Skip to main content
Erschienen in: Journal of Ovarian Research 1/2019

Open Access 01.12.2019 | Research

Melatonin attenuates palmitic acid-induced mouse granulosa cells apoptosis via endoplasmic reticulum stress

verfasst von: Zhi Chen, Lanjie Lei, Di Wen, Lei Yang

Erschienen in: Journal of Ovarian Research | Ausgabe 1/2019

Abstract

Background

Palmitic acid (PA), the main component of dietary saturated fat, causes apoptosis in many cell types, including mouse granulosa cell. Melatonin, an important endogenous hormone, has beneficial effects on female reproductive processes. Since elevated PA levels are present in follicular fluid (FF) of patients with infertility and are shown to be toxic for granulosa cells, we investigated the molecular mechanisms of PA toxicity in mouse granulosa cells and explored the effects of melatonin on PA-induced apoptosis.

Methods

Granulosa cells from immature female mice were cultured for 24 h in medium containing PA and/or melatonin. Then, the effects of PA alone or combined with melatonin on viability, apoptosis and endoplasmic reticulum (ER) stress in granulosa cells were detected by methyl thiazolyl tetrazolium (MTT) assay, flow cytometry assay and western blot. After 48 h of PA and/or melatonin treatment, the concentrations of estradiol (E2) and progesterone (P4) in the culture supernatants were measured with ELISA kits.

Results

In this study, we explored the effects of melatonin on cell viability and apoptosis in PA-treated mouse granulosa cells and uncovered the signaling pathways involved in these processes. Our results showed that 200-800 μM PA treatment reduces cell viability, induces cell apoptosis, enhances the expression of apoptosis-related genes (Caspase 3 and B-cell lymphoma-2 (BCL-2) associated X protein (BAX)), and activates the expression of ER stress marker genes (glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)). Melatonin treatment (1-10 μM) suppresses 400 μM PA-induced cell viability decrease, cell apoptosis, Caspase 3 activation, and BAX, CHOP, and GRP78 expression. In addition, we found that 10 μM melatonin successfully attenuated the 400 μM PA-induced estrogen (E2) and progesterone (P4) decreases.

Conclusions

This study suggests that PA triggers cell apoptosis via ER stress and that melatonin protects cells against apoptosis by inhibiting ER stress in mouse granulosa cells.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s13048-019-0519-z) contains supplementary material, which is available to authorized users.
Abkürzungen
ATF6
activating transcription factor-6
BAX
B-cell lymphoma-2 (BCL-2) associated X protein
BCA
bicinchoninic acid
CHOP
CCAAT/enhancer binding protein homologous protein
DMSO
dimethyl sulfoxide
E2
estrogen
ER
endoplasmic reticulum
FF
follicular fluid
GRP78
glucose-regulated protein 78
IRE-1
inositol-requiring enzyme-1
MTT
methyl thiazolyl tetrazolium
P4
progesterone
PA
palmitic acid
PBS
phosphate buffer solution
PERK
protein kinase RNA (PKR)-like ER kinase
PMSG
pregnant mare serum gonadotrophin
PVDF
polyvinylidene difluoride
RIPA
radioimmunoprecipitation assay
ROS
reactive oxygen species
TBST
Tris-buffered saline-Tween-20
TG
thapsigargin
UPR
unfolded protein response

Background

Palmitic acid (PA) is one of the most common fatty acids in animal and human follicular fluid (FF) and blood serum [13]. The PA level in mammalian FF is reported to be approximately 10− 4 M [35]. Recently, increasing evidence has shown that elevated PA levels may be associated with infertility in humans [6, 7]. Animal model studies have reported relations between higher PA levels and decreased rates of fertilization, cleavage, and blastocyst formation [3, 8, 9]. Granulosa cells play essential roles in follicular development, oocyte maturation and sex hormone secretion [1012]. The exposure of granulosa cells to PA inhibits cell proliferation and decreases steroidogenesis. PA impairs fertility by suppressing human granulosa cell survival and inducing apoptosis [13, 14]. Therefore, ameliorating the toxic effects of PA on granulosa cells may be an effective method to treat human infertility. To date, the exact molecular mechanism of PA-induced granulosa cell apoptosis, however, has not been fully understood. Our previous studies have suggested that ER stress is involved in granulosa cell apoptosis [15, 16]. However, it remains elusive whether ER stress is involved in PA-induced granulosa cell apoptosis.
The ER plays an important role in the folding, transport, and processing of newly synthesized proteins and the biosynthesis of cholesterol, steroids, and other lipids, which is essential for the maintenance of homeostasis in organisms. The accumulation of unfolded or misfolded proteins in the ER lumen can affect ER homeostasis and trigger a protective mechanism known as the unfolded protein response (UPR). Three ER transmembrane proteins, protein kinase RNA (PKR)-like ER kinase (PERK), inositol-requiring enzyme-1 (IRE-1), and activating transcription factor-6 (ATF6), are involved in ER stress and are associated with glucose-regulated protein 78 (GRP78, an ER chaperone) [17]. The primary objective of the UPR is to re-establish homeostasis and alleviate ER stress by increasing the protein folding capacity and decreasing the unfolded protein load. However, when ER stress fails to manage misfolded and unfolded proteins, cell apoptosis is induced [18]. Previous studies have reported that melatonin inhibits cell apoptosis by attenuating ER stress [1921].
Melatonin is an important endogenous hormone involved in the biological clock, the circadian rhythm and reproductive physiology. Its actions are mediated via two types of receptors, MT1 and MT2, which are expressed in not only the pineal gland but also other parts of the organism, including granulosa cells [2224]. Increasing evidence from in vitro cultured cell and animal studies has shown the beneficial effects of melatonin on female reproductive processes, such as follicle growth [25, 26], embryonic development [27] and oocyte maturation [25]. Dynamic changes in the porcine intrafollicular melatonin concentration correlate with the progress of follicular atresia. Normally, melatonin levels might positively correlate with follicular growth [28]. High levels of melatonin were found in human preovulatory FF [29]. A recent study revealed that the intrafollicular melatonin concentration decreases as follicular atresia progresses, whereas the percentage of apoptotic granulosa cells increases [26]. The initiation of granulosa cell apoptosis during porcine follicular atresia may be related to an ER stress response, and melatonin can inhibit apoptosis and stimulate progesterone production by granulosa cells [26, 30]. PA has been demonstrated to induce apoptosis in human granulosa cells [13]. However, the effects and mechanisms of melatonin on PA-induced granulosa cell apoptosis have never been studied.
In this study, we aimed to explore the potential molecular mechanisms of PA-induced apoptosis, to detect the effects of melatonin on PA-induced apoptosis, and to examine whether this process is related to ER stress in mouse granulosa cells.

