellate cells, AT II induces contraction and proliferation accompanied by increased collagen and TGF-β expression[136]. Accordingly, progression of liver fibrosis in hepatitis C virus positive patients is significantly decreased after treatment with angiotensin-converting enzyme inhibitors[137]. AT II is crucially involved in the manifestations of renal fibrosis by induction of pro-fibrotic effector molecules and EMT resulting in enhanced ECM production[138], and inhibition of AT II using angiotensin-converting enzyme (ACE) inhibitors or blocking agents towards the AT I receptor has emerged as a therapeutic approach to slow down renal disease progression[139] and revealed anti-fibrotic actions in the lung, heart and liver[140143]. Interestingly, all components of the RAS have been detected in the human colonic mucosa[144] and AT II is increased in the mucosa of CD patients[145]. In vivo administration of the ACE inhibitor enalaprilate has been proven to reduce weight loss and histological damage in murine dextran sulfate sodium (DSS)-induced colitis[146]. ACE inhibitor treatment was also effective in spontaneous colitis of IL-10-deficient mice[147] and this finding has been confirmed by other studies[148, 149].
Of note, through its AT1 receptor, AT II enhances the expression of CTGF, and administration of AT II inhibitors and AT1 receptor antagonists significantly ameliorates or reverses fibrotic alterations in experimental colitis reflected by reduced collagen amounts and TGF-β1 mRNA levels[150, 151]. Existing preclinical data in IBD combined with clinical trials from the liver and kidney make RAS modulation a promising future approach for CD-associated fibrosis.

Inflammation modulators

Pro-inflammatory cytokines contributing to the pathogenesis of IBD could also be involved in the development of intestinal fibrosis in CD. For example, IL-1 modulates myofibroblast activation, chemokine production, MMP secretion[152] and is involved in EMT induction[153]. IL-6 is known to regulate TGF-β and TGF-βR2 expression as well as fibroblast proliferation[154, 155] and is strongly upregulated in serum and tissue samples from CD patients[156]. IL-4 and IL-13 represent pivotal mediators of immune activation and T helper cell 2 responses are crucially involved in the development of intestinal fibrosis in vivo. IL-13 mediates, through binding to its IL-13Rα, an increased production of TGF-β and is a key player in the initiation of fibrotic alterations in the intestine[25]. Confirmatively, antagonism of IL-13 is effective to prevent fibrosis development in experimental colitis[33, 157]. In addition, several IL-13 antibodies such as lebrikizumab, tralokinumab and QAX576 as well as the anti-TNF antibody etanercept and the immunomodulatory drug thalidomide are currently being evaluated for their anti-fibrotic potency in liver fibrosis and pulmonary fibrosis[24, 158160].
The process of inflammation and fibrosis are likely to be intertwined through angiogenesis and lymphangiogenesis. Increased levels of factors implicated in angiogenesis have been documented in IBD patients, such as vascular endothelial growth factor A (VEGF-A)[161]. At a cellular level, PDGF increases proliferation and migration of fibroblasts and myofibroblasts[46]. In the human intestine, PDGF facilitates ECM deposition and is upregulated in inflamed colonic tissue specimen of CD patients[29]. Experience with blocking these agents in other fibrotic diseases exist. In a phase II trial, combined blockade of VEGF, PDGF and bFGF by the indolinone derivative BIBF 1120 tends to decrease the development of human IPF[162]. Critical for the future use of inflammation modulators in the therapy of CD-associated fibrosis will be the quality, quantity and the timing of the approach because all of the above mediators act at different times throughout the disease course, in differing combinations and quantities[163]. Additionally, all of the above molecules interact with each other and blocking a single cytokine at a specific time might not be sufficient for effective anti-fibrotic therapy.

Extracellular matrix modulators

The imbalance between deposition and degradation of ECM in fibrotic disease is a logical target for anti-fibrotic treatment approaches. Stimulation of MMPs as central regulators of ECM disassembly were expected to reverse fibrotic alterations, however, clinical studies in patients with nephrosclerosis failed to show efficacy[164]. Likewise, depletion of TIMP should decrease fibrotic changes, but no amelioration of renal fibrosis was observed following TIMP inhibition in mice[165]. With regard to the intestine, there is growing evidence for MMPs as a regulator of intestinal barrier function and mucosal defense[166], indicating pleiotropic functions of this molecular group in addition to purely matrix regulation. For example, serum MMP-9 levels correlate with disease activity in pediatric CD patients[167] and may be used as a biomarker to follow the course of disease in adult CD patients as well[168, 169]. Colonic tissue expression of MMP-1, MMP-2, MMP-3 and MMP-9 was significantly increased in samples from inflamed mucosa as compared to non-inflamed mucosal samples[170]. Increased MMP-9 expression in inflamed tissue colonic specimen from CD patients seems to be associated with decreased likelihood of disease recurrence[171]. Finally, in mucosa specimen overlaying colonic strictures in CD patients, MMP-3 and MMP-12 expression was significantly reduced[116]. Thus, MMPs need to be further and carefully investigated as possible targets for anti-fibrotic treatment in as well as outside of the intestine and are not yet ready for prime time.

Intracellular enzymes and receptors

The mammalian target of rapamycin (mTOR) protein is a serine/threonine protein kinase that consists of several complexes among which mTOR complex 1 regulates protein synthesis, proliferation as well as fibrotic actions[46]. mTOR inhibitors possess direct anti-fibrotic properties by decreasing fibroblast and myofibroblast numbers and by reducing pro-fibrotic cytokine expression, including IL-4, IL-6, IL-13, IL-17, TGF-β1 as well as type I and III collagen[172, 173]. Efficacy of mTOR inhibitors have been demonstrated in numerous fibrotic disorders of the skin, lung, kidney and liver[46]. With regard to CD, a randomized, double-blind clinical trial found that everolimus was as effective as azathioprine to achieve steroid-free remission in 138 patients with active CD[174]. Additionally, there are two case reports indicating that mTOR inhibitors sirolimus and everolimus are able to induce remission in refractory CD[175, 176]. Given the fact that mTOR inhibitors possess anti-fibrotic as well as immunosuppressive effects, this class of drug appears to be promising for intestinal fibrosis therapy, however, the definitive therapeutic potential for intestinal fibrosis remains to be defined yet.
Peroxisome proliferator-activated receptor gamma (PPAR-γ) is a nuclear receptor that modulates gene expression and is involved in various physiological and pathological processes including inflammation and fibrosis[177]. After stimulation with specific ligands, PPAR-γ directly antagonizes Smad3 or reduces CTGF expression[178]. PPAR-γ agonists are able to improve experimental fibrosis, while PPAR-γ selective antagonists abolish anti-fibrotic actions[179, 180]. Given the fact that CTGF is a key downstream effector of TGF-β on connective tissue cells, FG-3019, a humanized antibody targeting CTGF, has been developed and successfully passed phase I trials in several fibrotic disorders and recently entered phase II studies[24]. In the human intestine, PPAR-γ has been detected in the colonic mucosa and has been identified as a mediator of established anti-inflammatory drugs such as 5-ASA[177, 181]. The future role of PPAR-γ agonists as a possible target for anti-fibrotic treatment in stricturing CD is promising, given the combined action against inflammation and fibrosis and its well-defined mechanism of action. Furthermore, other drug candidates such as endothelin A receptor antagonist bosentan have shown promising results in patients with IPF and renal interstitial fibrosis and deserves further investigation[182, 183].
A summary of compounds used as anti-fibrotic therapies in other organs and their mode of action is depicted in Figure 3. Anti-fibrotic clinical trials of major interest are shown in Table 1.
Table 1
Completed clinical trials evaluating anti-fibrotic drugs in organs other than the gut
Parameter
Author
Study organ
Number of patents
Type of trial
Study drug
Mode of action
Outcome measures
Growth factors
Noble[95]
Lung
779
RCT, phase III
Pirfenidone
Inhibition of TGF-β
Increased FVC in IPF
Trachtman[98]
Kidney
16
Open-label, phase I
Fresolimumab
Antibody targeting all isoforms of TGF-β
Safety, pharmacokinetics
Ferguson[111]
Skin
223
RCT, phase I/II
Avotermin
Antibody targeting TGF-β3
Acceleration and permanent improvement in dermal scaring
Dillingh[114]
Lung
29
RCT, phase I
rhSAP
Substitution of SAP
Reduction in SAP levels and circulating fibrocytes in healthy control and IPF patients
Oxidative stress
Raghu[158]
Lung
88
RCT, phase II
Etanercept
Blockade of TNF
Physiological and functional decrease in disease progression in IPF
Corren[159]
Lung
219
RCT, phase II
Lebrikizumab
Antibody targeting IL-13
Improved lung function in asthmatic patients
Horton[160]
Lung
23
RCT, phase III
Thalidomide
Anti-angiogenic and anti-inflammatory
Improvement of cough and respiratory quality of life in IPF
Intracellular enzymes and receptors
Richeldi[162]
Lung
432
RCT, phase II
BIBF 1120
Tyrosine kinase inhibitor
Tendency towards reduced decline of lung function in IPF
Daniels[108]
Lung
119
RCT, phase II/III
Imatinib
Tyrosine kinase inhibitor
No effect on survival and lung function
ECM and other
Couluris[140]
Lung
20
Uncontrolled, interventional study, phase II
Losartan
AT1 antagonist
Stabilization of lung function in IPF
el-Agroudy[142]
Kidney
162
RCT, phase II
Losartan
AT1 antagonist
Decreased TGF-β1 plasma levels and proteinuria in renal interstitial fibrosis
Kuhn[182]
Skin
10
Prospective, open-label, phase II
Bosentan
Endothelin receptor antagonist
Reduced skin thickening in systemic sclerosis
Diez[141]
Heart
34
Uncontrolled, phase II
Losartan
AT1 antagonist
Decreased myocardial collagen content and left ventricular chamber stiffness in hypertensive patients
De[143]
Liver
39
RCT, phase II
Losartan
AT1 antagonist
Reduction of portal pressure in patients with liver cirrhosis
 
King[183]
Lung
616
RCT
Bosentan
Endothelin receptor antagonist
Improvement of FVC and diffusing capacity in IPF
AT1, angiotensin II receptor antagonist subtype 1; CXCL, CXC ligand; ECM, extracellular matrix; FVC, forced vital capacity; IL, interleukin; IPF, idiopathic pulmonary fibrosis; RCT, randomized controlled trial; SAP, serum amyloid P component; TGF-β, transforming growth factor beta; TNF, tumor necrosis factor.

Challenges and future outlook

The most efficient anti-fibrotic treatment approach still remains the elimination of the primary cause of intestinal injury, which would mean nothing less than curing CD. However, since a magic bullet for CD is not and will most likely not be available in the near future, clinical evaluation and optimization of anti-fibrotic drug candidates for stricturing CD is a justifiable and promising treatment strategy.
However, the simple transfer of these agents into CD treatment is premature and multiple obstacles have to be overcome to make use of the above described mediators and mechanisms.
First, the ideal anti-fibrotic drug should target something uniquely expressed in a specific fibrotic complication in a particular organ and should not display any systemic side effects. This is particularly true in case of concomitant injury elsewhere in the body. To date, however, no specific target for intestinal fibrosis or other fibrotic disease has been identified, which supports the hypothesis that mechanisms of fibrosis are shared between different organs.
Second, the optimal timing to commence anti-fibrotic treatment is of utmost importance to CD patients, however, is not defined yet. It is obvious that an early use of anti-fibrotics is expected to be associated with a better outcome in patients prone to this complication. Pre-existing fibrosis and concomitantly increased tissue stiffness can perpetuate fibrosis even in the absence of inflammation. Data from experimental fibrosis seems to confirm that there might be a critical point in evolution of fibrosis when the progress becomes irreversible[184]. Therefore, an early treatment with anti-fibrotics at the same time of anti-inflammatory agents might be mandatory in human CD patients[185]. Unique to CD is a fistulizing disease process and this complication needs to be kept in mind when using drugs inhibiting tissue remodeling because this could theoretically promote fistulizing disease. However, timing may not be simply based on the disease duration, since up to 50% of CD patients present with stricturing or penetrating disease at the time of first diagnosis[186].
Third, a patient-tailored anti-fibrotic treatment approach necessitates the identification of biomarkers to enable individual risk stratifications for stricturing disease and to follow the individual evolution of fibrosis. As opposed to other organs, such as liver[187, 188] or lung[159], regrettably, no clinically useful biomarkers for stricturing CD as well as for assessment of therapeutic response are available yet. Promising approaches include serology[189, 190] or imaging techniques[191196], but the currently used tools only detect endpoints based on clinical findings of possible CD fibrosis and hence are not accurate.
Fourth, the best route of application for anti-fibrotic agents in stricturing CD has to be elucidated. In line with the beneficial effects of systemic administration of anti-fibrotics in other organs[24], intravenous or oral application may be appropriate. The CD intestine offers the advantage of potential local therapy as a large proportion of strictures is accessible via endoscopy. Intralesional injection or topical application of anti-fibrotics is a valid and practical therapeutic option, as shown by steroid[197] or infliximab application[198]. This approach may be associated with fewer side effects as compared to systemic administration.
Finally, a general limitation to evaluating potential anti-fibrotic agents is the long-lasting evolution of fibrotic complications in patients with CD requiring clinical trials of long duration and large patient populations, making them very expensive and impractical[24].
It is unclear and in the realm of speculation, which of the reviewed drugs has the highest potential for success as an anti-fibrotic treatment in CD. Combining drugs with a known safety profile and anti-fibrotic efficacy, such as HMG-CoA reductase inhibitors, mTOR inhibitors or inhibitors of the angiotensin system, could serve as a starting point. Given the effect of most substances on a reduction of TGF-β1 proper precaution needs to be taken for carefully monitoring intestinal inflammation. Novel drug delivery systems, such as the Multi Matrix System (MMX®), allowing oral administration of a compound with the substance being released in a defined area of the gastrointestinal tract (such as the terminal ileum) can circumvent systemic side effects, such as hypotension for angiotensin blockade.
To move forward with specific anti-fibrotic therapies in the future we need to focus on identifying mechanisms of fibrogenesis and to develop new and better animal models for this disease (Figure 4). What, however, is badly missing is the availability of biomarkers for natural history and response to therapy that are readily available and easy to measure. Only through utilization of these markers will the field be able to design clinical studies of reasonable length and sufficient patient number, reflected in affordable budgets that put our ability for testing anti-fibrotic therapies within reach.

Conclusions

Stricturing CD is still an unresolved problem with strong implications for the patients and a high socioeconomic burden due to frequent hospitalizations and surgery[23]. Despite recent advances in the pathophysiological understanding of fibrosis and significant expansion of the anti-inflammatory armamentarium over the last few decades, the occurrence of intestinal strictures in CD patients did not significantly change. To date, effective therapeutic approaches for stricturing CD are limited to ED or surgical interventions. The data presented in this review highlight the pleiotropic anti-fibrotic actions that have been observed with the use of numerous agents in fibrotic complications of the skin, the lung and the kidney. Thus, it is justified to propose further evaluation of these drug candidates in clinical trials for the management of intestinal fibrosis. However, previous establishment of non-invasive biomarkers to assess the degree of fibrosis, to monitor fibrotic evolution and to predict therapeutic response, combined with the development of imaging techniques to quantify intestinal fibrosis, appear to be essential pre-requisites for individual risk stratification and proper design of clinical trials.

