Skip to main content
Erschienen in: Im Fokus Onkologie 4/2019

29.08.2019 | Melanom | Dermatoonkologie

Deep Learning

Melanomdiagnose mithilfe künstlicher Intelligenz

verfasst von: Dr. med. Julia K. Winkler, Dr. med. Christine Fink, Dr. med. Ferdinand Toberer, Prof. Dr. med. Alexander Enk, Prof. Dr. med. Holger A. Hänßle

Erschienen in: Im Fokus Onkologie | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Zusammenfassung

Für den praktizierenden Dermatologen und seine Patienten ist die Früherkennung des malignen Melanoms von zentraler Bedeutung. Der Patient setzt dabei großes Vertrauen in den diagnostischen Blick des Hautarztes. Ein erstes, zur klinischen Anwendung zugelassenenes Deep-Learning-Netzwerk kann dabei wertvolle Unterstützung leisten.
Literatur
1.
Zurück zum Zitat Garbe C et al. Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline.Update 2016. Eur J Cancer. 2016;63:201–17CrossRef Garbe C et al. Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline.Update 2016. Eur J Cancer. 2016;63:201–17CrossRef
2.
Zurück zum Zitat Balch CM et al. Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. J Clin Oncol. 2001;19(16):3635–48CrossRef Balch CM et al. Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. J Clin Oncol. 2001;19(16):3635–48CrossRef
3.
Zurück zum Zitat Yamashita R et al. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9(4):611–29CrossRef Yamashita R et al. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9(4):611–29CrossRef
4.
5.
Zurück zum Zitat Sun J et al. Comparison of deep learning architectures for H&E histopathology images. IEEE Conference on Big Data and Analytics (ICBDA). 2017; http://doi.org/czz5 Sun J et al. Comparison of deep learning architectures for H&E histopathology images. IEEE Conference on Big Data and Analytics (ICBDA). 2017; http://​doi.​org/​czz5
6.
Zurück zum Zitat Tschandl P et al. Diagnostic accuracy of content-based dermatoscopic image retrieval with deep classication features. Br J Dermatol. 2018; http://doi.org/czz3 Tschandl P et al. Diagnostic accuracy of content-based dermatoscopic image retrieval with deep classication features. Br J Dermatol. 2018; http://​doi.​org/​czz3
7.
Zurück zum Zitat Grob J et al. The ‘ugly duckling’sign: identication of the common characteristics of nevi in an individual as a basis for melanoma screening. Arch Dermatol. 1998;134(1):103–4CrossRef Grob J et al. The ‘ugly duckling’sign: identication of the common characteristics of nevi in an individual as a basis for melanoma screening. Arch Dermatol. 1998;134(1):103–4CrossRef
8.
Zurück zum Zitat Friedman RJ et al. Early detection of malignant melanoma: the role of physician examination and self-examination of the skin. CA Cancer J Clin. 1985;35(3):130–51CrossRef Friedman RJ et al. Early detection of malignant melanoma: the role of physician examination and self-examination of the skin. CA Cancer J Clin. 1985;35(3):130–51CrossRef
9.
Zurück zum Zitat Abbasi NR et al. Early diagnosis of cutaneous melanoma: revisiting the ABCD criteria. JAMA. 2004;292:2771–6CrossRef Abbasi NR et al. Early diagnosis of cutaneous melanoma: revisiting the ABCD criteria. JAMA. 2004;292:2771–6CrossRef
10.
Zurück zum Zitat Blum A et al. The status of dermoscopy in Germany.results of the cross-sectional Pan-Euro-Dermoscopy Study. J Dtsch Dermatol Ges. 2018;16(2):174–81PubMed Blum A et al. The status of dermoscopy in Germany.results of the cross-sectional Pan-Euro-Dermoscopy Study. J Dtsch Dermatol Ges. 2018;16(2):174–81PubMed
11.
Zurück zum Zitat Bafounta ML et al. Is dermoscopy (epiluminescence microscopy) useful for the diagnosis of melanoma?: Results of a meta-analysis using techniques adapted to the evaluation of diagnostic tests. Arch Dermatol. 2001;137(10):1343–50CrossRef Bafounta ML et al. Is dermoscopy (epiluminescence microscopy) useful for the diagnosis of melanoma?: Results of a meta-analysis using techniques adapted to the evaluation of diagnostic tests. Arch Dermatol. 2001;137(10):1343–50CrossRef
12.
Zurück zum Zitat Vestergaard ME et al. Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta-analysis of studies performed in a clinical setting. Br J Dermatol. 2008;159(3):669–76PubMed Vestergaard ME et al. Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta-analysis of studies performed in a clinical setting. Br J Dermatol. 2008;159(3):669–76PubMed
13.
Zurück zum Zitat Pehamberger H et al. In vivo epiluminescence microscopy of pigmented skin lesions. I. Pattern analysis of pigmented skin lesions. J Am Acad Dermatol. 1987;17(4):571–83CrossRef Pehamberger H et al. In vivo epiluminescence microscopy of pigmented skin lesions. I. Pattern analysis of pigmented skin lesions. J Am Acad Dermatol. 1987;17(4):571–83CrossRef