Materials and methods

Chemicals and mice

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless otherwise stated. Female Kunming White outbred strain mice (21-28 days old) were obtained from the Experimental Animal Center of Jiujiang University. All mice were fed a typical diet of lab chow and housed in a single room under conditions of constant temperature (25-28 ± 2 °C), humidity (55 ± 5%), and lighting (12 h light, 12 h dark cycle). All procedures were approved by the Committee for the Ethics on Animal Care and Experiments of Jiujiang University (approval No. SYXK(GAN)2017-0001).

Granulosa cell collection, culture and treatment

Immature female mice (n = 285) were intraperitoneally injected with 8 IU pregnant mare serum gonadotrophin (PMSG) (Ningbo Sansheng, Ningbo, China) to facilitate granulosa cell proliferation. After 44 h, primary mouse granulosa cells were isolated and cultured as described previously [31]. Briefly, the ovaries were collected, and granulosa cells were released by puncturing the follicles with 26-gauge needles under sterile conditions. Then, the granulosa cells were washed and collected by brief centrifugation, and cell viability was determined by trypan blue exclusion. Finally, the cells were cultured in Dulbecco’s modified Eagle’s medium/Ham’s F 12 nutrient mixture (DMEM/F12, HyClone, UT, USA) containing 100 IU/mL penicillin, 100 μg/mL streptomycin, and 10% fetal bovine serum (FBS, Corning, USA) at 37 °C in 5% CO2 and 95% O2 for 48 h.
Melatonin was freshly dissolved in absolute ethanol to produce a 100 mM stock solution and then kept at 4 °C. Before application, stock solution was further diluted in culture medium. 4-Phenylbutyrate (4-PBA, ER stress inhibitor), and thapsigargin (TG, ER stress agonist) were prepared in dimethyl sulfoxide (DMSO) and immediately diluted with culture medium before the experiment. The final concentration of DMSO in the incubation mixture did not exceed 0.1%. When the cells reached 70-80% confluence, they were exposed to increasing concentrations of melatonin (0.1-100 μM) or PA (100-800 μM). In another experiment, cells were exposed to TG (500 nM) and PA (400 μM) in the absence or presence of 4-PBA (500 nM) and melatonin (10 μM) (Fig. 1). Standard conditions were maintained for the control group. After incubation for 24 h, the cells were collected to assess cell viability, apoptosis, and Caspase 3 activity, and western blotting was performed.

Cell proliferation assay

Granulosa cells (n = 35 mice) were plated into 96-well plates at 1 × 105 cells/mL. After treatment, the cells were treated with 0.5 mg/mL MTT and then incubated for an additional 4 h. At the end of the experiments, the cell growth medium was replaced with 150 μL DMSO and colorimetric measurements were performed with an ELISA plate reader at 570 nm [32]. The experiments were performed in triplicate (about 12 mice in a group). Cell viability was calculated as follows: relative viability (%) = [A450 (treated) - A450 (blank)] / [A450 (control) - A450 (blank)] × 100%.

Measurement of the estradiol and progesterone levels

Briefly, granulosa cells (n = 45 mice, about 15 mice in each group) were cultured in DMEM/F12 for 48 h. The cells were then incubated with PA, TG, 4-PBA or/and melatonin for 48 h. After 48 h of treatment, the mouse granulosa cells were counted. Then, the concentrations of E2 and P4 in the culture supernatants were measured with ELISA kits (Ji Yin Mei, Wuhan, China) according to the manufacturer’s instructions. The minimum detectable concentration of E2 was 10 pg/mL. The intra- and interassay coefficients of variation were < 10 and < 15%, respectively. The minimum detectable concentration of P4 was 0.25 ng/mL. The intra- and interassay coefficients of variation were < 10 and < 15%, respectively. Each sample was measured in triplicate.

Cell apoptosis measurement

The apoptosis level of cells (n = 55 mice, about 18 mice in each group) was quantified with an Annexin V/PI Apoptosis Analysis Kit according to the manufacturer’s instructions. The cells were analyzed using a fluorescence-activated cell sorter (Becton, Dickinson and Company, USA) within 1 h of staining. The proportion of early apoptotic cells was determined by measuring the percentage of Annexin V+/PI− cells; the proportion of progressed apoptotic cells was obtained by determining the percentage of Annexin V+/PI+ cells; the proportion of necrotic cells was detected by determining the percentage of Annexin V−/PI+ cells and Annexin V−/PI− cells were considered surviving cells as previously reported [18].

Western blot analysis

After treatment, cells (n = 150 mice, about 50 mice in each group) were collected and washed with an ice-cold phosphate buffer solution (PBS) and lysed with radioimmunoprecipitation assay (RIPA) lysis buffer containing 1% phenylmethylsulfonyl fluoride (PMSF), and the total protein concentration was measured by a bicinchoninic acid (BCA) assay according to the manufacturer’s instructions. For each sample, 30 μg total protein was separated on a 12% polyacrylamide gel before being transferred to polyvinylidene difluoride (PVDF) membranes (Millipore, Bedford, MA, USA). After blocking in Tris-buffered saline-Tween-20 (TBST) supplemented with 5% skim milk at 25 °C for 1 h, the membranes were incubated overnight at 4 °C with a primary antibody (Additional file 1: Table S1). After washing, the membranes were incubated with a secondary antibody conjugated with horseradish peroxidase at 37 °C for 30 min. Finally, the immunoreactive bands were visualized using a Super Signal West Pico kit (Proteintech, Wuhan, China) with a Bio-Rad imaging system (Bio-Rad, CA, USA) according to the manufacturer’s instructions. The protein band densities were semiquantified by densitometric analysis using ImageJ software 1.48 (Bethesda, MD, USA).