Acknowledgements

DB was supported by a research fellowship from the Faculty of Medicine, University of Münster, Münster, Germany. FR is funded by the NIH (grant: 1T32DK083251-01A1). The authors would like to thank Dr Claudio Fiocchi and Dr Bo Shen, Department of Gastroenterology, Hepatology and Nutrition, Cleveland Clinic Foundation, Cleveland, OH, USA, for helpful comments.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

DB and FR developed the review concept, performed the literature review and wrote the manuscript. Both authors read and approved the final version of the manuscript.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Baumgart DC, Sandborn WJ: Crohn’s disease. Lancet. 2012, 380: 1590-1605. 10.1016/S0140-6736(12)60026-9.PubMedCrossRef Baumgart DC, Sandborn WJ: Crohn’s disease. Lancet. 2012, 380: 1590-1605. 10.1016/S0140-6736(12)60026-9.PubMedCrossRef
2.
Zurück zum Zitat Cheifetz AS: Management of active Crohn disease. JAMA. 2013, 309: 2150-2158. 10.1001/jama.2013.4466.PubMedCrossRef Cheifetz AS: Management of active Crohn disease. JAMA. 2013, 309: 2150-2158. 10.1001/jama.2013.4466.PubMedCrossRef
3.
Zurück zum Zitat Cosnes J, Gower-Rousseau C, Seksik P, Cortot A: Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology. 2011, 140: 1785-1794. 10.1053/j.gastro.2011.01.055.PubMedCrossRef Cosnes J, Gower-Rousseau C, Seksik P, Cortot A: Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology. 2011, 140: 1785-1794. 10.1053/j.gastro.2011.01.055.PubMedCrossRef
4.
Zurück zum Zitat Lenze F, Wessling J, Bremer J, Ullerich H, Spieker T, Weckesser M, Gonschorrek S, Kannengiesser K, Rijcken E, Heidemann J, Luegering A, Schober O, Domschke W, Kucharzik T, Maaser C: Detection and differentiation of inflammatory versus fibromatous Crohn’s disease strictures: prospective comparison of 18 F-FDG-PET/CT, MR-enteroclysis, and transabdominal ultrasound versus endoscopic/histologic evaluation. Inflamm Bowel Dis. 2012, 18: 2252-2260. 10.1002/ibd.22930.PubMedCrossRef Lenze F, Wessling J, Bremer J, Ullerich H, Spieker T, Weckesser M, Gonschorrek S, Kannengiesser K, Rijcken E, Heidemann J, Luegering A, Schober O, Domschke W, Kucharzik T, Maaser C: Detection and differentiation of inflammatory versus fibromatous Crohn’s disease strictures: prospective comparison of 18 F-FDG-PET/CT, MR-enteroclysis, and transabdominal ultrasound versus endoscopic/histologic evaluation. Inflamm Bowel Dis. 2012, 18: 2252-2260. 10.1002/ibd.22930.PubMedCrossRef
5.
Zurück zum Zitat Schoepfer AM, Safroneeva E, Vavricka SR, Peyrin-Biroulet L, Mottet C: Treatment of fibrostenotic and fistulizing Crohn’s disease. Digestion. 2012, 86 (Suppl 1): 23-27.PubMedCrossRef Schoepfer AM, Safroneeva E, Vavricka SR, Peyrin-Biroulet L, Mottet C: Treatment of fibrostenotic and fistulizing Crohn’s disease. Digestion. 2012, 86 (Suppl 1): 23-27.PubMedCrossRef
6.
Zurück zum Zitat Hanauer SB, Feagan BG, Lichtenstein GR, Mayer LF, Schreiber S, Colombel JF, Rachmilewitz D, Wolf DC, Olson A, Bao W, Rutgeerts P, ACCENT I Study Group: Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet. 2002, 359: 1541-1549. 10.1016/S0140-6736(02)08512-4.PubMedCrossRef Hanauer SB, Feagan BG, Lichtenstein GR, Mayer LF, Schreiber S, Colombel JF, Rachmilewitz D, Wolf DC, Olson A, Bao W, Rutgeerts P, ACCENT I Study Group: Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet. 2002, 359: 1541-1549. 10.1016/S0140-6736(02)08512-4.PubMedCrossRef
7.
Zurück zum Zitat Sandborn WJ, Hanauer SB, Rutgeerts P, Fedorak RN, Lukas M, MacIntosh DG, Panaccione R, Wolf D, Kent JD, Bittle B, Li J, Pollack PF: Adalimumab for maintenance treatment of Crohn’s disease: results of the CLASSIC II trial. Gut. 2007, 56: 1232-1239. 10.1136/gut.2006.106781.PubMedCentralPubMedCrossRef Sandborn WJ, Hanauer SB, Rutgeerts P, Fedorak RN, Lukas M, MacIntosh DG, Panaccione R, Wolf D, Kent JD, Bittle B, Li J, Pollack PF: Adalimumab for maintenance treatment of Crohn’s disease: results of the CLASSIC II trial. Gut. 2007, 56: 1232-1239. 10.1136/gut.2006.106781.PubMedCentralPubMedCrossRef
8.
Zurück zum Zitat Colombel JF, Sandborn WJ, Rutgeerts P, Enns R, Hanauer SB, Panaccione R, Schreiber S, Byczkowski D, Li J, Kent JD, Pollack PF: Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: the CHARM trial. Gastroenterology. 2007, 132: 52-65. 10.1053/j.gastro.2006.11.041.PubMedCrossRef Colombel JF, Sandborn WJ, Rutgeerts P, Enns R, Hanauer SB, Panaccione R, Schreiber S, Byczkowski D, Li J, Kent JD, Pollack PF: Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: the CHARM trial. Gastroenterology. 2007, 132: 52-65. 10.1053/j.gastro.2006.11.041.PubMedCrossRef
9.
Zurück zum Zitat Cosnes J, Nion-Larmurier I, Beaugerie L, Afchain P, Tiret E, Gendre JP: Impact of the increasing use of immunosuppressants in Crohn’s disease on the need for intestinal surgery. Gut. 2005, 54: 237-241. 10.1136/gut.2004.045294.PubMedCentralPubMedCrossRef Cosnes J, Nion-Larmurier I, Beaugerie L, Afchain P, Tiret E, Gendre JP: Impact of the increasing use of immunosuppressants in Crohn’s disease on the need for intestinal surgery. Gut. 2005, 54: 237-241. 10.1136/gut.2004.045294.PubMedCentralPubMedCrossRef
10.
Zurück zum Zitat Rieder F, Zimmermann EM, Remzi FH, Sandborn WJ: Crohn’s disease complicated by strictures: a systematic review. Gut. 2013, 62: 1072-1084. 10.1136/gutjnl-2012-304353.PubMedCrossRef Rieder F, Zimmermann EM, Remzi FH, Sandborn WJ: Crohn’s disease complicated by strictures: a systematic review. Gut. 2013, 62: 1072-1084. 10.1136/gutjnl-2012-304353.PubMedCrossRef
11.
Zurück zum Zitat Rieder F, Fiocchi C: Intestinal fibrosis in inflammatory bowel disease: progress in basic and clinical science. Curr Opin Gastroenterol. 2008, 24: 462-468. 10.1097/MOG.0b013e3282ff8b36.PubMedCrossRef Rieder F, Fiocchi C: Intestinal fibrosis in inflammatory bowel disease: progress in basic and clinical science. Curr Opin Gastroenterol. 2008, 24: 462-468. 10.1097/MOG.0b013e3282ff8b36.PubMedCrossRef
12.
Zurück zum Zitat Hassan C, Zullo A, De Francesco V, Ierardi E, Giustini M, Pitidis A, Taggi F, Winn S, Morini S: Systematic review: endoscopic dilatation in Crohn’s disease. Aliment Pharmacol Ther. 2007, 26: 1457-1464. 10.1111/j.1365-2036.2007.03532.x.PubMedCrossRef Hassan C, Zullo A, De Francesco V, Ierardi E, Giustini M, Pitidis A, Taggi F, Winn S, Morini S: Systematic review: endoscopic dilatation in Crohn’s disease. Aliment Pharmacol Ther. 2007, 26: 1457-1464. 10.1111/j.1365-2036.2007.03532.x.PubMedCrossRef
13.
Zurück zum Zitat Thienpont C, D’Hoore A, Vermeire S, Demedts I, Bisschops R, Coremans G, Rutgeerts P, Van Assche G: Long-term outcome of endoscopic dilatation in patients with Crohn’s disease is not affected by disease activity or medical therapy. Gut. 2010, 59: 320-324. 10.1136/gut.2009.180182.PubMedCrossRef Thienpont C, D’Hoore A, Vermeire S, Demedts I, Bisschops R, Coremans G, Rutgeerts P, Van Assche G: Long-term outcome of endoscopic dilatation in patients with Crohn’s disease is not affected by disease activity or medical therapy. Gut. 2010, 59: 320-324. 10.1136/gut.2009.180182.PubMedCrossRef
14.
Zurück zum Zitat Singh VV, Draganov P, Valentine J: Efficacy and safety of endoscopic balloon dilation of symptomatic upper and lower gastrointestinal Crohn’s disease strictures. J Clin Gastroenterol. 2005, 39: 284-290. 10.1097/01.mcg.0000155128.31208.44.PubMedCrossRef Singh VV, Draganov P, Valentine J: Efficacy and safety of endoscopic balloon dilation of symptomatic upper and lower gastrointestinal Crohn’s disease strictures. J Clin Gastroenterol. 2005, 39: 284-290. 10.1097/01.mcg.0000155128.31208.44.PubMedCrossRef
15.
Zurück zum Zitat Hoffmann JC, Heller F, Faiss S, von Lampe B, Kroesen AJ, Wahnschaffe U, Schulzke JD, Zeitz M, Bojarski C: Through the endoscope balloon dilation of ileocolonic strictures: prognostic factors, complications, and effectiveness. Int J Colorectal Dis. 2008, 23: 689-696. 10.1007/s00384-008-0461-9.PubMedCrossRef Hoffmann JC, Heller F, Faiss S, von Lampe B, Kroesen AJ, Wahnschaffe U, Schulzke JD, Zeitz M, Bojarski C: Through the endoscope balloon dilation of ileocolonic strictures: prognostic factors, complications, and effectiveness. Int J Colorectal Dis. 2008, 23: 689-696. 10.1007/s00384-008-0461-9.PubMedCrossRef
16.
Zurück zum Zitat Froehlich F, Juillerat P, Pittet V, Felley C, Mottet C, Vader JP, Michetti P, Gonvers JJ: Maintenance of surgically induced remission of Crohn’s disease. Digestion. 2007, 76: 130-135. 10.1159/000111027.PubMedCrossRef Froehlich F, Juillerat P, Pittet V, Felley C, Mottet C, Vader JP, Michetti P, Gonvers JJ: Maintenance of surgically induced remission of Crohn’s disease. Digestion. 2007, 76: 130-135. 10.1159/000111027.PubMedCrossRef
17.
Zurück zum Zitat Despott EJ, Gupta A, Burling D, Tripoli E, Konieczko K, Hart A, Fraser C: Effective dilation of small-bowel strictures by double-balloon enteroscopy in patients with symptomatic Crohn’s disease (with video). Gastrointest Endosc. 2009, 70: 1030-1036. 10.1016/j.gie.2009.05.005.PubMedCrossRef Despott EJ, Gupta A, Burling D, Tripoli E, Konieczko K, Hart A, Fraser C: Effective dilation of small-bowel strictures by double-balloon enteroscopy in patients with symptomatic Crohn’s disease (with video). Gastrointest Endosc. 2009, 70: 1030-1036. 10.1016/j.gie.2009.05.005.PubMedCrossRef
18.
Zurück zum Zitat Gustavsson A, Magnuson A, Blomberg B, Andersson M, Halfvarson J, Tysk C: Endoscopic dilation is an efficacious and safe treatment of intestinal strictures in Crohn’s disease. Aliment Pharmacol Ther. 2012, 36: 151-158. 10.1111/j.1365-2036.2012.05146.x.PubMedCrossRef Gustavsson A, Magnuson A, Blomberg B, Andersson M, Halfvarson J, Tysk C: Endoscopic dilation is an efficacious and safe treatment of intestinal strictures in Crohn’s disease. Aliment Pharmacol Ther. 2012, 36: 151-158. 10.1111/j.1365-2036.2012.05146.x.PubMedCrossRef
19.
Zurück zum Zitat Wibmer AG, Kroesen AJ, Grone J, Buhr HJ, Ritz JP: Comparison of strictureplasty and endoscopic balloon dilatation for stricturing Crohn’s disease–review of the literature. Int J Colorectal Dis. 2010, 25: 1149-1157. 10.1007/s00384-010-1010-x.PubMedCrossRef Wibmer AG, Kroesen AJ, Grone J, Buhr HJ, Ritz JP: Comparison of strictureplasty and endoscopic balloon dilatation for stricturing Crohn’s disease–review of the literature. Int J Colorectal Dis. 2010, 25: 1149-1157. 10.1007/s00384-010-1010-x.PubMedCrossRef
20.
Zurück zum Zitat Baba S, Nakai K: Strictureplasty for Crohn’s disease in Japan. J Gastroenterol. 1995, 30 (Suppl 8): 135-138.PubMed Baba S, Nakai K: Strictureplasty for Crohn’s disease in Japan. J Gastroenterol. 1995, 30 (Suppl 8): 135-138.PubMed
21.
Zurück zum Zitat Ambe R, Campbell L, Cagir B: A comprehensive review of strictureplasty techniques in Crohn’s disease: types, indications, comparisons, and safety. J Gastrointest Surg. 2012, 16: 209-217. 10.1007/s11605-011-1651-2.PubMedCrossRef Ambe R, Campbell L, Cagir B: A comprehensive review of strictureplasty techniques in Crohn’s disease: types, indications, comparisons, and safety. J Gastrointest Surg. 2012, 16: 209-217. 10.1007/s11605-011-1651-2.PubMedCrossRef
22.
Zurück zum Zitat Rutgeerts P, Geboes K, Vantrappen G, Beyls J, Kerremans R, Hiele M: Predictability of the postoperative course of Crohn’s disease. Gastroenterology. 1990, 99: 956-963.PubMed Rutgeerts P, Geboes K, Vantrappen G, Beyls J, Kerremans R, Hiele M: Predictability of the postoperative course of Crohn’s disease. Gastroenterology. 1990, 99: 956-963.PubMed
23.
Zurück zum Zitat Bodger K, Kikuchi T, Hughes D: Cost-effectiveness of biological therapy for Crohn’s disease: Markov cohort analyses incorporating United Kingdom patient-level cost data. Aliment Pharmacol Ther. 2009, 30: 265-274. 10.1111/j.1365-2036.2009.04033.x.PubMedCrossRef Bodger K, Kikuchi T, Hughes D: Cost-effectiveness of biological therapy for Crohn’s disease: Markov cohort analyses incorporating United Kingdom patient-level cost data. Aliment Pharmacol Ther. 2009, 30: 265-274. 10.1111/j.1365-2036.2009.04033.x.PubMedCrossRef
24.
Zurück zum Zitat Friedman SL, Sheppard D, Duffield JS, Violette S: Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med. 2013, 5: 167sr1.PubMedCrossRef Friedman SL, Sheppard D, Duffield JS, Violette S: Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med. 2013, 5: 167sr1.PubMedCrossRef
25.
Zurück zum Zitat Fichtner-Feigl S, Young CA, Kitani A, Geissler EK, Schlitt HJ, Strober W: IL-13 signaling via IL-13R alpha2 induces major downstream fibrogenic factors mediating fibrosis in chronic TNBS colitis. Gastroenterology. 2008, 135: 2003-2013. 10.1053/j.gastro.2008.08.055.PubMedCrossRef Fichtner-Feigl S, Young CA, Kitani A, Geissler EK, Schlitt HJ, Strober W: IL-13 signaling via IL-13R alpha2 induces major downstream fibrogenic factors mediating fibrosis in chronic TNBS colitis. Gastroenterology. 2008, 135: 2003-2013. 10.1053/j.gastro.2008.08.055.PubMedCrossRef
26.
Zurück zum Zitat Zhu MY, Lu YM, Ou YX, Zhang HZ, Chen WX: Dynamic progress of 2,4,6-trinitrobenzene sulfonic acid induced chronic colitis and fibrosis in rat model. J Dig Dis. 2012, 13: 421-429. 10.1111/j.1751-2980.2012.00607.x.PubMedCrossRef Zhu MY, Lu YM, Ou YX, Zhang HZ, Chen WX: Dynamic progress of 2,4,6-trinitrobenzene sulfonic acid induced chronic colitis and fibrosis in rat model. J Dig Dis. 2012, 13: 421-429. 10.1111/j.1751-2980.2012.00607.x.PubMedCrossRef
27.
Zurück zum Zitat Vallance BA, Gunawan MI, Hewlett B, Bercik P, Van Kampen C, Galeazzi F, Sime PJ, Gauldie J, Collins SM: TGF-beta1 gene transfer to the mouse colon leads to intestinal fibrosis. Am J Physiol Gastrointest Liver Physiol. 2005, 289: G116-G128. 10.1152/ajpgi.00051.2005.PubMedCrossRef Vallance BA, Gunawan MI, Hewlett B, Bercik P, Van Kampen C, Galeazzi F, Sime PJ, Gauldie J, Collins SM: TGF-beta1 gene transfer to the mouse colon leads to intestinal fibrosis. Am J Physiol Gastrointest Liver Physiol. 2005, 289: G116-G128. 10.1152/ajpgi.00051.2005.PubMedCrossRef
28.
Zurück zum Zitat Mahavadi S, Flynn RS, Grider JR, Qiao LY, Murthy KS, Hazelgrove KB, Kuemmerle JF: Amelioration of excess collagen IalphaI, fibrosis, and smooth muscle growth in TNBS-induced colitis in IGF-I(+/-) mice. Inflamm Bowel Dis. 2011, 17: 711-719. 10.1002/ibd.21437.PubMedCentralPubMedCrossRef Mahavadi S, Flynn RS, Grider JR, Qiao LY, Murthy KS, Hazelgrove KB, Kuemmerle JF: Amelioration of excess collagen IalphaI, fibrosis, and smooth muscle growth in TNBS-induced colitis in IGF-I(+/-) mice. Inflamm Bowel Dis. 2011, 17: 711-719. 10.1002/ibd.21437.PubMedCentralPubMedCrossRef
29.