14.
Zurück zum Zitat Stolz W et al. ABCD rule of dermatoscopy: a new practical method for early recognition of malignant melanoma. Eur J Dermatol. 1994;4:521–7 Stolz W et al. ABCD rule of dermatoscopy: a new practical method for early recognition of malignant melanoma. Eur J Dermatol. 1994;4:521–7
15.
Zurück zum Zitat Menzies SW et al. Dermoscopic evaluation of nodular melanoma. JAMA. 2013;149(3): 699–709 Menzies SW et al. Dermoscopic evaluation of nodular melanoma. JAMA. 2013;149(3): 699–709
16.
Zurück zum Zitat Argenziano G et al. Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions. Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch Dermatol. 1998;134(12):1563–70CrossRef Argenziano G et al. Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions. Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch Dermatol. 1998;134(12):1563–70CrossRef
17.
Zurück zum Zitat Menzies SW et al. Frequency and morphologic characteristics of invasive melanomas lacking specic surface microscopic features. Arch Dermatol. 1996;132(10):1178–82CrossRef Menzies SW et al. Frequency and morphologic characteristics of invasive melanomas lacking specic surface microscopic features. Arch Dermatol. 1996;132(10):1178–82CrossRef
18.
Zurück zum Zitat Argenziano G et al. Seven-point checklist of dermoscopy revisited. Br J Dermatol. 2011;164(4):785–90CrossRef Argenziano G et al. Seven-point checklist of dermoscopy revisited. Br J Dermatol. 2011;164(4):785–90CrossRef
19.
Zurück zum Zitat Fink C et al. Strategien zur nichtinvasiven Diagnostik des Melanoms/ Strategies for the noninvasive diagnosis of melanoma. Der Hautarzt. 2016;67(7):519–28CrossRef Fink C et al. Strategien zur nichtinvasiven Diagnostik des Melanoms/ Strategies for the noninvasive diagnosis of melanoma. Der Hautarzt. 2016;67(7):519–28CrossRef
20.
Zurück zum Zitat Okur E et al. A survey on automated melanoma detection. Eng Appl Artif Intell. 2018;73: 50–67CrossRef Okur E et al. A survey on automated melanoma detection. Eng Appl Artif Intell. 2018;73: 50–67CrossRef
21.
Zurück zum Zitat Dick V et al. Bildbasierte Computerdiagnose des Melanoms. Der Hautarzt. 2018;69(7):591–601CrossRef Dick V et al. Bildbasierte Computerdiagnose des Melanoms. Der Hautarzt. 2018;69(7):591–601CrossRef
22.
Zurück zum Zitat Nasr-Esfahani E et al. Melanoma detection by analysis of clinical images using convolutional neural network. 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2016; http://doi.org/gcgk97 Nasr-Esfahani E et al. Melanoma detection by analysis of clinical images using convolutional neural network. 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2016; http://​doi.​org/​gcgk97
23.
Zurück zum Zitat Codella NCF et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). 2018; http://doi.org/czz6 Codella NCF et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). 2018; http://​doi.​org/​czz6
24.
Zurück zum Zitat Tschandl P et al. The HAM10000 Dataset: A Large Collection of Multi-Source Dermatoscopic Images of Common Pigmented Skin Lesions. Sci Data. 2018;5:180161CrossRef Tschandl P et al. The HAM10000 Dataset: A Large Collection of Multi-Source Dermatoscopic Images of Common Pigmented Skin Lesions. Sci Data. 2018;5:180161CrossRef
25.
Zurück zum Zitat Brinker TJ et al. Skin Cancer Classication Using Convolutional Neural Networks: Systematic Review. J Med Internet Res. 2018;20(10): e11936CrossRef Brinker TJ et al. Skin Cancer Classication Using Convolutional Neural Networks: Systematic Review. J Med Internet Res. 2018;20(10): e11936CrossRef
26.
Zurück zum Zitat Esteva A et al. Dermatologist-level classication of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8CrossRef Esteva A et al. Dermatologist-level classication of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8CrossRef
27.
Zurück zum Zitat Haenssle HA et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29(8):1836–42CrossRef Haenssle HA et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29(8):1836–42CrossRef
Metadaten
Titel
Deep Learning
Melanomdiagnose mithilfe künstlicher Intelligenz
verfasst von
Dr. med. Julia K. Winkler
Dr. med. Christine Fink
Dr. med. Ferdinand Toberer
Prof. Dr. med. Alexander Enk
Prof. Dr. med. Holger A. Hänßle
Publikationsdatum
29.08.2019
Verlag
Springer Medizin
Erschienen in
Im Fokus Onkologie / Ausgabe 4/2019
Print ISSN: 1435-7402
Elektronische ISSN: 2192-5674
DOI
https://doi.org/10.1007/s15015-019-0167-6