Statistical analyses

All experiments were repeated three times for each group, and the data are presented as the mean ± SEM. The data were analyzed by ANOVA, followed by Fisher’s least significant difference test and independent samples Student’s t test, with SPSS software, version 13.0 (SPSS, Chicago, IL, USA).

Results

Effects of PA on cell viability and apoptosis in mouse granulosa cells

The effect of PA on mouse granulosa cells was examined by treatment with 100-800 μM PA for 24 h. The MTT results showed that PA had very little effect at the low doses of 100 μM, while 200-800 μM PA significantly inhibited cell viability (Fig. 2a). We further analyzed the granulosa cell apoptosis induced by PA via flow cytometry. The results revealed that compared with the control treatment, PA treatment increased the percentage of apoptotic granulosa cells in a dose-dependent manner (Fig. 2b), and the IC50 value was approximately 400 μM.

Effect of PA on caspase 3 activity and BAX expression in mouse granulosa cells

To further explore the mechanism of PA-induced cell apoptosis in granulosa cells, the expression of apoptosis-related genes (Caspase 3 and BAX) was measured by a colorimetric assay and western blot analysis after treatment with 100-800 μM PA for 24 h. The results suggested that the expression patterns of Caspase 3 and BAX were similar, and the expression of both molecules increased in a dose-dependent manner after treatment for 24 h. The minimum effective dose was 200 μM PA (Fig. 3).

Effect of PA on GRP78 and CHOP expression in mouse granulosa cells

We detected the expression of ER stress marker genes (GRP78 and CHOP) after treatment with 100-800 μM PA for 24 h. The results showed that PA treatment at a concentration up to 400 μM significantly induced the expression of GRP78 in a dose-dependent manner. However, 800 μM PA decreased GRP78 expression at 24 h (Fig. 4a and b). CHOP expression was significantly induced by 200 μM PA, and 800 μM PA induced the highest expression levels at 24 h (Fig. 4a and c).

Melatonin attenuated the cytotoxicity of PA in mouse granulosa cells

We first detected the 0.1-100 μM melatonin on the viability of mouse granulosa cells at 24 h. The results showed that melatonin alone had no effect on the viability of granulosa cells at concentrations up to 10 μM, whereas the 100 μM melatonin group showed decreased cell viability compared to the control group (Fig. 5a). Compared with the 400 μM PA group, the 1 and 10 μM melatonin groups exhibited a dose-dependent enhancement in cell viability; however, the 100 μM melatonin group had lower cell viability than the 10 μM group and higher viability than the PA-treated group (Fig. 5b).

Melatonin inhibited PA-induced apoptosis in mouse granulosa cells

To detect the cytoprotective effect of melatonin on PA-treated granulosa cells, cells were treated with 400 μM PA and 0.1-100 μM melatonin for 24 h. The flow cytometry results showed that melatonin treatment obviously reduced the cellular apoptosis rate, and the lowest effective concentration was 1 μM (Fig. 6a). We also detected Caspase 3 and BAX expression by a colorimetric assay and western blot analysis. Similar to the flow cytometry results, these results revealed that melatonin treatment successfully reduced the Caspase 3 activity and BAX protein expression caused by 400 μM PA (Fig. 6b and c).

Melatonin suppressed PA-induced ER stress in mouse granulosa cells

To detect the effect of melatonin on PA-induced ER stress, mouse granulosa cells were treated with 400 μM PA and 0.1-100 μM melatonin for 24 h. Then, CHOP and GRP78 expression was detected by western blot analysis. The results showed that PA markedly enhanced the expression of GRP78 and CHOP, and these expression levels were attenuated by melatonin in a concentration-dependent manner up to a concentration of 10 μM (Fig. 7).

4-PBA attenuated PA-induced cytotoxicity, apoptosis and ER stress in mouse granulosa cells

To confirm the role of ER stress in PA-mediated mouse granulosa cell apoptosis, cells were treated with PA and the ER stress inhibitor 4-PBA. The results revealed that 4-PBA significantly promoted cell viability and prevented the cell apoptosis caused by PA at 24 h (Fig. 8a-c). In addition, 4-PBA obviously reduced Caspase 3 activity and BAX expression (Fig. 8d-f). In addition, western blotting revealed that the expression levels of GRP78 and CHOP in the PA-treated cells were markedly decreased after treatment with 4-PBA (Fig. 8e-h).

Melatonin rescued TG-induced decreased cell viability, apoptosis, and ER stress in mouse granulosa cells

To detect the effect of melatonin on ER stress-induced cell apoptosis, we added 500 nM TG to the culture medium to induce ER stress. Treatment with 10 μM melatonin significantly promoted cell viability and prevented the cell apoptosis induced by TG (Fig. 9a-c). The western blotting results indicated that melatonin reduced the protein levels of GRP78 and CHOP in the TG-treated mouse granulosa cells (Fig. 9e, g and h). We also detected the expression of Caspase 3 and BAX. The results showed that PA significantly increased the protein expression levels of Caspase 3 and BAX compared with the control treatment (Fig. 9d-f).

Melatonin attenuated the decreases in the E2 and P4 levels in PA-treated mouse granulosa cells

To assess the effects of melatonin on steroid hormones in PA-induced mouse granulosa cells, we measured the concentrations of E2 and P4 in the culture medium after PA and TG treatment. The results showed that 500 nM TG and 400 μM PA inhibited the expression of steroidogenic enzymes expression (Star, Cyp19a1 and Cyp11a1) and the production of steroid hormones (E2 and P4) (Fig. 10). In contrast, 10 μM melatonin treatment slightly increased the expression of Star and Cyp11a1 but not Cyp19a1 and enhanced the synthesis of P4 (Fig. 10a-f). Additionally, melatonin increased the levels of E2 and P4 generation and the expression of steroidogenic enzymes including Star, Cyp19a1 and Cyp11a1 induced by PA or TG (Fig. 10a-f).