Zurück zum Zitat Kumagai S, Ohtani H, Nagai T, Funa K, Hiwatashi NO, Shimosegawa , Nagura H: Platelet-derived growth factor and its receptors are expressed in areas of both active inflammation and active fibrosis in inflammatory bowel disease. Tohoku J Exp Med. 2001, 195: 21-33. 10.1620/tjem.195.21.PubMedCrossRef Kumagai S, Ohtani H, Nagai T, Funa K, Hiwatashi NO, Shimosegawa , Nagura H: Platelet-derived growth factor and its receptors are expressed in areas of both active inflammation and active fibrosis in inflammatory bowel disease. Tohoku J Exp Med. 2001, 195: 21-33. 10.1620/tjem.195.21.PubMedCrossRef
30.
Zurück zum Zitat Lawrance IC, Maxwell L, Doe W: Altered response of intestinal mucosal fibroblasts to profibrogenic cytokines in inflammatory bowel disease. Inflamm Bowel Dis. 2001, 7: 226-236. 10.1097/00054725-200108000-00008.PubMedCrossRef Lawrance IC, Maxwell L, Doe W: Altered response of intestinal mucosal fibroblasts to profibrogenic cytokines in inflammatory bowel disease. Inflamm Bowel Dis. 2001, 7: 226-236. 10.1097/00054725-200108000-00008.PubMedCrossRef
31.
32.
Zurück zum Zitat Rieder F, Fiocchi C: Intestinal fibrosis in IBD - a dynamic, multifactorial process. Nat Rev Gastroenterol Hepatol. 2009, 6: 228-235. 10.1038/nrgastro.2009.31.PubMedCrossRef Rieder F, Fiocchi C: Intestinal fibrosis in IBD - a dynamic, multifactorial process. Nat Rev Gastroenterol Hepatol. 2009, 6: 228-235. 10.1038/nrgastro.2009.31.PubMedCrossRef
33.
Zurück zum Zitat Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A: IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med. 2006, 12: 99-106. 10.1038/nm1332.PubMedCrossRef Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A: IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med. 2006, 12: 99-106. 10.1038/nm1332.PubMedCrossRef
34.
Zurück zum Zitat Akiho H, Lovato P, Deng Y, Ceponis PJ, Blennerhassett P, Collins SM: Interleukin-4- and -13-induced hypercontractility of human intestinal muscle cells-implication for motility changes in Crohn’s disease. Am J Physiol Gastrointest Liver Physiol. 2005, 288: G609-G615. 10.1152/ajpgi.00273.2004.PubMedCrossRef Akiho H, Lovato P, Deng Y, Ceponis PJ, Blennerhassett P, Collins SM: Interleukin-4- and -13-induced hypercontractility of human intestinal muscle cells-implication for motility changes in Crohn’s disease. Am J Physiol Gastrointest Liver Physiol. 2005, 288: G609-G615. 10.1152/ajpgi.00273.2004.PubMedCrossRef
35.
Zurück zum Zitat Bailey JR, Bland PW, Tarlton JF, Peters I, Moorghen M, Sylvester PA, Probert CS, Whiting CV: IL-13 promotes collagen accumulation in Crohn’s disease fibrosis by down-regulation of fibroblast MMP synthesis: a role for innate lymphoid cells?. PLoS One. 2012, 7: e52332-10.1371/journal.pone.0052332.PubMedCentralPubMedCrossRef Bailey JR, Bland PW, Tarlton JF, Peters I, Moorghen M, Sylvester PA, Probert CS, Whiting CV: IL-13 promotes collagen accumulation in Crohn’s disease fibrosis by down-regulation of fibroblast MMP synthesis: a role for innate lymphoid cells?. PLoS One. 2012, 7: e52332-10.1371/journal.pone.0052332.PubMedCentralPubMedCrossRef
36.
Zurück zum Zitat Biancheri P, Di Sabatino A, Ammoscato F, Facciotti F, Caprioli F, Curciarello R, Hoque SS, Ghanbari A, Joe-Njoku I, Giuffrida P, Rovedatti L, Geginat J, Corazza GR, Macdonald TT: Absence of a role for interleukin-13 in inflammatory bowel disease. Eur J Immunol. 2014, 44: 370-385. 10.1002/eji.201343524.PubMedCrossRef Biancheri P, Di Sabatino A, Ammoscato F, Facciotti F, Caprioli F, Curciarello R, Hoque SS, Ghanbari A, Joe-Njoku I, Giuffrida P, Rovedatti L, Geginat J, Corazza GR, Macdonald TT: Absence of a role for interleukin-13 in inflammatory bowel disease. Eur J Immunol. 2014, 44: 370-385. 10.1002/eji.201343524.PubMedCrossRef
37.
Zurück zum Zitat Valente AJ, Yoshida T, Gardner JD, Somanna N, Delafontaine P, Chandrasekar B: Interleukin-17A stimulates cardiac fibroblast proliferation and migration via negative regulation of the dual-specificity phosphatase MKP-1/DUSP-1. Cell Signal. 2012, 24: 560-568. 10.1016/j.cellsig.2011.10.010.PubMedCentralPubMedCrossRef Valente AJ, Yoshida T, Gardner JD, Somanna N, Delafontaine P, Chandrasekar B: Interleukin-17A stimulates cardiac fibroblast proliferation and migration via negative regulation of the dual-specificity phosphatase MKP-1/DUSP-1. Cell Signal. 2012, 24: 560-568. 10.1016/j.cellsig.2011.10.010.PubMedCentralPubMedCrossRef
38.
Zurück zum Zitat Meng F, Wang K, Aoyama T, Grivennikov SI, Paik Y, Scholten D, Cong M, Iwaisako K, Liu X, Zhang M, Osterreicher CH, Stickel F, Ley K, Brenner DA, Kisseleva T: Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology. 2012, 143: 765-776. 10.1053/j.gastro.2012.05.049.PubMedCentralPubMedCrossRef Meng F, Wang K, Aoyama T, Grivennikov SI, Paik Y, Scholten D, Cong M, Iwaisako K, Liu X, Zhang M, Osterreicher CH, Stickel F, Ley K, Brenner DA, Kisseleva T: Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology. 2012, 143: 765-776. 10.1053/j.gastro.2012.05.049.PubMedCentralPubMedCrossRef
39.
Zurück zum Zitat Okamoto Y, Hasegawa M, Matsushita T, Hamaguchi Y, Huu DL, Iwakura Y, Fujimoto M, Takehara K: Potential roles of interleukin-17A in the development of skin fibrosis in mice. Arthritis Rheum. 2012, 64: 3726-3735. 10.1002/art.34643.PubMedCrossRef Okamoto Y, Hasegawa M, Matsushita T, Hamaguchi Y, Huu DL, Iwakura Y, Fujimoto M, Takehara K: Potential roles of interleukin-17A in the development of skin fibrosis in mice. Arthritis Rheum. 2012, 64: 3726-3735. 10.1002/art.34643.PubMedCrossRef
40.
Zurück zum Zitat Mi S, Li Z, Yang HZ, Liu H, Wang JP, Ma YG, Wang XX, Liu HZ, Sun W, Hu ZW: Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms. J Immunol. 2011, 187: 3003-3014. 10.4049/jimmunol.1004081.PubMedCrossRef Mi S, Li Z, Yang HZ, Liu H, Wang JP, Ma YG, Wang XX, Liu HZ, Sun W, Hu ZW: Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms. J Immunol. 2011, 187: 3003-3014. 10.4049/jimmunol.1004081.PubMedCrossRef
41.
Zurück zum Zitat Gregory LG, Jones CP, Walker SA, Sawant D, Gowers KH, Campbell GA, McKenzie AN, Lloyd CM: IL-25 drives remodelling in allergic airways disease induced by house dust mite. Thorax. 2013, 68: 82-90. 10.1136/thoraxjnl-2012-202003.PubMedCentralPubMedCrossRef Gregory LG, Jones CP, Walker SA, Sawant D, Gowers KH, Campbell GA, McKenzie AN, Lloyd CM: IL-25 drives remodelling in allergic airways disease induced by house dust mite. Thorax. 2013, 68: 82-90. 10.1136/thoraxjnl-2012-202003.PubMedCentralPubMedCrossRef
42.
Zurück zum Zitat Biancheri P, Pender SL, Ammoscato F, Giuffrida P, Sampietro G, Ardizzone S, Ghanbari A, Curciarello R, Pasini A, Monteleone G, Corazza GR, Macdonald TT, Di Sabatino A: The role of interleukin 17 in Crohn’s disease-associated intestinal fibrosis. Fibrogenesis Tissue Repair. 2013, 6: 13-10.1186/1755-1536-6-13.PubMedCentralPubMedCrossRef Biancheri P, Pender SL, Ammoscato F, Giuffrida P, Sampietro G, Ardizzone S, Ghanbari A, Curciarello R, Pasini A, Monteleone G, Corazza GR, Macdonald TT, Di Sabatino A: The role of interleukin 17 in Crohn’s disease-associated intestinal fibrosis. Fibrogenesis Tissue Repair. 2013, 6: 13-10.1186/1755-1536-6-13.PubMedCentralPubMedCrossRef
43.
Zurück zum Zitat Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, Higgins PD, Wehkamp J, Feagan BG, Yao MD, Karczewski M, Karczewski J, Pezous N, Bek S, Bruin G, Mellgard B, Berger C, Londei M, Bertolino AP, Tougas G, Travis SP, Secukinumab in Crohn’s Disease Study Group: Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012, 61: 1693-1700. 10.1136/gutjnl-2011-301668.PubMedCrossRef Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, Higgins PD, Wehkamp J, Feagan BG, Yao MD, Karczewski M, Karczewski J, Pezous N, Bek S, Bruin G, Mellgard B, Berger C, Londei M, Bertolino AP, Tougas G, Travis SP, Secukinumab in Crohn’s Disease Study Group: Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012, 61: 1693-1700. 10.1136/gutjnl-2011-301668.PubMedCrossRef
44.
Zurück zum Zitat Hawinkels LJ, Ten Dijke P: Exploring anti-TGF-beta therapies in cancer and fibrosis. Growth Factors. 2011, 29: 140-152. 10.3109/08977194.2011.595411.PubMedCrossRef Hawinkels LJ, Ten Dijke P: Exploring anti-TGF-beta therapies in cancer and fibrosis. Growth Factors. 2011, 29: 140-152. 10.3109/08977194.2011.595411.PubMedCrossRef
45.
Zurück zum Zitat Munger JS, Harpel JG, Gleizes PE, Mazzieri R, Nunes I, Rifkin DB: Latent transforming growth factor-beta: structural features and mechanisms of activation. Kidney Int. 1997, 51: 1376-1382. 10.1038/ki.1997.188.PubMedCrossRef Munger JS, Harpel JG, Gleizes PE, Mazzieri R, Nunes I, Rifkin DB: Latent transforming growth factor-beta: structural features and mechanisms of activation. Kidney Int. 1997, 51: 1376-1382. 10.1038/ki.1997.188.PubMedCrossRef
46.
Zurück zum Zitat Latella G, Sferra R, Speca S, Vetuschi A, Gaudio E: Can we prevent, reduce or reverse intestinal fibrosis in IBD?. Eur Rev Med Pharmacol Sci. 2013, 17: 1283-1304.PubMed Latella G, Sferra R, Speca S, Vetuschi A, Gaudio E: Can we prevent, reduce or reverse intestinal fibrosis in IBD?. Eur Rev Med Pharmacol Sci. 2013, 17: 1283-1304.PubMed
47.
Zurück zum Zitat Monteleone G, Pallone F, MacDonald TT: Smad7 in TGF-beta-mediated negative regulation of gut inflammation. Trends Immunol. 2004, 25: 513-517. 10.1016/j.it.2004.07.008.PubMedCrossRef Monteleone G, Pallone F, MacDonald TT: Smad7 in TGF-beta-mediated negative regulation of gut inflammation. Trends Immunol. 2004, 25: 513-517. 10.1016/j.it.2004.07.008.PubMedCrossRef
48.
Zurück zum Zitat McKaig BC, McWilliams D, Watson SA, Mahida YR: Expression and regulation of tissue inhibitor of metalloproteinase-1 and matrix metalloproteinases by intestinal myofibroblasts in inflammatory bowel disease. Am J Pathol. 2003, 162: 1355-1360. 10.1016/S0002-9440(10)63931-4.PubMedCentralPubMedCrossRef McKaig BC, McWilliams D, Watson SA, Mahida YR: Expression and regulation of tissue inhibitor of metalloproteinase-1 and matrix metalloproteinases by intestinal myofibroblasts in inflammatory bowel disease. Am J Pathol. 2003, 162: 1355-1360. 10.1016/S0002-9440(10)63931-4.PubMedCentralPubMedCrossRef
49.
Zurück zum Zitat Medina C, Santos-Martinez MJ, Santana A, Paz-Cabrera MC, Johnston MJ, Mourelle M, Salas A, Guarner F: Transforming growth factor-beta type 1 receptor (ALK5) and Smad proteins mediate TIMP-1 and collagen synthesis in experimental intestinal fibrosis. J Pathol. 2011, 224: 461-472. 10.1002/path.2870.PubMedCrossRef Medina C, Santos-Martinez MJ, Santana A, Paz-Cabrera MC, Johnston MJ, Mourelle M, Salas A, Guarner F: Transforming growth factor-beta type 1 receptor (ALK5) and Smad proteins mediate TIMP-1 and collagen synthesis in experimental intestinal fibrosis. J Pathol. 2011, 224: 461-472. 10.1002/path.2870.PubMedCrossRef
50.
Zurück zum Zitat Rieder F, Georgieva M, Schirbel A, Artinger M, Zugner A, Blank M, Brenmoehl J, Scholmerich J, Rogler G: Prostaglandin E2 inhibits migration of colonic lamina propria fibroblasts. Inflamm Bowel Dis. 2010, 16: 1505-1513. 10.1002/ibd.21255.PubMedCrossRef Rieder F, Georgieva M, Schirbel A, Artinger M, Zugner A, Blank M, Brenmoehl J, Scholmerich J, Rogler G: Prostaglandin E2 inhibits migration of colonic lamina propria fibroblasts. Inflamm Bowel Dis. 2010, 16: 1505-1513. 10.1002/ibd.21255.PubMedCrossRef
51.
Zurück zum Zitat Brittan M, Chance V, Elia G, Poulsom R, Alison MR, MacDonald TT, Wright NA: A regenerative role for bone marrow following experimental colitis: contribution to neovasculogenesis and myofibroblasts. Gastroenterology. 1984–1995, 2005: 128. Brittan M, Chance V, Elia G, Poulsom R, Alison MR, MacDonald TT, Wright NA: A regenerative role for bone marrow following experimental colitis: contribution to neovasculogenesis and myofibroblasts. Gastroenterology. 1984–1995, 2005: 128.
52.
53.
Zurück zum Zitat Otte JM, Rosenberg IM, Podolsky DK: Intestinal myofibroblasts in innate immune responses of the intestine. Gastroenterology. 1866–1878, 2003: 124. Otte JM, Rosenberg IM, Podolsky DK: Intestinal myofibroblasts in innate immune responses of the intestine. Gastroenterology. 1866–1878, 2003: 124.
54.
Zurück zum Zitat Rieder F, Kessler S, Sans M, Fiocchi C: Animal models of intestinal fibrosis: new tools for the understanding of pathogenesis and therapy of human disease. Am J Physiol Gastrointest Liver Physiol. 2012, 303: G786-G801. 10.1152/ajpgi.00059.2012.PubMedCentralPubMedCrossRef Rieder F, Kessler S, Sans M, Fiocchi C: Animal models of intestinal fibrosis: new tools for the understanding of pathogenesis and therapy of human disease. Am J Physiol Gastrointest Liver Physiol. 2012, 303: G786-G801. 10.1152/ajpgi.00059.2012.PubMedCentralPubMedCrossRef
55.
Zurück zum Zitat Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, Essers J, Mitrovic M, Ning K, Cleynen I, Theatre E, Spain SL, Raychaudhuri S, Goyette P, Wei Z, Abraham C, Achkar JP, Ahmad T, Amininejad L, Ananthakrishnan AN, Andersen V, Andrews JM, Baidoo L, Balschun T, Bampton PA, Bitton A: Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012, 491: 119-124. 10.1038/nature11582.PubMedCentralPubMedCrossRef Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, Essers J, Mitrovic M, Ning K, Cleynen I, Theatre E, Spain SL, Raychaudhuri S, Goyette P, Wei Z, Abraham C, Achkar JP, Ahmad T, Amininejad L, Ananthakrishnan AN, Andersen V, Andrews JM, Baidoo L, Balschun T, Bampton PA, Bitton A: Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012, 491: 119-124. 10.1038/nature11582.PubMedCentralPubMedCrossRef
56.
Zurück zum Zitat Dubinsky MC, Lin YC, Dutridge D, Picornell Y, Landers CJ, Farrior S, Wrobel I, Quiros A, Vasiliauskas EA, Grill B, Israel D, Bahar R, Christie D, Wahbeh G, Silber G, Dallazadeh S, Shah P, Thomas D, Kelts D, Hershberg RM, Elson CO, Targan SR, Taylor KD, Rotter JI, Yang H, Western Regional Pediatric IBD Research Alliance: Serum immune responses predict rapid disease progression among children with Crohn’s disease: immune responses predict disease progression. Am J Gastroenterol. 2006, 101: 360-367. 10.1111/j.1572-0241.2006.00456.x.PubMedCentralPubMedCrossRef Dubinsky MC, Lin YC, Dutridge D, Picornell Y, Landers CJ, Farrior S, Wrobel I, Quiros A, Vasiliauskas EA, Grill B, Israel D, Bahar R, Christie D, Wahbeh G, Silber G, Dallazadeh S, Shah P, Thomas D, Kelts D, Hershberg RM, Elson CO, Targan SR, Taylor KD, Rotter JI, Yang H, Western Regional Pediatric IBD Research Alliance: Serum immune responses predict rapid disease progression among children with Crohn’s disease: immune responses predict disease progression. Am J Gastroenterol. 2006, 101: 360-367. 10.1111/j.1572-0241.2006.00456.x.PubMedCentralPubMedCrossRef
57.