Weitere Artikel der Ausgabe 4/2019

Im Fokus Onkologie 4/2019 Zur Ausgabe

Wo Künstliche Intelligenz in der Onkologie eingesetzt wird

12.06.2024 ASCO 2024 Kongressbericht

Wie lässt sich mit Künstlicher Intelligenz die Krebsversorgung voranbringen? Drei Beispiele vom ASCO-Kongress zeigen, wo es funktionieren kann: bei der Risikoabschätzung, der Vorhersage des Therapie-Ansprechens und beim telefonischen Kontakt mit Patientinnen und Patienten.

HPV-Impfung schützt auch Männer vor Krebs

12.06.2024 ASCO 2024 Kongressbericht

Die HPV-Impfung wird für Mädchen wie Jungen vorrangig empfohlen, um Zervixkarzinome bei Frauen zu verhindern. Doch auch andere HPV-assoziierte Krebserkrankungen werden reduziert.

Neuer Therapiestandard für das Multiple Myelom?

12.06.2024 ASCO 2024 Kongressbericht

Erstmals wurde die zusätzliche Gabe von Isatuximab zum VRd-Schema in einer Phase-III-Studie bei nicht-transplantationsfähigen Patienten mit neu diagnostiziertem Multiplem Myelom mit VRd verglichen – so erfolgreich, dass sich möglicherweise ein neuer Standard abzeichnet.

Krebsentstehung: Wie Viren unser Immunsystem austricksen

11.06.2024 Humane Papillomviren Podcast

Die Erfolge der HPV-Impfung zeigen, wie medizinisch relevant der Zusammenhang zwischen Viren und Krebs ist. Neben humanen Papillomviren spielen noch weitere Viren eine Rolle bei der malignen Transformation von Zellen. Über diese Mechanismen und neue Ansätze, die das Immunsystem auf die richtige Spur bei der Bekämpfung entarteter Zellen führen, sprechen wir in dieser Folge.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.