Discussion

PA is a common saturated fatty acid and the PA level in mammalian FF is reported to be approximately 10− 4 M. A previous study showed that PA induces granulosa cell apoptosis and inhibits steroidogenesis [13]. Our previous studies found that ER stress is related to granulosa cell apoptosis and steroidogenesis [15, 16]. In addition, some studies have reported that melatonin inhibits cell apoptosis through attenuating ER stress [1921]. In this study, we showed that PA-induced granulosa cell apoptosis and steroidogenesis downregulation occur via ER stress and that melatonin can rescue this process.
We first detected the effects of different concentrations of PA on cell viability and apoptosis. The data from our study showed that cell viability was significantly decreased and apoptosis was induced during in vitro culture with PA. Our study was consistent with a previous study showing that PA markedly inhibits the proliferation of human granulosa cells in a dose-dependent manner [13]. We also measured the expression of apoptosis-related genes (Caspase 3 and BAX) during PA treatment. Caspase 3 acts as an executioner in caspase-mediated apoptosis, and the expression of Caspase 3 positively correlates with the rate of apoptosis in cells [33]. Moreover, BAX, a member of the BCL2 family, has a proapoptotic effect [34]. In the present study, we found that Caspase 3 activation and BAX expression were upregulated after PA treatment. Based on these results, we concluded that PA can regulate Caspase 3 activation and BAX expression to affect cell apoptosis in mouse granulosa cells.
Furthermore, we detected GRP78 and CHOP expression when cells were cultured with 100-800 μM PA for 24 h. The results showed that PA treatment induced the expression of GRP78 and CHOP, which indicated that PA activates the ER stress pathway in cultured mouse granulosa cells. GRP78 is an ER stress-response protein, and its expression is a typical marker of ER stress activation. Our previous results showed that PA triggers ER stress and then induces apoptosis though CHOP activation in Saos-2 cells [18]. In addition, this result is consistent with the results of other studies that showed that PA induces ER stress and apoptosis in hepatoma cells [35] and myocardial cells [34]. The present study further demonstrated PA-induced ER stress in mouse granulosa cells. To our knowledge, this is the first study to demonstrate that ER stress can be induced by PA in granulosa cells, which implies that ER stress is involved in PA-induced granulosa cell apoptosis.
Melatonin is an important endogenous hormone and exists in mammalian FF. Physiologically, the concentration of melatonin in mammalian follicular fluid is reported to be approximately 10− 11 M. However, the melatonin level in the FF is reported to be dynamic and reaches its zenith in the preovulatory follicle [3640]. Numerous studies have revealed that melatonin exerts various biological effects, such as antioxidative [41], anti-inflammatory [42] and anti-apoptotic effects [43]. Furthermore, ER stress plays a key role in the process of cell injury, and some studies also reported that melatonin inhibits cell apoptosis via the ER stress pathway [1921]. Interestingly, there is evidence suggesting that that intrafollicular melatonin concentration decreased as follicular atresia progressed whereas the percentage of apoptotic granulosa cells increased [26]. Thus, we suspected that dynamic change of melatonin and PA level in FF may be closely related to granulosa cell apoptosis. Therefore, we identified the effects of melatonin on granulosa cell apoptosis and ER stress. Our results suggested that melatonin obviously inhibited PA- or TG-induced GRP78 and CHOP expression. Furthermore, melatonin remarkably inhibited PA- or TG-induced mouse granulosa cell apoptosis and the expression of Caspase 3 and BAX, suggesting that melatonin can protect cells against PA and ER stress-induced cell apoptosis. To further confirm the role of ER stress in PA-induced granulosa cell apoptosis, we added the ER stress inhibitor 4-PBA to culture medium containing PA. The results showed that 4-PBA and melatonin both suppressed PA-induced cell apoptosis and decreased the expression of GRP78 and CHOP. This date further confirmed the fact that melatonin significantly reduced the cell apoptosis induced by PA via the ER stress pathway.
Granulosa cells play an important role in hormonal synthesis in females. Compared with the control treatment, PA treatment decreased E2 and P4 expression. The possible reason for the reductions could be the decreases in the levels of Star (the protein associated with the transport of cholesterol across the mitochondrial membrane), Cyp11a1 (the monooxygenase that catalyzes cholesterol and steroid synthesis), and Cyp19a1 (the enzyme responsible for androgen aromatization to estrogen) [31] shown in our results. Previous studies have demonstrated that E2 and P4 are indispensable for maintaining the normal physiological function of the ovary [44]. Thus, we infer that PA may induce follicular atresia and affect ovulation by regulating P4 and E2 production in granulosa cells.
In agreement with its effect on PA-induced cell apoptosis, melatonin and 4-PBA also reverse the PA-mediated inhibition of hormone secretion. We also found that the PA-induced decrease in hormone secretion-related protein expression was partly inhibited by melatonin or 4-PBA, indicating that melatonin improves hormone secretion in PA- or TG-treated mouse granulosa cells. This result further confirmed the findings of previous studies that showed that melatonin weakens ER stress [1921] and ER stress is involved in granulosa cell apoptosis [15, 16] and hormone secretion [44].
The concentration of melatonin used in the present study is 10− 6 M which seems to be higher than physical level. However, we thought that the high concentration of melatonin used in this study could reflect the in vivo conditions. As we known, melatonin is considered as a broad-spectrum antioxidant. After melatonin reacts with ROS, the melatonin metabolites are produced and accumulated in vivo. Subsequently, the melatonin metabolites also work as antioxidants, resulting in melatonin and melatonin metabolites working together as powerful antioxidants in vivo [43]. Accumulating evidence indicates that PA increases the production of reactive oxygen species (ROS) in granulosa cells and that oxidative stress is essential for the induction of ER stress in granulosa cells [45]. Therefore, we speculated that PA might induce oxidative stress by stimulating the generation of ROS, destroying the antioxidant capacity, and subsequently triggering ER stress and apoptosis in granulosa cells. Melatonin and its metabolites may effectively decrease the PA-induced generation of ROS to mitigate oxidative stress, protecting granulosa cells from PA-induced apoptosis through ER stress.

Conclusion

In summary, our results initially demonstrated that PA-induced cell mouse granulosa cell apoptosis occurs via the ER stress pathway. Furthermore, melatonin has the potential to protect mouse granulosa cells from PA-induced cell apoptosis and hormone expression downregulation. Therefore, melatonin is a potent agent that could be exploited as a potential intervention in the prevention of some reproductive abnormalities, especially in female infertility induced by saturated fatty acids.