Zurück zum Zitat Rieder F, Schleder S, Wolf A, Dirmeier A, Strauch U, Obermeier F, Lopez R, Spector L, Fire E, Yarden J, Rogler G, Dotan N, Klebl F: Serum anti-glycan antibodies predict complicated Crohn’s disease behavior: a cohort study. Inflamm Bowel Dis. 2010, 16: 1367-1375. 10.1002/ibd.21179.PubMedCrossRef Rieder F, Schleder S, Wolf A, Dirmeier A, Strauch U, Obermeier F, Lopez R, Spector L, Fire E, Yarden J, Rogler G, Dotan N, Klebl F: Serum anti-glycan antibodies predict complicated Crohn’s disease behavior: a cohort study. Inflamm Bowel Dis. 2010, 16: 1367-1375. 10.1002/ibd.21179.PubMedCrossRef
58.
Zurück zum Zitat Rieder F, Schleder S, Wolf A, Dirmeier A, Strauch U, Obermeier F, Lopez R, Spector L, Fire E, Yarden J, Rogler G, Dotan N, Klebl F: Association of the novel serologic anti-glycan antibodies anti-laminarin and anti-chitin with complicated Crohn’s disease behavior. Inflamm Bowel Dis. 2010, 16: 263-274. 10.1002/ibd.21046.PubMedCrossRef Rieder F, Schleder S, Wolf A, Dirmeier A, Strauch U, Obermeier F, Lopez R, Spector L, Fire E, Yarden J, Rogler G, Dotan N, Klebl F: Association of the novel serologic anti-glycan antibodies anti-laminarin and anti-chitin with complicated Crohn’s disease behavior. Inflamm Bowel Dis. 2010, 16: 263-274. 10.1002/ibd.21046.PubMedCrossRef
59.
Zurück zum Zitat Geboes KP, Cabooter L, Geboes K: Contribution of morphology for the comprehension of mechanisms of fibrosis in inflammatory enterocolitis. Acta Gastroenterol Belg. 2000, 63: 371-376.PubMed Geboes KP, Cabooter L, Geboes K: Contribution of morphology for the comprehension of mechanisms of fibrosis in inflammatory enterocolitis. Acta Gastroenterol Belg. 2000, 63: 371-376.PubMed
60.
Zurück zum Zitat Graham MF, Diegelmann RF, Elson CO, Lindblad WJ, Gotschalk N, Gay S, Gay R: Collagen content and types in the intestinal strictures of Crohn’s disease. Gastroenterology. 1988, 94: 257-265.PubMed Graham MF, Diegelmann RF, Elson CO, Lindblad WJ, Gotschalk N, Gay S, Gay R: Collagen content and types in the intestinal strictures of Crohn’s disease. Gastroenterology. 1988, 94: 257-265.PubMed
61.
Zurück zum Zitat Borley NR, Mortensen NJ, Kettlewell MG, George BD, Jewell DP, Warren BF: Connective tissue changes in ileal Crohn’s disease: relationship to disease phenotype and ulcer-associated cell lineage. Dis Colon Rectum. 2001, 44: 388-396. 10.1007/BF02234738.PubMedCrossRef Borley NR, Mortensen NJ, Kettlewell MG, George BD, Jewell DP, Warren BF: Connective tissue changes in ileal Crohn’s disease: relationship to disease phenotype and ulcer-associated cell lineage. Dis Colon Rectum. 2001, 44: 388-396. 10.1007/BF02234738.PubMedCrossRef
62.
Zurück zum Zitat Geboes K, El-Zine MY, Dalle I, El-Haddad S, Rutgeerts P, Van Eyken P: Tenascin and strictures in inflammatory bowel disease: an immunohistochemical study. Int J Surg Pathol. 2001, 9: 281-286. 10.1177/106689690100900404.PubMedCrossRef Geboes K, El-Zine MY, Dalle I, El-Haddad S, Rutgeerts P, Van Eyken P: Tenascin and strictures in inflammatory bowel disease: an immunohistochemical study. Int J Surg Pathol. 2001, 9: 281-286. 10.1177/106689690100900404.PubMedCrossRef
63.
Zurück zum Zitat Gelbmann CM, Mestermann S, Gross V, Kollinger M, Scholmerich J, Falk W: Strictures in Crohn’s disease are characterised by an accumulation of mast cells colocalised with laminin but not with fibronectin or vitronectin. Gut. 1999, 45: 210-217. 10.1136/gut.45.2.210.PubMedCentralPubMedCrossRef Gelbmann CM, Mestermann S, Gross V, Kollinger M, Scholmerich J, Falk W: Strictures in Crohn’s disease are characterised by an accumulation of mast cells colocalised with laminin but not with fibronectin or vitronectin. Gut. 1999, 45: 210-217. 10.1136/gut.45.2.210.PubMedCentralPubMedCrossRef
64.
Zurück zum Zitat Wells RG: The role of matrix stiffness in regulating cell behavior. Hepatology. 2008, 47: 1394-1400. 10.1002/hep.22193.PubMedCrossRef Wells RG: The role of matrix stiffness in regulating cell behavior. Hepatology. 2008, 47: 1394-1400. 10.1002/hep.22193.PubMedCrossRef
65.
Zurück zum Zitat Ura H, Obara T, Yokota K, Shibata Y, Okamura K, Namiki M: Effects of transforming growth factor-beta released from gastric carcinoma cells on the contraction of collagen-matrix gels containing fibroblasts. Cancer Res. 1991, 51: 3550-3554.PubMed Ura H, Obara T, Yokota K, Shibata Y, Okamura K, Namiki M: Effects of transforming growth factor-beta released from gastric carcinoma cells on the contraction of collagen-matrix gels containing fibroblasts. Cancer Res. 1991, 51: 3550-3554.PubMed
66.
Zurück zum Zitat Hinz B: Tissue stiffness, latent TGF-beta1 activation, and mechanical signal transduction: implications for the pathogenesis and treatment of fibrosis. Curr Rheumatol Rep. 2009, 11: 120-126. 10.1007/s11926-009-0017-1.PubMedCrossRef Hinz B: Tissue stiffness, latent TGF-beta1 activation, and mechanical signal transduction: implications for the pathogenesis and treatment of fibrosis. Curr Rheumatol Rep. 2009, 11: 120-126. 10.1007/s11926-009-0017-1.PubMedCrossRef
67.
Zurück zum Zitat Oikarinen AI, Vuorio EI, Zaragoza EJ, Palotie A, Chu ML, Uitto J: Modulation of collagen metabolism by glucocorticoids. Receptor-mediated effects of dexamethasone on collagen biosynthesis in chick embryo fibroblasts and chondrocytes. Biochem Pharmacol. 1988, 37: 1451-1462. 10.1016/0006-2952(88)90006-8.PubMedCrossRef Oikarinen AI, Vuorio EI, Zaragoza EJ, Palotie A, Chu ML, Uitto J: Modulation of collagen metabolism by glucocorticoids. Receptor-mediated effects of dexamethasone on collagen biosynthesis in chick embryo fibroblasts and chondrocytes. Biochem Pharmacol. 1988, 37: 1451-1462. 10.1016/0006-2952(88)90006-8.PubMedCrossRef
68.
Zurück zum Zitat Ketchum LD, Smith J, Robinson DW, Masters FW: The treatment of hypertrophic scar, keloid and scar contracture by triamcinolone acetonide. Plast Reconstr Surg. 1966, 38: 209-218. 10.1097/00006534-196609000-00005.PubMedCrossRef Ketchum LD, Smith J, Robinson DW, Masters FW: The treatment of hypertrophic scar, keloid and scar contracture by triamcinolone acetonide. Plast Reconstr Surg. 1966, 38: 209-218. 10.1097/00006534-196609000-00005.PubMedCrossRef
69.
Zurück zum Zitat Vaglio A, Palmisano A, Alberici F, Maggiore U, Ferretti S, Cobelli R, Ferrozzi F, Corradi D, Salvarani C, Buzio C: Prednisone versus tamoxifen in patients with idiopathic retroperitoneal fibrosis: an open-label randomised controlled trial. Lancet. 2011, 378: 338-346. 10.1016/S0140-6736(11)60934-3.PubMedCrossRef Vaglio A, Palmisano A, Alberici F, Maggiore U, Ferretti S, Cobelli R, Ferrozzi F, Corradi D, Salvarani C, Buzio C: Prednisone versus tamoxifen in patients with idiopathic retroperitoneal fibrosis: an open-label randomised controlled trial. Lancet. 2011, 378: 338-346. 10.1016/S0140-6736(11)60934-3.PubMedCrossRef
70.
Zurück zum Zitat Badea I, Taylor M, Rosenberg A, Foldvari M: Pathogenesis and therapeutic approaches for improved topical treatment in localized scleroderma and systemic sclerosis. Rheumatology (Oxford). 2009, 48: 213-221.CrossRef Badea I, Taylor M, Rosenberg A, Foldvari M: Pathogenesis and therapeutic approaches for improved topical treatment in localized scleroderma and systemic sclerosis. Rheumatology (Oxford). 2009, 48: 213-221.CrossRef
71.
Zurück zum Zitat Peikert T, Daniels CE, Beebe TJ, Meyer KC, Ryu JH, Interstitial Lung Diseases Network of the American College of Chest Physicians: Assessment of current practice in the diagnosis and therapy of idiopathic pulmonary fibrosis. Respir Med. 2008, 102: 1342-1348. 10.1016/j.rmed.2008.03.018.PubMedCrossRef Peikert T, Daniels CE, Beebe TJ, Meyer KC, Ryu JH, Interstitial Lung Diseases Network of the American College of Chest Physicians: Assessment of current practice in the diagnosis and therapy of idiopathic pulmonary fibrosis. Respir Med. 2008, 102: 1342-1348. 10.1016/j.rmed.2008.03.018.PubMedCrossRef
72.
Zurück zum Zitat Graham MF, Willey A, Adams J, Diegelmann RF: Corticosteroids increase procollagen gene expression, synthesis, and secretion by human intestinal smooth muscle cells. Gastroenterology. 1995, 109: 1454-1461. 10.1016/0016-5085(95)90630-4.PubMedCrossRef Graham MF, Willey A, Adams J, Diegelmann RF: Corticosteroids increase procollagen gene expression, synthesis, and secretion by human intestinal smooth muscle cells. Gastroenterology. 1995, 109: 1454-1461. 10.1016/0016-5085(95)90630-4.PubMedCrossRef
73.
Zurück zum Zitat Kochhar R, Poornachandra KS: Intralesional steroid injection therapy in the management of resistant gastrointestinal strictures. World J Gastrointest Endosc. 2010, 2: 61-68.PubMedCentralPubMedCrossRef Kochhar R, Poornachandra KS: Intralesional steroid injection therapy in the management of resistant gastrointestinal strictures. World J Gastrointest Endosc. 2010, 2: 61-68.PubMedCentralPubMedCrossRef
74.
Zurück zum Zitat Warnatz K, Keskin AG, Uhl M, Scholz C, Katzenwadel A, Vaith P, Peter HH, Walker UA: Immunosuppressive treatment of chronic periaortitis: a retrospective study of 20 patients with chronic periaortitis and a review of the literature. Ann Rheum Dis. 2005, 64: 828-833. 10.1136/ard.2004.029793.PubMedCentralPubMedCrossRef Warnatz K, Keskin AG, Uhl M, Scholz C, Katzenwadel A, Vaith P, Peter HH, Walker UA: Immunosuppressive treatment of chronic periaortitis: a retrospective study of 20 patients with chronic periaortitis and a review of the literature. Ann Rheum Dis. 2005, 64: 828-833. 10.1136/ard.2004.029793.PubMedCentralPubMedCrossRef
75.
Zurück zum Zitat Rogliani P, Mura M, Assunta Porretta M, Saltini C: New perspectives in the treatment of idiopathic pulmonary fibrosis. Ther Adv Respir Dis. 2008, 2: 75-93. 10.1177/1753465808089363.PubMedCrossRef Rogliani P, Mura M, Assunta Porretta M, Saltini C: New perspectives in the treatment of idiopathic pulmonary fibrosis. Ther Adv Respir Dis. 2008, 2: 75-93. 10.1177/1753465808089363.PubMedCrossRef
76.
Zurück zum Zitat Dheda K, Lalloo UG, Cassim B, Mody GM: Experience with azathioprine in systemic sclerosis associated with interstitial lung disease. Clin Rheumatol. 2004, 23: 306-309.PubMed Dheda K, Lalloo UG, Cassim B, Mody GM: Experience with azathioprine in systemic sclerosis associated with interstitial lung disease. Clin Rheumatol. 2004, 23: 306-309.PubMed
77.
Zurück zum Zitat Peyrin-Biroulet L, Deltenre P, Ardizzone S, D’Haens G, Hanauer SB, Herfarth H, Lemann M, Colombel JF: Azathioprine and 6-mercaptopurine for the prevention of postoperative recurrence in Crohn’s disease: a meta-analysis. Am J Gastroenterol. 2089–2096, 2009: 104. Peyrin-Biroulet L, Deltenre P, Ardizzone S, D’Haens G, Hanauer SB, Herfarth H, Lemann M, Colombel JF: Azathioprine and 6-mercaptopurine for the prevention of postoperative recurrence in Crohn’s disease: a meta-analysis. Am J Gastroenterol. 2089–2096, 2009: 104.
78.
Zurück zum Zitat Spinelli A, Correale C, Szabo H, Montorsi M: Intestinal fibrosis in Crohn’s disease: medical treatment or surgery?. Curr Drug Targets. 2010, 11: 242-248. 10.2174/138945010790309984.PubMedCrossRef Spinelli A, Correale C, Szabo H, Montorsi M: Intestinal fibrosis in Crohn’s disease: medical treatment or surgery?. Curr Drug Targets. 2010, 11: 242-248. 10.2174/138945010790309984.PubMedCrossRef
79.
Zurück zum Zitat Hanauer SB, Sandborn WJ, Rutgeerts P, Fedorak RN, Lukas M, MacIntosh D, Panaccione R, Wolf D, Pollack P: Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: the CLASSIC-I trial. Gastroenterology. 2006, 130: 323-333. 10.1053/j.gastro.2005.11.030. quiz 591PubMedCrossRef Hanauer SB, Sandborn WJ, Rutgeerts P, Fedorak RN, Lukas M, MacIntosh D, Panaccione R, Wolf D, Pollack P: Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: the CLASSIC-I trial. Gastroenterology. 2006, 130: 323-333. 10.1053/j.gastro.2005.11.030. quiz 591PubMedCrossRef
80.
Zurück zum Zitat Colombel JF, Sandborn WJ, Reinisch W, Mantzaris GJ, Kornbluth A, Rachmilewitz D, Lichtiger S, D’Haens G, Diamond RH, Broussard DL, Tang KL, van der Woude CJ, Rutgeerts P, SONIC Study Group: Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med. 2010, 362: 1383-1395. 10.1056/NEJMoa0904492.PubMedCrossRef Colombel JF, Sandborn WJ, Reinisch W, Mantzaris GJ, Kornbluth A, Rachmilewitz D, Lichtiger S, D’Haens G, Diamond RH, Broussard DL, Tang KL, van der Woude CJ, Rutgeerts P, SONIC Study Group: Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med. 2010, 362: 1383-1395. 10.1056/NEJMoa0904492.PubMedCrossRef
81.
Zurück zum Zitat Sandborn WJ, Feagan BG, Marano C, Zhang H, Strauss R, Johanns J, Adedokun OJ, Guzzo C, Colombel JF, Reinisch W, Gibson PR, Collins J, Jarnerot G, Hibi T, Rutgeerts P, PURSUIT-SC Study Group: Subcutaneous golimumab induces clinical response and remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2014, 146: 85-95. 10.1053/j.gastro.2013.05.048.PubMedCrossRef Sandborn WJ, Feagan BG, Marano C, Zhang H, Strauss R, Johanns J, Adedokun OJ, Guzzo C, Colombel JF, Reinisch W, Gibson PR, Collins J, Jarnerot G, Hibi T, Rutgeerts P, PURSUIT-SC Study Group: Subcutaneous golimumab induces clinical response and remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2014, 146: 85-95. 10.1053/j.gastro.2013.05.048.PubMedCrossRef
82.
Zurück zum Zitat Sandborn WJ, Feagan BG, Stoinov S, Honiball PJ, Rutgeerts P, Mason D, Bloomfield R, Schreiber S, PRECISE 1 Study Investigators: Certolizumab pegol for the treatment of Crohn’s disease. N Engl J Med. 2007, 357: 228-238. 10.1056/NEJMoa067594.PubMedCrossRef Sandborn WJ, Feagan BG, Stoinov S, Honiball PJ, Rutgeerts P, Mason D, Bloomfield R, Schreiber S, PRECISE 1 Study Investigators: Certolizumab pegol for the treatment of Crohn’s disease. N Engl J Med. 2007, 357: 228-238. 10.1056/NEJMoa067594.PubMedCrossRef
83.
Zurück zum Zitat Bahcecioglu IH, Koca SS, Poyrazoglu OK, Yalniz M, Ozercan IH, Ustundag B, Sahin K, Dagli AF, Isik A: Hepatoprotective effect of infliximab, an anti-TNF-alpha agent, on carbon tetrachloride-induced hepatic fibrosis. Inflammation. 2008, 31: 215-221. 10.1007/s10753-008-9067-1.PubMedCrossRef Bahcecioglu IH, Koca SS, Poyrazoglu OK, Yalniz M, Ozercan IH, Ustundag B, Sahin K, Dagli AF, Isik A: Hepatoprotective effect of infliximab, an anti-TNF-alpha agent, on carbon tetrachloride-induced hepatic fibrosis. Inflammation. 2008, 31: 215-221. 10.1007/s10753-008-9067-1.PubMedCrossRef
84.
Zurück zum Zitat Antoniou KM, Mamoulaki M, Malagari K, Kritikos HD, Bouros D, Siafakas NM, Boumpas DT: Infliximab therapy in pulmonary fibrosis associated with collagen vascular disease. Clin Exp Rheumatol. 2007, 25: 23-28.PubMed Antoniou KM, Mamoulaki M, Malagari K, Kritikos HD, Bouros D, Siafakas NM, Boumpas DT: Infliximab therapy in pulmonary fibrosis associated with collagen vascular disease. Clin Exp Rheumatol. 2007, 25: 23-28.PubMed
85.
Zurück zum Zitat Bargagli E, Galeazzi M, Bellisai F, Volterrani L, Rottoli P: Infliximab treatment in a patient with systemic sclerosis associated with lung fibrosis and pulmonary hypertension. Respiration. 2008, 75: 346-349. 10.1159/000090248.PubMedCrossRef Bargagli E, Galeazzi M, Bellisai F, Volterrani L, Rottoli P: Infliximab treatment in a patient with systemic sclerosis associated with lung fibrosis and pulmonary hypertension. Respiration. 2008, 75: 346-349. 10.1159/000090248.PubMedCrossRef
86.
Zurück zum Zitat Theiss AL, Simmons JG, Jobin C, Lund PK: Tumor necrosis factor (TNF) alpha increases collagen accumulation and proliferation in intestinal myofibroblasts via TNF receptor 2. J Biol Chem. 2005, 280: 36099-36109. 10.1074/jbc.M505291200.PubMedCrossRef Theiss AL, Simmons JG, Jobin C, Lund PK: Tumor necrosis factor (TNF) alpha increases collagen accumulation and proliferation in intestinal myofibroblasts via TNF receptor 2. J Biol Chem. 2005, 280: 36099-36109. 10.1074/jbc.M505291200.PubMedCrossRef
87.
Zurück zum Zitat Di Sabatino A, Pender SL, Jackson CL, Prothero JD, Gordon JN, Picariello L, Rovedatti L, Docena G, Monteleone G, Rampton DS, Tonelli F, Corazza GR, MacDonald TT: Functional modulation of Crohn’s disease myofibroblasts by anti-tumor necrosis factor antibodies. Gastroenterology. 2007, 133: 137-149. 10.1053/j.gastro.2007.04.069.PubMedCrossRef Di Sabatino A, Pender SL, Jackson CL, Prothero JD, Gordon JN, Picariello L, Rovedatti L, Docena G, Monteleone G, Rampton DS, Tonelli F, Corazza GR, MacDonald TT: Functional modulation of Crohn’s disease myofibroblasts by anti-tumor necrosis factor antibodies. Gastroenterology. 2007, 133: 137-149. 10.1053/j.gastro.2007.04.069.PubMedCrossRef
88.
Zurück zum Zitat Lichtenstein GR, Olson A, Travers S, Diamond RH, Chen DM, Pritchard ML, Feagan BG, Cohen RD, Salzberg BA, Hanauer SB, Sandborn WJ: Factors associated with the development of intestinal strictures or obstructions in patients with Crohn’s disease. Am J Gastroenterol. 2006, 101: 1030-1038. 10.1111/j.1572-0241.2006.00463.x.PubMedCrossRef Lichtenstein GR, Olson A, Travers S, Diamond RH, Chen DM, Pritchard ML, Feagan BG, Cohen RD, Salzberg BA, Hanauer SB, Sandborn WJ: Factors associated with the development of intestinal strictures or obstructions in patients with Crohn’s disease. Am J Gastroenterol. 2006, 101: 1030-1038. 10.1111/j.1572-0241.2006.00463.x.PubMedCrossRef
89.
Zurück zum Zitat Pelletier AL, Kalisazan B, Wienckiewicz J, Bouarioua N, Soule JC: Infliximab treatment for symptomatic Crohn’s disease strictures. Aliment Pharmacol Ther. 2009, 29: 279-285. 10.1111/j.1365-2036.2008.03887.x.PubMedCrossRef Pelletier AL, Kalisazan B, Wienckiewicz J, Bouarioua N, Soule JC: Infliximab treatment for symptomatic Crohn’s disease strictures. Aliment Pharmacol Ther. 2009, 29: 279-285. 10.1111/j.1365-2036.2008.03887.x.PubMedCrossRef
90.
Zurück zum Zitat Schnitzler F, Fidder H, Ferrante M, Noman M, Arijs I, Van Assche G, Hoffman I, Van Steen K, Vermeire S, Rutgeerts P: Long-term outcome of treatment with infliximab in 614 patients with Crohn’s disease: results from a single-centre cohort. Gut. 2009, 58: 492-500. 10.1136/gut.2008.155812.PubMedCrossRef Schnitzler F, Fidder H, Ferrante M, Noman M, Arijs I, Van Assche G, Hoffman I, Van Steen K, Vermeire S, Rutgeerts P: Long-term outcome of treatment with infliximab in 614 patients with Crohn’s disease: results from a single-centre cohort. Gut. 2009, 58: 492-500. 10.1136/gut.2008.155812.PubMedCrossRef
91.
Zurück zum Zitat Yamada M, Kuwano K, Maeyama T, Yoshimi M, Hamada N, Fukumoto J, Egashira K, Hiasa K, Takayama K, Nakanishi Y: Gene transfer of soluble transforming growth factor type II receptor by in vivo electroporation attenuates lung injury and fibrosis. J Clin Pathol. 2007, 60: 916-920.PubMedCentralPubMedCrossRef Yamada M, Kuwano K, Maeyama T, Yoshimi M, Hamada N, Fukumoto J, Egashira K, Hiasa K, Takayama K, Nakanishi Y: Gene transfer of soluble transforming growth factor type II receptor by in vivo electroporation attenuates lung injury and fibrosis. J Clin Pathol. 2007, 60: 916-920.PubMedCentralPubMedCrossRef
92.
Zurück zum Zitat Arribillaga L, Dotor J, Basagoiti M, Riezu-Boj JI, Borras-Cuesta F, Lasarte JJ, Sarobe P, Cornet ME, Feijoo E: Therapeutic effect of a peptide inhibitor of TGF-beta on pulmonary fibrosis. Cytokine. 2011, 53: 327-333. 10.1016/j.cyto.2010.11.019.PubMedCrossRef Arribillaga L, Dotor J, Basagoiti M, Riezu-Boj JI, Borras-Cuesta F, Lasarte JJ, Sarobe P, Cornet ME, Feijoo E: Therapeutic effect of a peptide inhibitor of TGF-beta on pulmonary fibrosis. Cytokine. 2011, 53: 327-333. 10.1016/j.cyto.2010.11.019.PubMedCrossRef
93.
Zurück zum Zitat Ezquerro IJ, Lasarte JJ, Dotor J, Castilla-Cortazar I, Bustos M, Penuelas I, Blanco G, Rodriguez C, Lechuga Mdel C, Greenwel P, Rojkind M, Prieto J, Borras-Cuesta F: A synthetic peptide from transforming growth factor beta type III receptor inhibits liver fibrogenesis in rats with carbon tetrachloride liver injury. Cytokine. 2003, 22: 12-20. 10.1016/S1043-4666(03)00101-7.PubMedCrossRef Ezquerro IJ, Lasarte JJ, Dotor J, Castilla-Cortazar I, Bustos M, Penuelas I, Blanco G, Rodriguez C, Lechuga Mdel C, Greenwel P, Rojkind M, Prieto J, Borras-Cuesta F: A synthetic peptide from transforming growth factor beta type III receptor inhibits liver fibrogenesis in rats with carbon tetrachloride liver injury. Cytokine. 2003, 22: 12-20. 10.1016/S1043-4666(03)00101-7.PubMedCrossRef
94.
Zurück zum Zitat Azuma A: Pirfenidone treatment of idiopathic pulmonary fibrosis. Ther Adv Respir Dis. 2012, 6: 107-114. 10.1177/1753465812436663.PubMedCrossRef Azuma A: Pirfenidone treatment of idiopathic pulmonary fibrosis. Ther Adv Respir Dis. 2012, 6: 107-114. 10.1177/1753465812436663.PubMedCrossRef
95.
Zurück zum Zitat Noble PW, Albera C, Bradford WZ, Costabel U, Glassberg MK, Kardatzke D, King TE, Lancaster L, Sahn SA, Szwarcberg J, Valeyre D, du Bois RM, CAPACITY Study Group: Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet. 2011, 377: 1760-1769. 10.1016/S0140-6736(11)60405-4.PubMedCrossRef Noble PW, Albera C, Bradford WZ, Costabel U, Glassberg MK, Kardatzke D, King TE, Lancaster L, Sahn SA, Szwarcberg J, Valeyre D, du Bois RM, CAPACITY Study Group: Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet. 2011, 377: 1760-1769. 10.1016/S0140-6736(11)60405-4.PubMedCrossRef
97.
Zurück zum Zitat Beyer C, Distler O, Distler JH: Innovative antifibrotic therapies in systemic sclerosis. Curr Opin Rheumatol. 2012, 24: 274-280. 10.1097/BOR.0b013e3283524b9a.PubMedCrossRef Beyer C, Distler O, Distler JH: Innovative antifibrotic therapies in systemic sclerosis. Curr Opin Rheumatol. 2012, 24: 274-280. 10.1097/BOR.0b013e3283524b9a.PubMedCrossRef
98.
Zurück zum Zitat Trachtman H, Fervenza FC, Gipson DS, Heering P, Jayne DR, Peters H, Rota S, Remuzzi G, Rump LC, Sellin LK, Heaton JP, Streisand JB, Hard ML, Ledbetter SR, Vincenti F: A phase 1, single-dose study of fresolimumab, an anti-TGF-beta antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int. 2011, 79: 1236-1243. 10.1038/ki.2011.33.PubMedCentralPubMedCrossRef Trachtman H, Fervenza FC, Gipson DS, Heering P, Jayne DR, Peters H, Rota S, Remuzzi G, Rump LC, Sellin LK, Heaton JP, Streisand JB, Hard ML, Ledbetter SR, Vincenti F: A phase 1, single-dose study of fresolimumab, an anti-TGF-beta antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int. 2011, 79: 1236-1243. 10.1038/ki.2011.33.PubMedCentralPubMedCrossRef
99.
Zurück zum Zitat Crunkhorn S: Deal watch: Biogen acquires Stromedix to pursue novel fibrosis therapy. Nat Rev Drug Discov. 2012, 11: 260.PubMedCrossRef Crunkhorn S: Deal watch: Biogen acquires Stromedix to pursue novel fibrosis therapy. Nat Rev Drug Discov. 2012, 11: 260.PubMedCrossRef
100.
Zurück zum Zitat Alan C, Kocoglu H, Altintas R, Alici B, Resit Ersay A: Protective effect of decorin on acute ischaemia-reperfusion injury in the rat kidney. Arch Med Sci. 2011, 7: 211-216.PubMedCentralPubMedCrossRef Alan C, Kocoglu H, Altintas R, Alici B, Resit Ersay A: Protective effect of decorin on acute ischaemia-reperfusion injury in the rat kidney. Arch Med Sci. 2011, 7: 211-216.PubMedCentralPubMedCrossRef
101.
Zurück zum Zitat Terada Y, Hanada S, Nakao A, Kuwahara M, Sasaki S, Marumo F: Gene transfer of Smad7 using electroporation of adenovirus prevents renal fibrosis in post-obstructed kidney. Kidney Int. 2002, 61: S94-S98.PubMedCrossRef Terada Y, Hanada S, Nakao A, Kuwahara M, Sasaki S, Marumo F: Gene transfer of Smad7 using electroporation of adenovirus prevents renal fibrosis in post-obstructed kidney. Kidney Int. 2002, 61: S94-S98.PubMedCrossRef
102.
Zurück zum Zitat Lu A, Miao M, Schoeb TR, Agarwal A, Murphy-Ullrich JE: Blockade of TSP1-dependent TGF-beta activity reduces renal injury and proteinuria in a murine model of diabetic nephropathy. Am J Pathol. 2011, 178: 2573-2586. 10.1016/j.ajpath.2011.02.039.PubMedCentralPubMedCrossRef Lu A, Miao M, Schoeb TR, Agarwal A, Murphy-Ullrich JE: Blockade of TSP1-dependent TGF-beta activity reduces renal injury and proteinuria in a murine model of diabetic nephropathy. Am J Pathol. 2011, 178: 2573-2586. 10.1016/j.ajpath.2011.02.039.PubMedCentralPubMedCrossRef
103.
Zurück zum Zitat Liu Y: Hepatocyte growth factor in kidney fibrosis: therapeutic potential and mechanisms of action. Am J Physiol Renal Physiol. 2004, 287: F7-F16. 10.1152/ajprenal.00451.2003.PubMedCrossRef Liu Y: Hepatocyte growth factor in kidney fibrosis: therapeutic potential and mechanisms of action. Am J Physiol Renal Physiol. 2004, 287: F7-F16. 10.1152/ajprenal.00451.2003.PubMedCrossRef
104.
Zurück zum Zitat Liu Y: Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int. 2006, 69: 213-217. 10.1038/sj.ki.5000054.PubMedCrossRef Liu Y: Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int. 2006, 69: 213-217. 10.1038/sj.ki.5000054.PubMedCrossRef
105.
Zurück zum Zitat Szabo H, Fiorino G, Spinelli A, Rovida S, Repici A, Malesci AC, Danese S: Review article: anti-fibrotic agents for the treatment of Crohn’s disease - lessons learnt from other diseases. Aliment Pharmacol Ther. 2010, 31: 189-201.PubMedCrossRef Szabo H, Fiorino G, Spinelli A, Rovida S, Repici A, Malesci AC, Danese S: Review article: anti-fibrotic agents for the treatment of Crohn’s disease - lessons learnt from other diseases. Aliment Pharmacol Ther. 2010, 31: 189-201.PubMedCrossRef
106.
Zurück zum Zitat Daniels CE, Wilkes MC, Edens M, Kottom TJ, Murphy SJ, Limper AH, Leof EB: Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J Clin Invest. 2004, 114: 1308-1316. 10.1172/JCI200419603.PubMedCentralPubMedCrossRef Daniels CE, Wilkes MC, Edens M, Kottom TJ, Murphy SJ, Limper AH, Leof EB: Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J Clin Invest. 2004, 114: 1308-1316. 10.1172/JCI200419603.PubMedCentralPubMedCrossRef
107.
Zurück zum Zitat Gordon J, Spiera R: Tyrosine kinase inhibitors in the treatment of systemic sclerosis: the difficulty in interpreting proof-of-concept studies. Int J Rheumatol. 2011, 2011: 842181.PubMedCentralPubMedCrossRef Gordon J, Spiera R: Tyrosine kinase inhibitors in the treatment of systemic sclerosis: the difficulty in interpreting proof-of-concept studies. Int J Rheumatol. 2011, 2011: 842181.PubMedCentralPubMedCrossRef
108.
Zurück zum Zitat Daniels CE, Lasky JA, Limper AH, Mieras K, Gabor E, Schroeder DR, Imatinib-IPF Study Investigators: Imatinib treatment for idiopathic pulmonary fibrosis: Randomized placebo-controlled trial results. Am J Respir Crit Care Med. 2010, 181: 604-610. 10.1164/rccm.200906-0964OC.PubMedCrossRef Daniels CE, Lasky JA, Limper AH, Mieras K, Gabor E, Schroeder DR, Imatinib-IPF Study Investigators: Imatinib treatment for idiopathic pulmonary fibrosis: Randomized placebo-controlled trial results. Am J Respir Crit Care Med. 2010, 181: 604-610. 10.1164/rccm.200906-0964OC.PubMedCrossRef
109.
Zurück zum Zitat Kantarjian H, Jabbour E, Grimley J, Kirkpatrick P: Dasatinib. Nat Rev Drug Discov. 2006, 5: 717-718. 10.1038/nrd2135.PubMedCrossRef Kantarjian H, Jabbour E, Grimley J, Kirkpatrick P: Dasatinib. Nat Rev Drug Discov. 2006, 5: 717-718. 10.1038/nrd2135.PubMedCrossRef
110.
Zurück zum Zitat Gordon J, Spiera R: Imatinib and the treatment of fibrosis: recent trials and tribulations. Curr Rheumatol Rep. 2011, 13: 51-58. 10.1007/s11926-010-0146-6.PubMedCrossRef Gordon J, Spiera R: Imatinib and the treatment of fibrosis: recent trials and tribulations. Curr Rheumatol Rep. 2011, 13: 51-58. 10.1007/s11926-010-0146-6.PubMedCrossRef
111.
Zurück zum Zitat Ferguson MW, Duncan J, Bond J, Bush J, Durani P, So K, Taylor L, Chantrey J, Mason T, James G, Laverty H, Occleston NL, Sattar A, Ludlow A, O’Kane S: Prophylactic administration of avotermin for improvement of skin scarring: three double-blind, placebo-controlled, phase I/II studies. Lancet. 2009, 373: 1264-1274. 10.1016/S0140-6736(09)60322-6.PubMedCrossRef Ferguson MW, Duncan J, Bond J, Bush J, Durani P, So K, Taylor L, Chantrey J, Mason T, James G, Laverty H, Occleston NL, Sattar A, Ludlow A, O’Kane S: Prophylactic administration of avotermin for improvement of skin scarring: three double-blind, placebo-controlled, phase I/II studies. Lancet. 2009, 373: 1264-1274. 10.1016/S0140-6736(09)60322-6.PubMedCrossRef
112.
Zurück zum Zitat Haudek SB, Xia Y, Huebener P, Lee JM, Carlson S, Crawford JR, Pilling D, Gomer RH, Trial J, Frangogiannis NG, Entman ML: Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci U S A. 2006, 103: 18284-18289. 10.1073/pnas.0608799103.PubMedCentralPubMedCrossRef Haudek SB, Xia Y, Huebener P, Lee JM, Carlson S, Crawford JR, Pilling D, Gomer RH, Trial J, Frangogiannis NG, Entman ML: Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci U S A. 2006, 103: 18284-18289. 10.1073/pnas.0608799103.PubMedCentralPubMedCrossRef
113.
Zurück zum Zitat Pilling D, Roife D, Wang M, Ronkainen SD, Crawford JR, Travis EL, Gomer RH: Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P. J Immunol. 2007, 179: 4035-4044.PubMedCentralPubMedCrossRef Pilling D, Roife D, Wang M, Ronkainen SD, Crawford JR, Travis EL, Gomer RH: Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P. J Immunol. 2007, 179: 4035-4044.PubMedCentralPubMedCrossRef
114.
Zurück zum Zitat Dillingh MR, van den Blink B, Moerland M, van Dongen MG, Levi M, Kleinjan A, Wijsenbeek MS, Lupher ML, Harper DM, Getsy JA, Hoogsteden HC, Burggraaf J: Recombinant human serum amyloid P in healthy volunteers and patients with pulmonary fibrosis. Pulm Pharmacol Ther. 2013, 26: 672-676. 10.1016/j.pupt.2013.01.008.PubMedCrossRef Dillingh MR, van den Blink B, Moerland M, van Dongen MG, Levi M, Kleinjan A, Wijsenbeek MS, Lupher ML, Harper DM, Getsy JA, Hoogsteden HC, Burggraaf J: Recombinant human serum amyloid P in healthy volunteers and patients with pulmonary fibrosis. Pulm Pharmacol Ther. 2013, 26: 672-676. 10.1016/j.pupt.2013.01.008.PubMedCrossRef