Funding

This study was supported by the Project of Science and Technology of the Jiangxi Provincial Education Department (GJJ170966), the Project of the Health Commission of Jiangxi Province (20193010; 20197217), the Natural Science Research Project of the Education Department of the Guizhou Province of China (KY2018419), the Scientific Research Project of Qiannan Normal University for Nationalities (qnsyrc201610, QNSY2018BS018), the Qiannan Agricultural Science and Technology Program of the Qiannan Science and Technology Bureau (201721), the Research and Innovation Team Foundation of the Guizhou Province Education Department (201568), the Key Support Project for Botany in Guizhou (ZDXK201623) and the Key Support Project for Biology in Qiannan Normal University for Nationalities.

Availability of data and materials

The data obtained from this study are available from the corresponding author upon reasonable request.
All procedures were approved by the Committee for the Ethics on Animal Care and Experiments of Jiujiang University (approval No. SYXK(GAN)2017–0001).
All authors agree to the submission of this article for publication.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Yu Y, Cai Z, Zheng J, Chen J, Zhang X, Huang XF, et al. Serum levels of polyunsaturated fatty acids are low in Chinese men with metabolic syndrome, whereas serum levels of saturated fatty acids, zinc, and magnesium are high. Nutr Res. 2012;32:71.CrossRef Yu Y, Cai Z, Zheng J, Chen J, Zhang X, Huang XF, et al. Serum levels of polyunsaturated fatty acids are low in Chinese men with metabolic syndrome, whereas serum levels of saturated fatty acids, zinc, and magnesium are high. Nutr Res. 2012;32:71.CrossRef
2.
Zurück zum Zitat Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and beta-oxidation. Reproduction. 2014;148:R15–27.CrossRef Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and beta-oxidation. Reproduction. 2014;148:R15–27.CrossRef
3.
Zurück zum Zitat Leroy JL, Vanholder T, Mateusen B, Christophe A, Opsomer G, de Kruif A, et al. Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction. 2005;130:485–95.CrossRef Leroy JL, Vanholder T, Mateusen B, Christophe A, Opsomer G, de Kruif A, et al. Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction. 2005;130:485–95.CrossRef
4.
Zurück zum Zitat Valckx SD, Arias-Alvarez M, De Pauw I, Fievez V, Vlaeminck B, Fransen E, et al. Fatty acid composition of the follicular fluid of normal weight, overweight and obese women undergoing assisted reproductive treatment: a descriptive cross-sectional study. Reprod Biol Endocrinol. 2014;12:13.CrossRef Valckx SD, Arias-Alvarez M, De Pauw I, Fievez V, Vlaeminck B, Fransen E, et al. Fatty acid composition of the follicular fluid of normal weight, overweight and obese women undergoing assisted reproductive treatment: a descriptive cross-sectional study. Reprod Biol Endocrinol. 2014;12:13.CrossRef
5.
Zurück zum Zitat Aardema H, Gadella BM, van de Lest CH, Brouwers JF, Stout TA, Roelen BA, et al. Free fatty acid levels in fluid of dominant follicles at the preferred insemination time in dairy cows are not affected by early postpartum fatty acid stress. J Dairy Sci. 2015;98:2322–36.CrossRef Aardema H, Gadella BM, van de Lest CH, Brouwers JF, Stout TA, Roelen BA, et al. Free fatty acid levels in fluid of dominant follicles at the preferred insemination time in dairy cows are not affected by early postpartum fatty acid stress. J Dairy Sci. 2015;98:2322–36.CrossRef
6.
Zurück zum Zitat Mirabi P, Chaichi MJ, Esmaeilzadeh S, Ali Jorsaraei SG, Bijani A, Ehsani M, et al. The role of fatty acids on ICSI outcomes: a prospective cohort study. Lipids Health Dis. 2017;16:18.CrossRef Mirabi P, Chaichi MJ, Esmaeilzadeh S, Ali Jorsaraei SG, Bijani A, Ehsani M, et al. The role of fatty acids on ICSI outcomes: a prospective cohort study. Lipids Health Dis. 2017;16:18.CrossRef
7.
Zurück zum Zitat Niu Z, Lin N, Gu R, Sun Y, Feng Y. Associations between insulin resistance, free fatty acids, and oocyte quality in polycystic ovary syndrome during in vitro fertilization. J Clin Endocrinol Metab. 2014;99:E2269–76.CrossRef Niu Z, Lin N, Gu R, Sun Y, Feng Y. Associations between insulin resistance, free fatty acids, and oocyte quality in polycystic ovary syndrome during in vitro fertilization. J Clin Endocrinol Metab. 2014;99:E2269–76.CrossRef
8.
Zurück zum Zitat Leroy JL, Genicot G, Donnay I, Van Soom A. Evaluation of the lipid content in bovine oocytes and embryos with nile red: a practical approach. Reprod Domest Anim. 2005;40:76–8.CrossRef Leroy JL, Genicot G, Donnay I, Van Soom A. Evaluation of the lipid content in bovine oocytes and embryos with nile red: a practical approach. Reprod Domest Anim. 2005;40:76–8.CrossRef
9.
Zurück zum Zitat McKeegan PJ, Sturmey RG. The role of fatty acids in oocyte and early embryo development. Reprod Fertil Dev. 2011;24:59–67. McKeegan PJ, Sturmey RG. The role of fatty acids in oocyte and early embryo development. Reprod Fertil Dev. 2011;24:59–67.
10.
Zurück zum Zitat M'Baye M, Hua G, Khan HA, Yang L. RNAi-mediated knockdown of INHBBincreases apoptosis and inhibits steroidogenesis in mouse granulosacells. J Reprod Dev. 2015;61:391–7. M'Baye M, Hua G, Khan HA, Yang L. RNAi-mediated knockdown of INHBBincreases apoptosis and inhibits steroidogenesis in mouse granulosacells. J Reprod Dev. 2015;61:391–7.