115.
Zurück zum Zitat Latella G, Sferra R, Vetuschi A, Zanninelli G, D’Angelo A, Catitti V, Caprilli R, Gaudio E: Prevention of colonic fibrosis by Boswellia and Scutellaria extracts in rats with colitis induced by 2,4,5-trinitrobenzene sulphonic acid. Eur J Clin Invest. 2008, 38: 410-420. 10.1111/j.1365-2362.2008.01955.x.PubMedCrossRef Latella G, Sferra R, Vetuschi A, Zanninelli G, D’Angelo A, Catitti V, Caprilli R, Gaudio E: Prevention of colonic fibrosis by Boswellia and Scutellaria extracts in rats with colitis induced by 2,4,5-trinitrobenzene sulphonic acid. Eur J Clin Invest. 2008, 38: 410-420. 10.1111/j.1365-2362.2008.01955.x.PubMedCrossRef
116.
Zurück zum Zitat Di Sabatino A, Jackson CL, Pickard KM, Buckley M, Rovedatti L, Leakey NA, Picariello L, Cazzola P, Monteleone G, Tonelli F, Corazza GR, MacDonald TT, Pender SL: Transforming growth factor beta signalling and matrix metalloproteinases in the mucosa overlying Crohn’s disease strictures. Gut. 2009, 58: 777-789. 10.1136/gut.2008.149096.PubMedCrossRef Di Sabatino A, Jackson CL, Pickard KM, Buckley M, Rovedatti L, Leakey NA, Picariello L, Cazzola P, Monteleone G, Tonelli F, Corazza GR, MacDonald TT, Pender SL: Transforming growth factor beta signalling and matrix metalloproteinases in the mucosa overlying Crohn’s disease strictures. Gut. 2009, 58: 777-789. 10.1136/gut.2008.149096.PubMedCrossRef
117.
Zurück zum Zitat Bierie B, Moses HL: Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006, 6: 506-520. 10.1038/nrc1926.PubMedCrossRef Bierie B, Moses HL: Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006, 6: 506-520. 10.1038/nrc1926.PubMedCrossRef
118.
Zurück zum Zitat Diebold RJ, Eis MJ, Yin M, Ormsby I, Boivin GP, Darrow BJ, Saffitz JE, Doetschman T: Early-onset multifocal inflammation in the transforming growth factor beta 1-null mouse is lymphocyte mediated. Proc Natl Acad Sci U S A. 1995, 92: 12215-12219. 10.1073/pnas.92.26.12215.PubMedCentralPubMedCrossRef Diebold RJ, Eis MJ, Yin M, Ormsby I, Boivin GP, Darrow BJ, Saffitz JE, Doetschman T: Early-onset multifocal inflammation in the transforming growth factor beta 1-null mouse is lymphocyte mediated. Proc Natl Acad Sci U S A. 1995, 92: 12215-12219. 10.1073/pnas.92.26.12215.PubMedCentralPubMedCrossRef
119.
Zurück zum Zitat Kulkarni AB, Ward JM, Yaswen L, Mackall CL, Bauer SR, Huh CG, Gress RE, Karlsson S: Transforming growth factor-beta 1 null mice. An animal model for inflammatory disorders. Am J Pathol. 1995, 146: 264-275.PubMedCentralPubMed Kulkarni AB, Ward JM, Yaswen L, Mackall CL, Bauer SR, Huh CG, Gress RE, Karlsson S: Transforming growth factor-beta 1 null mice. An animal model for inflammatory disorders. Am J Pathol. 1995, 146: 264-275.PubMedCentralPubMed
120.
Zurück zum Zitat Boivin GP, Ormsby I, Jones-Carson J, O’Toole BA, Doetschman T: Germ-free and barrier-raised TGF beta 1-deficient mice have similar inflammatory lesions. Transgenic Res. 1997, 6: 197-202. 10.1023/A:1018490007745.PubMedCrossRef Boivin GP, Ormsby I, Jones-Carson J, O’Toole BA, Doetschman T: Germ-free and barrier-raised TGF beta 1-deficient mice have similar inflammatory lesions. Transgenic Res. 1997, 6: 197-202. 10.1023/A:1018490007745.PubMedCrossRef
121.
Zurück zum Zitat Gorelik L, Flavell RA: Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity. 2000, 12: 171-181. 10.1016/S1074-7613(00)80170-3.PubMedCrossRef Gorelik L, Flavell RA: Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity. 2000, 12: 171-181. 10.1016/S1074-7613(00)80170-3.PubMedCrossRef
122.
Zurück zum Zitat Nomura M, Li E: Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature. 1998, 393: 786-790. 10.1038/31693.PubMedCrossRef Nomura M, Li E: Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature. 1998, 393: 786-790. 10.1038/31693.PubMedCrossRef
123.
Zurück zum Zitat Yang X, Li C, Xu X, Deng C: The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc Natl Acad Sci U S A. 1998, 95: 3667-3672. 10.1073/pnas.95.7.3667.PubMedCentralPubMedCrossRef Yang X, Li C, Xu X, Deng C: The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc Natl Acad Sci U S A. 1998, 95: 3667-3672. 10.1073/pnas.95.7.3667.PubMedCentralPubMedCrossRef
124.
Zurück zum Zitat Denton CP, Merkel PA, Furst DE, Khanna D, Emery P, Hsu VM, Silliman N, Streisand J, Powell J, Akesson A, Coppock J, Hoogen F, Herrick A, Mayes MD, Veale D, Haas J, Ledbetter S, Korn JH, Black CM, Seibold JR, Cat-192 Study Group; Scleroderma Clinical Trials Consortium: Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum. 2007, 56: 323-333. 10.1002/art.22289.PubMedCrossRef Denton CP, Merkel PA, Furst DE, Khanna D, Emery P, Hsu VM, Silliman N, Streisand J, Powell J, Akesson A, Coppock J, Hoogen F, Herrick A, Mayes MD, Veale D, Haas J, Ledbetter S, Korn JH, Black CM, Seibold JR, Cat-192 Study Group; Scleroderma Clinical Trials Consortium: Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum. 2007, 56: 323-333. 10.1002/art.22289.PubMedCrossRef
125.
Zurück zum Zitat Li C, Yang CW, Park JH, Lim SW, Sun BK, Jung JY, Kim SB, Kim YS, Kim J, Bang BK: Pravastatin treatment attenuates interstitial inflammation and fibrosis in a rat model of chronic cyclosporine-induced nephropathy. Am J Physiol Renal Physiol. 2004, 286: F46-F57.PubMedCrossRef Li C, Yang CW, Park JH, Lim SW, Sun BK, Jung JY, Kim SB, Kim YS, Kim J, Bang BK: Pravastatin treatment attenuates interstitial inflammation and fibrosis in a rat model of chronic cyclosporine-induced nephropathy. Am J Physiol Renal Physiol. 2004, 286: F46-F57.PubMedCrossRef
126.
Zurück zum Zitat Chen HC, Guh JY, Shin SJ, Lai YH: Pravastatin suppress superoxide and fibronectin production of glomerular mesangial cells induced by oxidized-LDL and high glucose. Atherosclerosis. 2002, 160: 141-146. 10.1016/S0021-9150(01)00545-7.PubMedCrossRef Chen HC, Guh JY, Shin SJ, Lai YH: Pravastatin suppress superoxide and fibronectin production of glomerular mesangial cells induced by oxidized-LDL and high glucose. Atherosclerosis. 2002, 160: 141-146. 10.1016/S0021-9150(01)00545-7.PubMedCrossRef
127.
Zurück zum Zitat Hartner A, Klanke B, Cordasic N, Amann K, Schmieder RE, Veelken R, Hilgers KF: Statin treatment reduces glomerular inflammation and podocyte damage in rat deoxycorticosterone-acetate-salt hypertension. J Hypertens. 2009, 27: 376-385. 10.1097/HJH.0b013e32831997d6.PubMedCrossRef Hartner A, Klanke B, Cordasic N, Amann K, Schmieder RE, Veelken R, Hilgers KF: Statin treatment reduces glomerular inflammation and podocyte damage in rat deoxycorticosterone-acetate-salt hypertension. J Hypertens. 2009, 27: 376-385. 10.1097/HJH.0b013e32831997d6.PubMedCrossRef
128.
Zurück zum Zitat Watts KL, Spiteri MA: Connective tissue growth factor expression and induction by transforming growth factor-beta is abrogated by simvastatin via a Rho signaling mechanism. Am J Physiol Lung Cell Mol Physiol. 2004, 287: L1323-L1332. 10.1152/ajplung.00447.2003.PubMedCrossRef Watts KL, Spiteri MA: Connective tissue growth factor expression and induction by transforming growth factor-beta is abrogated by simvastatin via a Rho signaling mechanism. Am J Physiol Lung Cell Mol Physiol. 2004, 287: L1323-L1332. 10.1152/ajplung.00447.2003.PubMedCrossRef
129.
Zurück zum Zitat Grip O, Janciauskiene S: Atorvastatin reduces plasma levels of chemokine (CXCL10) in patients with Crohn’s disease. PLoS One. 2009, 4: e5263-10.1371/journal.pone.0005263.PubMedCentralPubMedCrossRef Grip O, Janciauskiene S: Atorvastatin reduces plasma levels of chemokine (CXCL10) in patients with Crohn’s disease. PLoS One. 2009, 4: e5263-10.1371/journal.pone.0005263.PubMedCentralPubMedCrossRef
130.
Zurück zum Zitat Grip O, Janciauskiene S, Bredberg A: Use of atorvastatin as an anti-inflammatory treatment in Crohn’s disease. Br J Pharmacol. 2008, 155: 1085-1092.PubMedCentralPubMedCrossRef Grip O, Janciauskiene S, Bredberg A: Use of atorvastatin as an anti-inflammatory treatment in Crohn’s disease. Br J Pharmacol. 2008, 155: 1085-1092.PubMedCentralPubMedCrossRef
131.
Zurück zum Zitat Burke JP, Watson RW, Murphy M, Docherty NG, Coffey JC, O’Connell PR: Simvastatin impairs smad-3 phosphorylation and modulates transforming growth factor beta1-mediated activation of intestinal fibroblasts. Br J Surg. 2009, 96: 541-551. 10.1002/bjs.6577.PubMedCrossRef Burke JP, Watson RW, Murphy M, Docherty NG, Coffey JC, O’Connell PR: Simvastatin impairs smad-3 phosphorylation and modulates transforming growth factor beta1-mediated activation of intestinal fibroblasts. Br J Surg. 2009, 96: 541-551. 10.1002/bjs.6577.PubMedCrossRef
132.
Zurück zum Zitat Abe Y, Murano M, Murano N, Morita E, Inoue T, Kawakami K, Ishida K, Kuramoto T, Kakimoto K, Okada T, Narabayashi K, Umegaki E, Higuchi K: Simvastatin attenuates intestinal fibrosis independent of the anti-inflammatory effect by promoting fibroblast/myofibroblast apoptosis in the regeneration/healing process from TNBS-induced colitis. Dig Dis Sci. 2012, 57: 335-344. 10.1007/s10620-011-1879-4.PubMedCrossRef Abe Y, Murano M, Murano N, Morita E, Inoue T, Kawakami K, Ishida K, Kuramoto T, Kakimoto K, Okada T, Narabayashi K, Umegaki E, Higuchi K: Simvastatin attenuates intestinal fibrosis independent of the anti-inflammatory effect by promoting fibroblast/myofibroblast apoptosis in the regeneration/healing process from TNBS-induced colitis. Dig Dis Sci. 2012, 57: 335-344. 10.1007/s10620-011-1879-4.PubMedCrossRef
133.
Zurück zum Zitat Haydont V, Bourgier C, Pocard M, Lusinchi A, Aigueperse J, Mathe D, Bourhis J, Vozenin-Brotons MC: Pravastatin Inhibits the Rho/CCN2/extracellular matrix cascade in human fibrosis explants and improves radiation-induced intestinal fibrosis in rats. Clin Cancer Res. 2007, 13: 5331-5340. 10.1158/1078-0432.CCR-07-0625.PubMedCrossRef Haydont V, Bourgier C, Pocard M, Lusinchi A, Aigueperse J, Mathe D, Bourhis J, Vozenin-Brotons MC: Pravastatin Inhibits the Rho/CCN2/extracellular matrix cascade in human fibrosis explants and improves radiation-induced intestinal fibrosis in rats. Clin Cancer Res. 2007, 13: 5331-5340. 10.1158/1078-0432.CCR-07-0625.PubMedCrossRef
134.
Zurück zum Zitat Ruster C, Wolf G: Angiotensin II as a morphogenic cytokine stimulating renal fibrogenesis. J Am Soc Nephrol. 2011, 22: 1189-1199. 10.1681/ASN.2010040384.PubMedCrossRef Ruster C, Wolf G: Angiotensin II as a morphogenic cytokine stimulating renal fibrogenesis. J Am Soc Nephrol. 2011, 22: 1189-1199. 10.1681/ASN.2010040384.PubMedCrossRef
135.
Zurück zum Zitat Siddesha JM, Valente AJ, Sakamuri SS, Yoshida T, Gardner JD, Somanna N, Takahashi C, Noda M, Chandrasekar B: Angiotensin II stimulates cardiac fibroblast migration via the differential regulation of matrixins and RECK. J Mol Cell Cardiol. 2013, 65: 9-18.PubMedCentralPubMedCrossRef Siddesha JM, Valente AJ, Sakamuri SS, Yoshida T, Gardner JD, Somanna N, Takahashi C, Noda M, Chandrasekar B: Angiotensin II stimulates cardiac fibroblast migration via the differential regulation of matrixins and RECK. J Mol Cell Cardiol. 2013, 65: 9-18.PubMedCentralPubMedCrossRef
136.
Zurück zum Zitat Bataller R, Gines P, Nicolas JM, Gorbig MN, Garcia-Ramallo E, Gasull X, Bosch J, Arroyo V, Rodes J: Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology. 2000, 118: 1149-1156. 10.1016/S0016-5085(00)70368-4.PubMedCrossRef Bataller R, Gines P, Nicolas JM, Gorbig MN, Garcia-Ramallo E, Gasull X, Bosch J, Arroyo V, Rodes J: Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology. 2000, 118: 1149-1156. 10.1016/S0016-5085(00)70368-4.PubMedCrossRef
137.
Zurück zum Zitat Corey KE, Shah N, Misdraji J, Abu Dayyeh BK, Zheng H, Bhan AK, Chung RT: The effect of angiotensin-blocking agents on liver fibrosis in patients with hepatitis C. Liver Int. 2009, 29: 748-753. 10.1111/j.1478-3231.2009.01973.x.PubMedCentralPubMedCrossRef Corey KE, Shah N, Misdraji J, Abu Dayyeh BK, Zheng H, Bhan AK, Chung RT: The effect of angiotensin-blocking agents on liver fibrosis in patients with hepatitis C. Liver Int. 2009, 29: 748-753. 10.1111/j.1478-3231.2009.01973.x.PubMedCentralPubMedCrossRef
138.
Zurück zum Zitat Brown NJ: Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nat Rev Nephrol. 2013, 9: 459-469. 10.1038/nrneph.2013.110.PubMedCentralPubMedCrossRef Brown NJ: Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nat Rev Nephrol. 2013, 9: 459-469. 10.1038/nrneph.2013.110.PubMedCentralPubMedCrossRef
139.
Zurück zum Zitat Daniel C: Blocking of angiotensin II is more than blocking of transforming growth factor-beta. Kidney Int. 2008, 74: 551-553. 10.1038/ki.2008.290.PubMedCrossRef Daniel C: Blocking of angiotensin II is more than blocking of transforming growth factor-beta. Kidney Int. 2008, 74: 551-553. 10.1038/ki.2008.290.PubMedCrossRef
140.
Zurück zum Zitat Couluris M, Kinder BW, Xu P, Gross-King M, Krischer J, Panos RJ: Treatment of idiopathic pulmonary fibrosis with losartan: a pilot project. Lung. 2012, 190: 523-527. 10.1007/s00408-012-9410-z.PubMedCentralPubMedCrossRef Couluris M, Kinder BW, Xu P, Gross-King M, Krischer J, Panos RJ: Treatment of idiopathic pulmonary fibrosis with losartan: a pilot project. Lung. 2012, 190: 523-527. 10.1007/s00408-012-9410-z.PubMedCentralPubMedCrossRef
141.
Zurück zum Zitat Diez J, Querejeta R, Lopez B, Gonzalez A, Larman M, Martinez Ubago JL: Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation. 2002, 105: 2512-2517. 10.1161/01.CIR.0000017264.66561.3D.PubMedCrossRef Diez J, Querejeta R, Lopez B, Gonzalez A, Larman M, Martinez Ubago JL: Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation. 2002, 105: 2512-2517. 10.1161/01.CIR.0000017264.66561.3D.PubMedCrossRef
142.
Zurück zum Zitat el-Agroudy AE, Hassan NA, Foda MA, Ismail AM, el-Sawy EA, Mousa O, Ghoneim MA: Effect of angiotensin II receptor blocker on plasma levels of TGF-beta 1 and interstitial fibrosis in hypertensive kidney transplant patients. Am J Nephrol. 2003, 23: 300-306. 10.1159/000072820.PubMedCrossRef el-Agroudy AE, Hassan NA, Foda MA, Ismail AM, el-Sawy EA, Mousa O, Ghoneim MA: Effect of angiotensin II receptor blocker on plasma levels of TGF-beta 1 and interstitial fibrosis in hypertensive kidney transplant patients. Am J Nephrol. 2003, 23: 300-306. 10.1159/000072820.PubMedCrossRef
143.
Zurück zum Zitat De BK, Bandyopadhyay K, Das TK, Das D, Biswas PK, Majumdar D, Mandal SK, Ray S, Dasgupta S: Portal pressure response to losartan compared with propranolol in patients with cirrhosis. Am J Gastroenterol. 2003, 98: 1371-1376. 10.1111/j.1572-0241.2003.07497.x.PubMedCrossRef De BK, Bandyopadhyay K, Das TK, Das D, Biswas PK, Majumdar D, Mandal SK, Ray S, Dasgupta S: Portal pressure response to losartan compared with propranolol in patients with cirrhosis. Am J Gastroenterol. 2003, 98: 1371-1376. 10.1111/j.1572-0241.2003.07497.x.PubMedCrossRef
144.
Zurück zum Zitat Hirasawa K, Sato Y, Hosoda Y, Yamamoto T, Hanai H: Immunohistochemical localization of angiotensin II receptor and local renin-angiotensin system in human colonic mucosa. J Histochem Cytochem. 2002, 50: 275-282. 10.1177/002215540205000215.PubMedCrossRef Hirasawa K, Sato Y, Hosoda Y, Yamamoto T, Hanai H: Immunohistochemical localization of angiotensin II receptor and local renin-angiotensin system in human colonic mucosa. J Histochem Cytochem. 2002, 50: 275-282. 10.1177/002215540205000215.PubMedCrossRef
145.
Zurück zum Zitat Jaszewski R, Tolia V, Ehrinpreis MN, Bodzin JH, Peleman RR, Korlipara R, Weinstock JV: Increased colonic mucosal angiotensin I and II concentrations in Crohn’s colitis. Gastroenterology. 1990, 98: 1543-1548.PubMed Jaszewski R, Tolia V, Ehrinpreis MN, Bodzin JH, Peleman RR, Korlipara R, Weinstock JV: Increased colonic mucosal angiotensin I and II concentrations in Crohn’s colitis. Gastroenterology. 1990, 98: 1543-1548.PubMed
146.
Zurück zum Zitat Spencer AU, Yang H, Haxhija EQ, Wildhaber BE, Greenson JK, Teitelbaum DH: Reduced severity of a mouse colitis model with angiotensin converting enzyme inhibition. Dig Dis Sci. 2007, 52: 1060-1070. 10.1007/s10620-006-9124-2.PubMedCentralPubMedCrossRef Spencer AU, Yang H, Haxhija EQ, Wildhaber BE, Greenson JK, Teitelbaum DH: Reduced severity of a mouse colitis model with angiotensin converting enzyme inhibition. Dig Dis Sci. 2007, 52: 1060-1070. 10.1007/s10620-006-9124-2.PubMedCentralPubMedCrossRef
147.
Zurück zum Zitat Sueyoshi R, Ignatoski KM, Daignault S, Okawada M, Teitelbaum DH: Angiotensin converting enzyme-inhibitor reduces colitis severity in an IL-10 knockout model. Dig Dis Sci. 2013, 58: 3165-3177. 10.1007/s10620-013-2825-4.PubMedCrossRef Sueyoshi R, Ignatoski KM, Daignault S, Okawada M, Teitelbaum DH: Angiotensin converting enzyme-inhibitor reduces colitis severity in an IL-10 knockout model. Dig Dis Sci. 2013, 58: 3165-3177. 10.1007/s10620-013-2825-4.PubMedCrossRef
148.
Zurück zum Zitat Lee C, Chun J, Hwang SW, Kang SJ, Im JP, Kim JS: Enalapril inhibits nuclear factor-kappaB signaling in intestinal epithelial cells and peritoneal macrophages and attenuates experimental colitis in mice. Life Sci. 2014, 95: 29-39. 10.1016/j.lfs.2013.11.005.PubMedCrossRef Lee C, Chun J, Hwang SW, Kang SJ, Im JP, Kim JS: Enalapril inhibits nuclear factor-kappaB signaling in intestinal epithelial cells and peritoneal macrophages and attenuates experimental colitis in mice. Life Sci. 2014, 95: 29-39. 10.1016/j.lfs.2013.11.005.PubMedCrossRef
149.
Zurück zum Zitat Byrnes JJ, Gross S, Ellard C, Connolly K, Donahue S, Picarella D: Effects of the ACE2 inhibitor GL1001 on acute dextran sodium sulfate-induced colitis in mice. Inflamm Res. 2009, 58: 819-827. 10.1007/s00011-009-0053-3.PubMedCrossRef Byrnes JJ, Gross S, Ellard C, Connolly K, Donahue S, Picarella D: Effects of the ACE2 inhibitor GL1001 on acute dextran sodium sulfate-induced colitis in mice. Inflamm Res. 2009, 58: 819-827. 10.1007/s00011-009-0053-3.PubMedCrossRef
150.
Zurück zum Zitat Wengrower D, Zanninelli G, Pappo O, Latella G, Sestieri M, Villanova A, Faitelson Y, Pines M, Goldin E: Prevention of fibrosis in experimental colitis by captopril: the role of tgf-beta1. Inflamm Bowel Dis. 2004, 10: 536-545. 10.1097/00054725-200409000-00007.PubMedCrossRef Wengrower D, Zanninelli G, Pappo O, Latella G, Sestieri M, Villanova A, Faitelson Y, Pines M, Goldin E: Prevention of fibrosis in experimental colitis by captopril: the role of tgf-beta1. Inflamm Bowel Dis. 2004, 10: 536-545. 10.1097/00054725-200409000-00007.PubMedCrossRef
151.
Zurück zum Zitat Wengrower D, Zanninelli G, Latella G, Necozione S, Metanes I, Israeli E, Lysy J, Pines M, Papo O, Goldin E: Losartan reduces trinitrobenzene sulphonic acid-induced colorectal fibrosis in rats. Can J Gastroenterol. 2012, 26: 33-39.PubMedCentralPubMed Wengrower D, Zanninelli G, Latella G, Necozione S, Metanes I, Israeli E, Lysy J, Pines M, Papo O, Goldin E: Losartan reduces trinitrobenzene sulphonic acid-induced colorectal fibrosis in rats. Can J Gastroenterol. 2012, 26: 33-39.PubMedCentralPubMed
152.
Zurück zum Zitat Gieling RG, Wallace K, Han YP: Interleukin-1 participates in the progression from liver injury to fibrosis. Am J Physiol Gastrointest Liver Physiol. 2009, 296: G1324-G1331. 10.1152/ajpgi.90564.2008.PubMedCentralPubMedCrossRef Gieling RG, Wallace K, Han YP: Interleukin-1 participates in the progression from liver injury to fibrosis. Am J Physiol Gastrointest Liver Physiol. 2009, 296: G1324-G1331. 10.1152/ajpgi.90564.2008.PubMedCentralPubMedCrossRef
153.
Zurück zum Zitat Liu X: Inflammatory cytokines augments TGF-beta1-induced epithelial-mesenchymal transition in A549 cells by up-regulating TbetaR-I. Cell Motil Cytoskeleton. 2008, 65: 935-944. 10.1002/cm.20315.PubMedCrossRef Liu X: Inflammatory cytokines augments TGF-beta1-induced epithelial-mesenchymal transition in A549 cells by up-regulating TbetaR-I. Cell Motil Cytoskeleton. 2008, 65: 935-944. 10.1002/cm.20315.PubMedCrossRef
154.
Zurück zum Zitat Diaz JA, Booth AJ, Lu G, Wood SC, Pinsky DJ, Bishop DK: Critical role for IL-6 in hypertrophy and fibrosis in chronic cardiac allograft rejection. Am J Transplant. 2009, 9: 1773-1783. 10.1111/j.1600-6143.2009.02706.x.PubMedCentralPubMedCrossRef Diaz JA, Booth AJ, Lu G, Wood SC, Pinsky DJ, Bishop DK: Critical role for IL-6 in hypertrophy and fibrosis in chronic cardiac allograft rejection. Am J Transplant. 2009, 9: 1773-1783. 10.1111/j.1600-6143.2009.02706.x.PubMedCentralPubMedCrossRef
155.
Zurück zum Zitat Luckett-Chastain LR, Gallucci RM: Interleukin (IL)-6 modulates transforming growth factor-beta expression in skin and dermal fibroblasts from IL-6-deficient mice. Br J Dermatol. 2009, 161: 237-248. 10.1111/j.1365-2133.2009.09215.x.PubMedCentralPubMedCrossRef Luckett-Chastain LR, Gallucci RM: Interleukin (IL)-6 modulates transforming growth factor-beta expression in skin and dermal fibroblasts from IL-6-deficient mice. Br J Dermatol. 2009, 161: 237-248. 10.1111/j.1365-2133.2009.09215.x.PubMedCentralPubMedCrossRef
156.
Zurück zum Zitat Ito H: IL-6 and Crohn’s disease. Curr Drug Targets Inflamm Allergy. 2003, 2: 125-130. 10.2174/1568010033484296.PubMedCrossRef Ito H: IL-6 and Crohn’s disease. Curr Drug Targets Inflamm Allergy. 2003, 2: 125-130. 10.2174/1568010033484296.PubMedCrossRef
157.
Zurück zum Zitat Fichtner-Feigl S, Strober W, Geissler EK, Schlitt HJ: Cytokines mediating the induction of chronic colitis and colitis-associated fibrosis. Mucosal Immunol. 2008, 1 (Suppl 1): S24-S27.PubMedCentralPubMedCrossRef Fichtner-Feigl S, Strober W, Geissler EK, Schlitt HJ: Cytokines mediating the induction of chronic colitis and colitis-associated fibrosis. Mucosal Immunol. 2008, 1 (Suppl 1): S24-S27.PubMedCentralPubMedCrossRef
158.
Zurück zum Zitat Raghu G, Brown KK, Costabel U, Cottin V, du Bois RM, Lasky JA, Thomeer M, Utz JP, Khandker RK, McDermott L, Fatenejad S: Treatment of idiopathic pulmonary fibrosis with etanercept: an exploratory, placebo-controlled trial. Am J Respir Crit Care Med. 2008, 178: 948-955. 10.1164/rccm.200709-1446OC.PubMedCrossRef Raghu G, Brown KK, Costabel U, Cottin V, du Bois RM, Lasky JA, Thomeer M, Utz JP, Khandker RK, McDermott L, Fatenejad S: Treatment of idiopathic pulmonary fibrosis with etanercept: an exploratory, placebo-controlled trial. Am J Respir Crit Care Med. 2008, 178: 948-955. 10.1164/rccm.200709-1446OC.PubMedCrossRef
159.
Zurück zum Zitat Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR, Harris JM, Scheerens H, Wu LC, Su Z, Mosesova S, Eisner MD, Bohen SP, Matthews JG: Lebrikizumab treatment in adults with asthma. N Engl J Med. 2011, 365: 1088-1098. 10.1056/NEJMoa1106469.PubMedCrossRef Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR, Harris JM, Scheerens H, Wu LC, Su Z, Mosesova S, Eisner MD, Bohen SP, Matthews JG: Lebrikizumab treatment in adults with asthma. N Engl J Med. 2011, 365: 1088-1098. 10.1056/NEJMoa1106469.PubMedCrossRef
160.
Zurück zum Zitat Horton MR, Santopietro V, Mathew L, Horton KM, Polito AJ, Liu MC, Danoff SK, Lechtzin N: Thalidomide for the treatment of cough in idiopathic pulmonary fibrosis: a randomized trial. Ann Intern Med. 2012, 157: 398-406. 10.7326/0003-4819-157-6-201209180-00003.PubMedCrossRef Horton MR, Santopietro V, Mathew L, Horton KM, Polito AJ, Liu MC, Danoff SK, Lechtzin N: Thalidomide for the treatment of cough in idiopathic pulmonary fibrosis: a randomized trial. Ann Intern Med. 2012, 157: 398-406. 10.7326/0003-4819-157-6-201209180-00003.PubMedCrossRef
161.
Zurück zum Zitat Scaldaferri F, Vetrano S, Sans M, Arena V, Straface G, Stigliano E, Repici A, Sturm A, Malesci A, Panes J, Yla-Herttuala S, Fiocchi C, Danese S: VEGF-A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis. Gastroenterology. 2009, 136: 585-595. 10.1053/j.gastro.2008.09.064.PubMedCrossRef Scaldaferri F, Vetrano S, Sans M, Arena V, Straface G, Stigliano E, Repici A, Sturm A, Malesci A, Panes J, Yla-Herttuala S, Fiocchi C, Danese S: VEGF-A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis. Gastroenterology. 2009, 136: 585-595. 10.1053/j.gastro.2008.09.064.PubMedCrossRef
162.
Zurück zum Zitat Richeldi L, Costabel U, Selman M, Kim DS, Hansell DM, Nicholson AG, Brown KK, Flaherty KR, Noble PW, Raghu G, Brun M, Gupta A, Juhel N, Kluglich M, du Bois RM: Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N Engl J Med. 2011, 365: 1079-1087. 10.1056/NEJMoa1103690.PubMedCrossRef Richeldi L, Costabel U, Selman M, Kim DS, Hansell DM, Nicholson AG, Brown KK, Flaherty KR, Noble PW, Raghu G, Brun M, Gupta A, Juhel N, Kluglich M, du Bois RM: Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N Engl J Med. 2011, 365: 1079-1087. 10.1056/NEJMoa1103690.PubMedCrossRef
163.
Zurück zum Zitat Kugathasan S, Saubermann LJ, Smith L, Kou D, Itoh J, Binion DG, Levine AD, Blumberg RS, Fiocchi C: Mucosal T-cell immunoregulation varies in early and late inflammatory bowel disease. Gut. 2007, 56: 1696-1705. 10.1136/gut.2006.116467.PubMedCentralPubMedCrossRef Kugathasan S, Saubermann LJ, Smith L, Kou D, Itoh J, Binion DG, Levine AD, Blumberg RS, Fiocchi C: Mucosal T-cell immunoregulation varies in early and late inflammatory bowel disease. Gut. 2007, 56: 1696-1705. 10.1136/gut.2006.116467.PubMedCentralPubMedCrossRef
164.
Zurück zum Zitat Catania JM, Chen G, Parrish AR: Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol. 2007, 292: F905-F911.PubMedCrossRef Catania JM, Chen G, Parrish AR: Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol. 2007, 292: F905-F911.PubMedCrossRef
165.
Zurück zum Zitat Kim H, Oda T, Lopez-Guisa J, Wing D, Edwards DR, Soloway PD, Eddy AA: TIMP-1 deficiency does not attenuate interstitial fibrosis in obstructive nephropathy. J Am Soc Nephrol. 2001, 12: 736-748.PubMed Kim H, Oda T, Lopez-Guisa J, Wing D, Edwards DR, Soloway PD, Eddy AA: TIMP-1 deficiency does not attenuate interstitial fibrosis in obstructive nephropathy. J Am Soc Nephrol. 2001, 12: 736-748.PubMed
166.
Zurück zum Zitat Clutterbuck AL, Asplin KE, Harris P, Allaway D, Mobasheri A: Targeting matrix metalloproteinases in inflammatory conditions. Curr Drug Targets. 2009, 10: 1245-1254. 10.2174/138945009789753264.PubMedCrossRef Clutterbuck AL, Asplin KE, Harris P, Allaway D, Mobasheri A: Targeting matrix metalloproteinases in inflammatory conditions. Curr Drug Targets. 2009, 10: 1245-1254. 10.2174/138945009789753264.PubMedCrossRef
167.
Zurück zum Zitat Kofla-Dlubacz A, Matusiewicz M, Krzystek-Korpacka M, Iwanczak B: Correlation of MMP-3 and MMP-9 with Crohn’s disease activity in children. Dig Dis Sci. 2012, 57: 706-712. 10.1007/s10620-011-1936-z.PubMedCentralPubMedCrossRef Kofla-Dlubacz A, Matusiewicz M, Krzystek-Korpacka M, Iwanczak B: Correlation of MMP-3 and MMP-9 with Crohn’s disease activity in children. Dig Dis Sci. 2012, 57: 706-712. 10.1007/s10620-011-1936-z.PubMedCentralPubMedCrossRef
168.
Zurück zum Zitat Faubion WA, Fletcher JG, O’Byrne S, Feagan BG, de Villiers WJ, Salzberg B, Plevy S, Proctor DD, Valentine JF, Higgins PD, Harris JM, Diehl L, Wright L, Tew GW, Luca D, Basu K, Keir ME: EMerging BiomARKers in Inflammatory Bowel Disease (EMBARK) study identifies fecal calprotectin, serum MMP9, and serum IL-22 as a novel combination of biomarkers for Crohn’s disease activity: role of cross-sectional imaging. Am J Gastroenterol. 1891–1900, 2013: 108. Faubion WA, Fletcher JG, O’Byrne S, Feagan BG, de Villiers WJ, Salzberg B, Plevy S, Proctor DD, Valentine JF, Higgins PD, Harris JM, Diehl L, Wright L, Tew GW, Luca D, Basu K, Keir ME: EMerging BiomARKers in Inflammatory Bowel Disease (EMBARK) study identifies fecal calprotectin, serum MMP9, and serum IL-22 as a novel combination of biomarkers for Crohn’s disease activity: role of cross-sectional imaging. Am J Gastroenterol. 1891–1900, 2013: 108.
169.
Zurück zum Zitat Lakatos G, Hritz I, Varga MZ, Juhasz M, Miheller P, Cierny G, Tulassay Z, Herszenyi L: The impact of matrix metalloproteinases and their tissue inhibitors in inflammatory bowel diseases. Dig Dis. 2012, 30: 289-295. 10.1159/000336995.PubMedCrossRef Lakatos G, Hritz I, Varga MZ, Juhasz M, Miheller P, Cierny G, Tulassay Z, Herszenyi L: The impact of matrix metalloproteinases and their tissue inhibitors in inflammatory bowel diseases. Dig Dis. 2012, 30: 289-295. 10.1159/000336995.PubMedCrossRef
170.
Zurück zum Zitat Meijer MJ, Mieremet-Ooms MA, van der Zon AM, van Duijn W, van Hogezand RA, Sier CF, Hommes DW, Lamers CB, Verspaget HW: Increased mucosal matrix metalloproteinase-1, -2, -3 and -9 activity in patients with inflammatory bowel disease and the relation with Crohn's disease phenotype. Dig Liver Dis. 2007, 39: 733-739. 10.1016/j.dld.2007.05.010.PubMedCrossRef Meijer MJ, Mieremet-Ooms MA, van der Zon AM, van Duijn W, van Hogezand RA, Sier CF, Hommes DW, Lamers CB, Verspaget HW: Increased mucosal matrix metalloproteinase-1, -2, -3 and -9 activity in patients with inflammatory bowel disease and the relation with Crohn's disease phenotype. Dig Liver Dis. 2007, 39: 733-739. 10.1016/j.dld.2007.05.010.PubMedCrossRef
171.
Zurück zum Zitat Meijer MJ, Mieremet-Ooms MA, Sier CF, van Hogezand RA, Lamers CB, Hommes DW, Verspaget HW: Matrix metalloproteinases and their tissue inhibitors as prognostic indicators for diagnostic and surgical recurrence in Crohn’s disease. Inflamm Bowel Dis. 2009, 15: 84-92. 10.1002/ibd.20581.PubMedCrossRef Meijer MJ, Mieremet-Ooms MA, Sier CF, van Hogezand RA, Lamers CB, Hommes DW, Verspaget HW: Matrix metalloproteinases and their tissue inhibitors as prognostic indicators for diagnostic and surgical recurrence in Crohn’s disease. Inflamm Bowel Dis. 2009, 15: 84-92. 10.1002/ibd.20581.PubMedCrossRef