11.
Zurück zum Zitat Jiang JY, Cheung CK, Wang Y, Tsang BK. Regulation of cell death and cell survival gene expression during ovarian follicular development and atresia. Front Biosci. 2003;8:d222–37.CrossRef Jiang JY, Cheung CK, Wang Y, Tsang BK. Regulation of cell death and cell survival gene expression during ovarian follicular development and atresia. Front Biosci. 2003;8:d222–37.CrossRef
12.
Zurück zum Zitat Matsuda F, Inoue N, Manabe N, Ohkura S. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. J Reprod Dev. 2012;58:44–50.CrossRef Matsuda F, Inoue N, Manabe N, Ohkura S. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. J Reprod Dev. 2012;58:44–50.CrossRef
13.
Zurück zum Zitat Mu YM, Yanase T, Nishi Y, Tanaka A, Saito M, Jin CH, et al. Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells. Endocrinology. 2001;142:3590–7.CrossRef Mu YM, Yanase T, Nishi Y, Tanaka A, Saito M, Jin CH, et al. Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells. Endocrinology. 2001;142:3590–7.CrossRef
14.
Zurück zum Zitat Vanholder T, Leroy JL, Soom AV, Opsomer G, Maes D, Coryn M, et al. Effect of non-esterified fatty acids on bovine granulosa cell steroidogenesis and proliferation in vitro. Anim Reprod Sci. 2005;87:33–44.CrossRef Vanholder T, Leroy JL, Soom AV, Opsomer G, Maes D, Coryn M, et al. Effect of non-esterified fatty acids on bovine granulosa cell steroidogenesis and proliferation in vitro. Anim Reprod Sci. 2005;87:33–44.CrossRef
15.
Zurück zum Zitat Yang Y, Lin P, Chen F, Wang A, Lan X, Song Y, et al. Luman recruiting factor regulates endoplasmic reticulum stress in mouse ovarian granulosa cell apoptosis. Theriogenology. 2013;79:633–9.CrossRef Yang Y, Lin P, Chen F, Wang A, Lan X, Song Y, et al. Luman recruiting factor regulates endoplasmic reticulum stress in mouse ovarian granulosa cell apoptosis. Theriogenology. 2013;79:633–9.CrossRef
16.
Zurück zum Zitat Lin P, Yang Y, Li X, Chen F, Cui C, Hu L, et al. Endoplasmic reticulum stress is involved in granulosa cell apoptosis during follicular atresia in goat ovaries. Mol Reprod Dev. 2012;79:423–32.CrossRef Lin P, Yang Y, Li X, Chen F, Cui C, Hu L, et al. Endoplasmic reticulum stress is involved in granulosa cell apoptosis during follicular atresia in goat ovaries. Mol Reprod Dev. 2012;79:423–32.CrossRef
17.
Zurück zum Zitat Yang Y, Pei X, Jin Y, Wang Y, Zhang C. The roles of endoplasmic reticulum stress response in female mammalian reproduction. Cell Tissue Res. 2016;363:589–97.CrossRef Yang Y, Pei X, Jin Y, Wang Y, Zhang C. The roles of endoplasmic reticulum stress response in female mammalian reproduction. Cell Tissue Res. 2016;363:589–97.CrossRef
18.
Zurück zum Zitat Yang L, Guan GP, Lei LJ, Lv QZ, Liu SY, Zhan XW, et al. Palmitic acid induces human osteoblast-like Saos-2 cell apoptosis via endoplasmic reticulum stress and autophagy. Cell Stress Chaperones. 2018;23:1283–94.CrossRef Yang L, Guan GP, Lei LJ, Lv QZ, Liu SY, Zhan XW, et al. Palmitic acid induces human osteoblast-like Saos-2 cell apoptosis via endoplasmic reticulum stress and autophagy. Cell Stress Chaperones. 2018;23:1283–94.CrossRef
19.
Zurück zum Zitat Yu L, Li B, Zhang M, Jin Z, Duan W, Zhao G, et al. Melatonin reduces PERK-eIF2α-ATF4-mediated endoplasmic reticulum stress during myocardial ischemia-reperfusion injury: role of RISK and SAFE pathways interaction. Apoptosis. 2016;21:809–24.CrossRef Yu L, Li B, Zhang M, Jin Z, Duan W, Zhao G, et al. Melatonin reduces PERK-eIF2α-ATF4-mediated endoplasmic reticulum stress during myocardial ischemia-reperfusion injury: role of RISK and SAFE pathways interaction. Apoptosis. 2016;21:809–24.CrossRef
20.
Zurück zum Zitat Wongprayoon P, Govitrapong P. Melatonin protects SH-SY5Y neuronal cells against methamphetamine-induced endoplasmic reticulum stress and apoptotic cell death. Neurotox Res. 2016;31:1–10.CrossRef Wongprayoon P, Govitrapong P. Melatonin protects SH-SY5Y neuronal cells against methamphetamine-induced endoplasmic reticulum stress and apoptotic cell death. Neurotox Res. 2016;31:1–10.CrossRef
21.
Zurück zum Zitat Ji YL, Wang H, Meng C, Zhao XF, Zhang C, Zhang Y, et al. Melatonin alleviates cadmium-induced cellular stress and germ cell apoptosis in testes. J Pineal Res. 2012;52:71–9.CrossRef Ji YL, Wang H, Meng C, Zhao XF, Zhang C, Zhang Y, et al. Melatonin alleviates cadmium-induced cellular stress and germ cell apoptosis in testes. J Pineal Res. 2012;52:71–9.CrossRef
22.
Zurück zum Zitat El-Raey M, Geshi M, Somfai T, Kaneda M, Hirako M, Abdel-Ghaffar AE, et al. Evidence of melatonin synthesis in the cumulus oocyte complexes and its role in enhancing oocyte maturation in vitro in cattle. Mol Reprod Dev. 2011;78:250–62.CrossRef El-Raey M, Geshi M, Somfai T, Kaneda M, Hirako M, Abdel-Ghaffar AE, et al. Evidence of melatonin synthesis in the cumulus oocyte complexes and its role in enhancing oocyte maturation in vitro in cattle. Mol Reprod Dev. 2011;78:250–62.CrossRef
23.
Zurück zum Zitat Kang JT, Koo OJ, Kwon DK, Park HJ, Jang G, Kang SK, et al. Effects of melatonin on in vitro maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells. J Pineal Res. 2009;46:22–8.CrossRef Kang JT, Koo OJ, Kwon DK, Park HJ, Jang G, Kang SK, et al. Effects of melatonin on in vitro maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells. J Pineal Res. 2009;46:22–8.CrossRef
24.
Zurück zum Zitat Reiter RJ, Rosales-Corral SA, Manchester LC, Tan DX. Peripheral reproductive organ health and melatonin: ready for prime time. Int J Mol Sci. 2013;14:7231–72.CrossRef Reiter RJ, Rosales-Corral SA, Manchester LC, Tan DX. Peripheral reproductive organ health and melatonin: ready for prime time. Int J Mol Sci. 2013;14:7231–72.CrossRef
25.
Zurück zum Zitat Shi JM, Tian XZ, Zhou GB, Wang L, Gao C, Zhu SE, et al. Melatonin exists in porcine follicular fluid and improves in vitro maturation and parthenogenetic development of porcine oocytes. J Pineal Res. 2009;47:318–23.CrossRef Shi JM, Tian XZ, Zhou GB, Wang L, Gao C, Zhu SE, et al. Melatonin exists in porcine follicular fluid and improves in vitro maturation and parthenogenetic development of porcine oocytes. J Pineal Res. 2009;47:318–23.CrossRef
26.
Zurück zum Zitat He Y, Deng H, Jiang Z, Li Q, Shi M, Chen H, et al. Effects of melatonin on follicular atresia and granulosa cell apoptosis in the porcine. Mol Reprod Dev. 2016;83:692–700.CrossRef He Y, Deng H, Jiang Z, Li Q, Shi M, Chen H, et al. Effects of melatonin on follicular atresia and granulosa cell apoptosis in the porcine. Mol Reprod Dev. 2016;83:692–700.CrossRef
27.
Zurück zum Zitat Papis K, Poleszczuk O, Wenta-Muchalska E, Modlinski JA. Melatonin effect on bovine embryo development in vitro in relation to oxygen concentration. J Pineal Res. 2007;43:321–6.CrossRef Papis K, Poleszczuk O, Wenta-Muchalska E, Modlinski JA. Melatonin effect on bovine embryo development in vitro in relation to oxygen concentration. J Pineal Res. 2007;43:321–6.CrossRef
28.
Zurück zum Zitat Morgan MA, Silavin SL, Wentworth RA, Figueroa JP, Honnebier BO, Fishburne JI, et al. Different patterns of myometrial activity and 24-h rhythms in myometrial contractility in the gravid baboon during the second half of pregnancy. Biol Reprod. 1992;46:1158–64.CrossRef Morgan MA, Silavin SL, Wentworth RA, Figueroa JP, Honnebier BO, Fishburne JI, et al. Different patterns of myometrial activity and 24-h rhythms in myometrial contractility in the gravid baboon during the second half of pregnancy. Biol Reprod. 1992;46:1158–64.CrossRef
29.
Zurück zum Zitat Ronnberg L, Kauppila A, Leppaluoto J, Martikainen H, Vakkuri O. Circadian and seasonal variation in human preovulatory follicular fluid melatonin concentration. J Clin Endocrinol MeTable. 1990;71:492–6.CrossRef Ronnberg L, Kauppila A, Leppaluoto J, Martikainen H, Vakkuri O. Circadian and seasonal variation in human preovulatory follicular fluid melatonin concentration. J Clin Endocrinol MeTable. 1990;71:492–6.CrossRef
30.
Zurück zum Zitat Wang SJ, Liu WJ, Wu CJ, Ma FH, Ahmad S, Liu BR, et al. Melatonin suppresses apoptosis and stimulates progesterone production by bovine granulosa cells via its receptors (MT1 and MT2). Theriogenology. 2012;78:1517–26.CrossRef Wang SJ, Liu WJ, Wu CJ, Ma FH, Ahmad S, Liu BR, et al. Melatonin suppresses apoptosis and stimulates progesterone production by bovine granulosa cells via its receptors (MT1 and MT2). Theriogenology. 2012;78:1517–26.CrossRef
31.
Zurück zum Zitat Lei LJ, Han F, Cui QY, Liao WF, Liu H, Guan GP, et al. IRS2 depletion inhibits cell proliferation and decreases hormone secretion in mouse granulosa cells. J Reprod Dev. 2018;64:409–16.CrossRef Lei LJ, Han F, Cui QY, Liao WF, Liu H, Guan GP, et al. IRS2 depletion inhibits cell proliferation and decreases hormone secretion in mouse granulosa cells. J Reprod Dev. 2018;64:409–16.CrossRef
32.
Zurück zum Zitat Chen F, Li Q, Zhang Z, Lin P, Lei L, Wang A, et al. Endoplasmic reticulum stress cooperates in zearalenone-induced cell death of RAW 264.7 macrophages. Int J Mol Sci. 2015;16:19780–95.CrossRef Chen F, Li Q, Zhang Z, Lin P, Lei L, Wang A, et al. Endoplasmic reticulum stress cooperates in zearalenone-induced cell death of RAW 264.7 macrophages. Int J Mol Sci. 2015;16:19780–95.CrossRef
33.
Zurück zum Zitat Zhu Q, Yang J, Zhu R, Jiang X, Li W, He S, et al. Dihydroceramide-desaturase-1-mediated caspase 9 activation through ceramide plays a pivotal role in palmitic acid-induced HepG2 cell apoptosis. Apoptosis. 2016;21:1033–44.CrossRef Zhu Q, Yang J, Zhu R, Jiang X, Li W, He S, et al. Dihydroceramide-desaturase-1-mediated caspase 9 activation through ceramide plays a pivotal role in palmitic acid-induced HepG2 cell apoptosis. Apoptosis. 2016;21:1033–44.CrossRef
34.
Zurück zum Zitat He Y, Zhou L, Fan Z, Liu S, Fang W. Palmitic acid, but not high-glucose, induced myocardial apoptosis is alleviated by N-acetylcysteine due to attenuated mitochondrial-derived ROS accumulation-induced endoplasmic reticulum stress. Cell Death Dis. 2018;9:568.CrossRef He Y, Zhou L, Fan Z, Liu S, Fang W. Palmitic acid, but not high-glucose, induced myocardial apoptosis is alleviated by N-acetylcysteine due to attenuated mitochondrial-derived ROS accumulation-induced endoplasmic reticulum stress. Cell Death Dis. 2018;9:568.CrossRef
35.