172.
Zurück zum Zitat Osman B, Akool el S, Doller A, Muller R, Pfeilschifter J, Eberhardt W: Differential modulation of the cytokine-induced MMP-9/TIMP-1 protease-antiprotease system by the mTOR inhibitor rapamycin. Biochem Pharmacol. 2011, 81: 134-143. 10.1016/j.bcp.2010.09.011.PubMedCrossRef Osman B, Akool el S, Doller A, Muller R, Pfeilschifter J, Eberhardt W: Differential modulation of the cytokine-induced MMP-9/TIMP-1 protease-antiprotease system by the mTOR inhibitor rapamycin. Biochem Pharmacol. 2011, 81: 134-143. 10.1016/j.bcp.2010.09.011.PubMedCrossRef
173.
Zurück zum Zitat Wang S, Wilkes MC, Leof EB, Hirschberg R: Noncanonical TGF-beta pathways, mTORC1 and Abl, in renal interstitial fibrogenesis. Am J Physiol Renal Physiol. 2010, 298: F142-F149. 10.1152/ajprenal.00320.2009.PubMedCentralPubMedCrossRef Wang S, Wilkes MC, Leof EB, Hirschberg R: Noncanonical TGF-beta pathways, mTORC1 and Abl, in renal interstitial fibrogenesis. Am J Physiol Renal Physiol. 2010, 298: F142-F149. 10.1152/ajprenal.00320.2009.PubMedCentralPubMedCrossRef
174.
Zurück zum Zitat Reinisch W, Panes J, Lemann M, Schreiber S, Feagan B, Schmidt S, Sturniolo GC, Mikhailova T, Alexeeva O, Sanna L, Haas T, Korom S, Mayer H: A multicenter, randomized, double-blind trial of everolimus versus azathioprine and placebo to maintain steroid-induced remission in patients with moderate-to-severe active Crohn’s disease. Am J Gastroenterol. 2008, 103: 2284-2292. 10.1111/j.1572-0241.2008.02024.x.PubMedCrossRef Reinisch W, Panes J, Lemann M, Schreiber S, Feagan B, Schmidt S, Sturniolo GC, Mikhailova T, Alexeeva O, Sanna L, Haas T, Korom S, Mayer H: A multicenter, randomized, double-blind trial of everolimus versus azathioprine and placebo to maintain steroid-induced remission in patients with moderate-to-severe active Crohn’s disease. Am J Gastroenterol. 2008, 103: 2284-2292. 10.1111/j.1572-0241.2008.02024.x.PubMedCrossRef
175.
Zurück zum Zitat Massey DC, Bredin F, Parkes M: Use of sirolimus (rapamycin) to treat refractory Crohn’s disease. Gut. 2008, 57: 1294-1296. 10.1136/gut.2008.157297.PubMedCrossRef Massey DC, Bredin F, Parkes M: Use of sirolimus (rapamycin) to treat refractory Crohn’s disease. Gut. 2008, 57: 1294-1296. 10.1136/gut.2008.157297.PubMedCrossRef
176.
Zurück zum Zitat Dumortier J, Lapalus MG, Guillaud O, Poncet G, Gagnieu MC, Partensky C, Scoazec JY: Everolimus for refractory Crohn’s disease: a case report. Inflamm Bowel Dis. 2008, 14: 874-877. 10.1002/ibd.20395.PubMedCrossRef Dumortier J, Lapalus MG, Guillaud O, Poncet G, Gagnieu MC, Partensky C, Scoazec JY: Everolimus for refractory Crohn’s disease: a case report. Inflamm Bowel Dis. 2008, 14: 874-877. 10.1002/ibd.20395.PubMedCrossRef
177.
Zurück zum Zitat Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM: PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med. 2013, 19: 557-566.PubMedCrossRef Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM: PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med. 2013, 19: 557-566.PubMedCrossRef
178.
Zurück zum Zitat Rousseaux C, Desreumaux P: [The peroxisome-proliferator-activated gamma receptor and chronic inflammatory bowel disease (PPARgamma and IBD)]. J Soc Biol. 2006, 200: 121-131. 10.1051/jbio:2006015.PubMedCrossRef Rousseaux C, Desreumaux P: [The peroxisome-proliferator-activated gamma receptor and chronic inflammatory bowel disease (PPARgamma and IBD)]. J Soc Biol. 2006, 200: 121-131. 10.1051/jbio:2006015.PubMedCrossRef
179.
Zurück zum Zitat Aoki Y, Maeno T, Aoyagi K, Ueno M, Aoki F, Aoki N, Nakagawa J, Sando Y, Shimizu Y, Suga T, Arai M, Kurabayashi M: Pioglitazone, a peroxisome proliferator-activated receptor gamma ligand, suppresses bleomycin-induced acute lung injury and fibrosis. Respiration. 2009, 77: 311-319. 10.1159/000168676.PubMedCrossRef Aoki Y, Maeno T, Aoyagi K, Ueno M, Aoki F, Aoki N, Nakagawa J, Sando Y, Shimizu Y, Suga T, Arai M, Kurabayashi M: Pioglitazone, a peroxisome proliferator-activated receptor gamma ligand, suppresses bleomycin-induced acute lung injury and fibrosis. Respiration. 2009, 77: 311-319. 10.1159/000168676.PubMedCrossRef
180.
Zurück zum Zitat Wu M, Melichian DS, Chang E, Warner-Blankenship M, Ghosh AK, Varga J: Rosiglitazone abrogates bleomycin-induced scleroderma and blocks profibrotic responses through peroxisome proliferator-activated receptor-gamma. Am J Pathol. 2009, 174: 519-533. 10.2353/ajpath.2009.080574.PubMedCentralPubMedCrossRef Wu M, Melichian DS, Chang E, Warner-Blankenship M, Ghosh AK, Varga J: Rosiglitazone abrogates bleomycin-induced scleroderma and blocks profibrotic responses through peroxisome proliferator-activated receptor-gamma. Am J Pathol. 2009, 174: 519-533. 10.2353/ajpath.2009.080574.PubMedCentralPubMedCrossRef
181.
Zurück zum Zitat Bertin B, Dubuquoy L, Colombel JF, Desreumaux P: PPAR-gamma in ulcerative colitis: a novel target for intervention. Curr Drug Targets. 2013, 14: 1501-1507. 10.2174/13894501113149990162.PubMedCrossRef Bertin B, Dubuquoy L, Colombel JF, Desreumaux P: PPAR-gamma in ulcerative colitis: a novel target for intervention. Curr Drug Targets. 2013, 14: 1501-1507. 10.2174/13894501113149990162.PubMedCrossRef
182.
Zurück zum Zitat Kuhn A, Haust M, Ruland V, Weber R, Verde P, Felder G, Ohmann C, Gensch K, Ruzicka T: Effect of bosentan on skin fibrosis in patients with systemic sclerosis: a prospective, open-label, non-comparative trial. Rheumatology (Oxford). 2010, 49: 1336-1345. 10.1093/rheumatology/keq077.CrossRef Kuhn A, Haust M, Ruland V, Weber R, Verde P, Felder G, Ohmann C, Gensch K, Ruzicka T: Effect of bosentan on skin fibrosis in patients with systemic sclerosis: a prospective, open-label, non-comparative trial. Rheumatology (Oxford). 2010, 49: 1336-1345. 10.1093/rheumatology/keq077.CrossRef
183.
Zurück zum Zitat King TE, Brown KK, Raghu G, du Bois RM, Lynch DA, Martinez F, Valeyre D, Leconte I, Morganti A, Roux S, Behr J: BUILD-3: a randomized, controlled trial of bosentan in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011, 184: 92-99. 10.1164/rccm.201011-1874OC.PubMedCrossRef King TE, Brown KK, Raghu G, du Bois RM, Lynch DA, Martinez F, Valeyre D, Leconte I, Morganti A, Roux S, Behr J: BUILD-3: a randomized, controlled trial of bosentan in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011, 184: 92-99. 10.1164/rccm.201011-1874OC.PubMedCrossRef
184.
Zurück zum Zitat Johnson LA, Luke A, Sauder K, Moons DS, Horowitz JC, Higgins PD: Intestinal fibrosis is reduced by early elimination of inflammation in a mouse model of IBD: impact of a “Top-Down” approach to intestinal fibrosis in mice. Inflamm Bowel Dis. 2012, 18: 460-471. 10.1002/ibd.21812.PubMedCentralPubMedCrossRef Johnson LA, Luke A, Sauder K, Moons DS, Horowitz JC, Higgins PD: Intestinal fibrosis is reduced by early elimination of inflammation in a mouse model of IBD: impact of a “Top-Down” approach to intestinal fibrosis in mice. Inflamm Bowel Dis. 2012, 18: 460-471. 10.1002/ibd.21812.PubMedCentralPubMedCrossRef
185.
Zurück zum Zitat Govani SM, Stidham RW, Higgins PD: How early to take arms against a sea of troubles? The case for aggressive early therapy in Crohn’s disease to prevent fibrotic intestinal strictures. J Crohns Colitis. 2013, 7: 923-927. 10.1016/j.crohns.2013.06.011.PubMedCrossRef Govani SM, Stidham RW, Higgins PD: How early to take arms against a sea of troubles? The case for aggressive early therapy in Crohn’s disease to prevent fibrotic intestinal strictures. J Crohns Colitis. 2013, 7: 923-927. 10.1016/j.crohns.2013.06.011.PubMedCrossRef
186.
Zurück zum Zitat Cosnes J, Cattan S, Blain A, Beaugerie L, Carbonnel F, Parc R, Gendre JP: Long-term evolution of disease behavior of Crohn’s disease. Inflamm Bowel Dis. 2002, 8: 244-250. 10.1097/00054725-200207000-00002.PubMedCrossRef Cosnes J, Cattan S, Blain A, Beaugerie L, Carbonnel F, Parc R, Gendre JP: Long-term evolution of disease behavior of Crohn’s disease. Inflamm Bowel Dis. 2002, 8: 244-250. 10.1097/00054725-200207000-00002.PubMedCrossRef
187.
Zurück zum Zitat Goodman ZD, Becker RL, Pockros PJ, Afdhal NH: Progression of fibrosis in advanced chronic hepatitis C: evaluation by morphometric image analysis. Hepatology. 2007, 45: 886-894. 10.1002/hep.21595.PubMedCrossRef Goodman ZD, Becker RL, Pockros PJ, Afdhal NH: Progression of fibrosis in advanced chronic hepatitis C: evaluation by morphometric image analysis. Hepatology. 2007, 45: 886-894. 10.1002/hep.21595.PubMedCrossRef
188.
Zurück zum Zitat Duarte-Rojo A, Altamirano JT, Feld JJ: Noninvasive markers of fibrosis: key concepts for improving accuracy in daily clinical practice. Ann Hepatol. 2012, 11: 426-439.PubMed Duarte-Rojo A, Altamirano JT, Feld JJ: Noninvasive markers of fibrosis: key concepts for improving accuracy in daily clinical practice. Ann Hepatol. 2012, 11: 426-439.PubMed
189.
Zurück zum Zitat Ryan JD, Silverberg MS, Xu W, Graff LA, Targownik LE, Walker JR, Carr R, Clara I, Miller N, Rogala L, Bernstein CN: Predicting complicated Crohn’s disease and surgery: phenotypes, genetics, serology and psychological characteristics of a population-based cohort. Aliment Pharmacol Ther. 2013, 38: 274-283. 10.1111/apt.12368.PubMedCrossRef Ryan JD, Silverberg MS, Xu W, Graff LA, Targownik LE, Walker JR, Carr R, Clara I, Miller N, Rogala L, Bernstein CN: Predicting complicated Crohn’s disease and surgery: phenotypes, genetics, serology and psychological characteristics of a population-based cohort. Aliment Pharmacol Ther. 2013, 38: 274-283. 10.1111/apt.12368.PubMedCrossRef
190.
Zurück zum Zitat Jurickova I, Collins MH, Chalk C, Seese A, Bezold R, Lake K, von Allmen D, Frischer JS, Falcone RA, Trapnell BC, Denson LA: Paediatric Crohn disease patients with stricturing behaviour exhibit ileal granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibody production and reduced neutrophil bacterial killing and GM-CSF bioactivity. Clin Exp Immunol. 2013, 172: 455-465. 10.1111/cei.12076.PubMedCentralPubMedCrossRef Jurickova I, Collins MH, Chalk C, Seese A, Bezold R, Lake K, von Allmen D, Frischer JS, Falcone RA, Trapnell BC, Denson LA: Paediatric Crohn disease patients with stricturing behaviour exhibit ileal granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibody production and reduced neutrophil bacterial killing and GM-CSF bioactivity. Clin Exp Immunol. 2013, 172: 455-465. 10.1111/cei.12076.PubMedCentralPubMedCrossRef
191.
Zurück zum Zitat Maglinte DD, Bender GN, Heitkamp DE, Lappas JC, Kelvin FM: Multidetector-row helical CT enteroclysis. Radiol Clin North Am. 2003, 41: 249-262. 10.1016/S0033-8389(02)00115-X.PubMedCrossRef Maglinte DD, Bender GN, Heitkamp DE, Lappas JC, Kelvin FM: Multidetector-row helical CT enteroclysis. Radiol Clin North Am. 2003, 41: 249-262. 10.1016/S0033-8389(02)00115-X.PubMedCrossRef
192.
Zurück zum Zitat Al-Hawary M, Zimmermann EM: A new look at Crohn’s disease: novel imaging techniques. Curr Opin Gastroenterol. 2012, 28: 334-340.PubMed Al-Hawary M, Zimmermann EM: A new look at Crohn’s disease: novel imaging techniques. Curr Opin Gastroenterol. 2012, 28: 334-340.PubMed
193.
Zurück zum Zitat Adler J, Swanson SD, Schmiedlin-Ren P, Higgins PD, Golembeski CP, Polydorides AD, McKenna BJ, Hussain HK, Verrot TM, Zimmermann EM: Magnetization transfer helps detect intestinal fibrosis in an animal model of Crohn disease. Radiology. 2011, 259: 127-135. 10.1148/radiol.10091648.PubMedCentralPubMedCrossRef Adler J, Swanson SD, Schmiedlin-Ren P, Higgins PD, Golembeski CP, Polydorides AD, McKenna BJ, Hussain HK, Verrot TM, Zimmermann EM: Magnetization transfer helps detect intestinal fibrosis in an animal model of Crohn disease. Radiology. 2011, 259: 127-135. 10.1148/radiol.10091648.PubMedCentralPubMedCrossRef
194.
Zurück zum Zitat Griffin N, Goh V: Functional imaging of the bowel. Abdom Imaging. 2013, 38: 1203-1213. 10.1007/s00261-013-0030-8.PubMedCrossRef Griffin N, Goh V: Functional imaging of the bowel. Abdom Imaging. 2013, 38: 1203-1213. 10.1007/s00261-013-0030-8.PubMedCrossRef
195.
Zurück zum Zitat Schirin-Sokhan R, Winograd R, Tischendorf S, Wasmuth HE, Streetz K, Tacke F, Trautwein C, Tischendorf JJ: Assessment of inflammatory and fibrotic stenoses in patients with Crohn’s disease using contrast-enhanced ultrasound and computerized algorithm: a pilot study. Digestion. 2011, 83: 263-268. 10.1159/000321389.PubMedCrossRef Schirin-Sokhan R, Winograd R, Tischendorf S, Wasmuth HE, Streetz K, Tacke F, Trautwein C, Tischendorf JJ: Assessment of inflammatory and fibrotic stenoses in patients with Crohn’s disease using contrast-enhanced ultrasound and computerized algorithm: a pilot study. Digestion. 2011, 83: 263-268. 10.1159/000321389.PubMedCrossRef
196.
Zurück zum Zitat Stidham RW, Xu J, Johnson LA, Kim K, Moons DS, McKenna BJ, Rubin JM, Higgins PD: Ultrasound elasticity imaging for detecting intestinal fibrosis and inflammation in rats and humans with Crohn’s disease. Gastroenterology. 2011, 141: 819-826. 10.1053/j.gastro.2011.07.027.PubMedCrossRef Stidham RW, Xu J, Johnson LA, Kim K, Moons DS, McKenna BJ, Rubin JM, Higgins PD: Ultrasound elasticity imaging for detecting intestinal fibrosis and inflammation in rats and humans with Crohn’s disease. Gastroenterology. 2011, 141: 819-826. 10.1053/j.gastro.2011.07.027.PubMedCrossRef
197.
Zurück zum Zitat Brooker JC, Beckett CG, Saunders BP, Benson MJ: Long-acting steroid injection after endoscopic dilation of anastomotic Crohn’s strictures may improve the outcome: a retrospective case series. Endoscopy. 2003, 35: 333-337. 10.1055/s-2003-38145.PubMedCrossRef Brooker JC, Beckett CG, Saunders BP, Benson MJ: Long-acting steroid injection after endoscopic dilation of anastomotic Crohn’s strictures may improve the outcome: a retrospective case series. Endoscopy. 2003, 35: 333-337. 10.1055/s-2003-38145.PubMedCrossRef
198.
Zurück zum Zitat Swaminath A, Lichtiger S: Dilation of colonic strictures by intralesional injection of infliximab in patients with Crohn’s colitis. Inflamm Bowel Dis. 2008, 14: 213-216. 10.1002/ibd.20318.PubMedCrossRef Swaminath A, Lichtiger S: Dilation of colonic strictures by intralesional injection of infliximab in patients with Crohn’s colitis. Inflamm Bowel Dis. 2008, 14: 213-216. 10.1002/ibd.20318.PubMedCrossRef
Metadaten
Titel
Medical therapy of stricturing Crohn’s disease: what the gut can learn from other organs - a systematic review
verfasst von
Dominik Bettenworth
Florian Rieder
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Fibrogenesis & Tissue Repair / Ausgabe 1/2014
Elektronische ISSN: 1755-1536
DOI
https://doi.org/10.1186/1755-1536-7-5

Weitere Artikel der Ausgabe 1/2014

Fibrogenesis & Tissue Repair 1/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.