Zurück zum Zitat Zhang Y, Miao LS, Zhang HJ, Wu G, Zhang ZN, Lv JR. Chlorogenic acid against palmitic acid in endoplasmic reticulum stress-mediated apoptosis resulting in protective effect of primary rat hepatocytes. Lipids Health Dis. 2018;17:270.CrossRef Zhang Y, Miao LS, Zhang HJ, Wu G, Zhang ZN, Lv JR. Chlorogenic acid against palmitic acid in endoplasmic reticulum stress-mediated apoptosis resulting in protective effect of primary rat hepatocytes. Lipids Health Dis. 2018;17:270.CrossRef
36.
Zurück zum Zitat Nakamura Y, Tamura H, Takayama H, Kato H. Increased endogenous level of melatonin in preovulatory human follicles does not directly influence progesterone production. Fertil Steril. 2003;80:1012–6.CrossRef Nakamura Y, Tamura H, Takayama H, Kato H. Increased endogenous level of melatonin in preovulatory human follicles does not directly influence progesterone production. Fertil Steril. 2003;80:1012–6.CrossRef
37.
Zurück zum Zitat Tamura H, Nakamura Y, Korkmaz A, Manchester LC, Tan DX, Sugino N, et al. Melatonin and the ovary: physiological and pathophysiological implications. Fertil Steril. 2009;92:328–43.CrossRef Tamura H, Nakamura Y, Korkmaz A, Manchester LC, Tan DX, Sugino N, et al. Melatonin and the ovary: physiological and pathophysiological implications. Fertil Steril. 2009;92:328–43.CrossRef
38.
Zurück zum Zitat Tamura H, Takasaki A, Miwa I, Taniguchi K, Maekawa R, Asada H, et al. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res. 2008;44:280–7.CrossRef Tamura H, Takasaki A, Miwa I, Taniguchi K, Maekawa R, Asada H, et al. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res. 2008;44:280–7.CrossRef
39.
Zurück zum Zitat Tamura H, Takasaki A, Taketani T, Tanabe M, Kizuka F, Lee L, et al. The role of melatonin as an antioxidant in the follicle. J Ovarian Res. 2012;5:5.CrossRef Tamura H, Takasaki A, Taketani T, Tanabe M, Kizuka F, Lee L, et al. The role of melatonin as an antioxidant in the follicle. J Ovarian Res. 2012;5:5.CrossRef
40.
Zurück zum Zitat Tamura H, Takasaki A, Taketani T, Tanabe M, Kizuka F, Lee L, et al. Melatonin as a free radical scavenger in the ovarian follicle. Endocr J. 2013;60:1–13.CrossRef Tamura H, Takasaki A, Taketani T, Tanabe M, Kizuka F, Lee L, et al. Melatonin as a free radical scavenger in the ovarian follicle. Endocr J. 2013;60:1–13.CrossRef
41.
Zurück zum Zitat Remiao MH, Lucas CG, Domingues WB, Silveira T, Barther NN, Komninou ER, et al. Melatonin delivery by nanocapsules during in vitro bovine oocyte maturation decreased the reactive oxygen species of oocytes and embryos. Reprod Toxicol. 2016;63:70–81.CrossRef Remiao MH, Lucas CG, Domingues WB, Silveira T, Barther NN, Komninou ER, et al. Melatonin delivery by nanocapsules during in vitro bovine oocyte maturation decreased the reactive oxygen species of oocytes and embryos. Reprod Toxicol. 2016;63:70–81.CrossRef
42.
Zurück zum Zitat Mayo JC, Sainz RM, Tan DX, Hardeland R, Leon J, Rodriguez C, et al. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and n1-acetyl-5-methoxykynuramine (AMK), in macrophages. J Neuroimmunol. 2005;165:139–49.CrossRef Mayo JC, Sainz RM, Tan DX, Hardeland R, Leon J, Rodriguez C, et al. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and n1-acetyl-5-methoxykynuramine (AMK), in macrophages. J Neuroimmunol. 2005;165:139–49.CrossRef
43.
Zurück zum Zitat Tanabe M, Tamura H, Taketani T, Okada M, Lee L, Tamura I, et al. Melatonin protects the integrity of granulosa cells by reducing oxidative stress in nuclei, mitochondria, and plasma membranes in mice. J Reprod Dev. 2015;61:35–41.CrossRef Tanabe M, Tamura H, Taketani T, Okada M, Lee L, Tamura I, et al. Melatonin protects the integrity of granulosa cells by reducing oxidative stress in nuclei, mitochondria, and plasma membranes in mice. J Reprod Dev. 2015;61:35–41.CrossRef
44.
Zurück zum Zitat Xiong YJ, Chen HT, Lin PF, Wang AH, Wang L, Jin YP. ATF6 knockdown decreases apoptosis, arrests the S phase of the cell cycle, and increases steroid hormone production in mouse granulosa cells. Am J Phys Cell Phys. 2017;312:C341–53.CrossRef Xiong YJ, Chen HT, Lin PF, Wang AH, Wang L, Jin YP. ATF6 knockdown decreases apoptosis, arrests the S phase of the cell cycle, and increases steroid hormone production in mouse granulosa cells. Am J Phys Cell Phys. 2017;312:C341–53.CrossRef
45.
Zurück zum Zitat Liu H, Zhang X, Zhang S, Huang H, Wu J, Wang Y, et al. Oxidative stress mediates microcystin-LR-induced endoplasmic reticulum stress and autophagy in KK-1 cells and C57BL/6 mice ovaries. Front Physiol. 2018;9:1058.CrossRef Liu H, Zhang X, Zhang S, Huang H, Wu J, Wang Y, et al. Oxidative stress mediates microcystin-LR-induced endoplasmic reticulum stress and autophagy in KK-1 cells and C57BL/6 mice ovaries. Front Physiol. 2018;9:1058.CrossRef
Metadaten
Titel
Melatonin attenuates palmitic acid-induced mouse granulosa cells apoptosis via endoplasmic reticulum stress
verfasst von
Zhi Chen
Lanjie Lei
Di Wen
Lei Yang
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Journal of Ovarian Research / Ausgabe 1/2019
Elektronische ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-019-0519-z

Weitere Artikel der Ausgabe 1/2019

Journal of Ovarian Research 1/2019 Zur Ausgabe

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.