Skip to main content
Erschienen in: Journal of Ovarian Research 1/2016

Open Access 01.12.2016 | Review

Melatonin influence in ovary transplantation: systematic review

verfasst von: M. E. Shiroma, N. M. Botelho, L. L. Damous, E. C. Baracat, J. M. Soares-Jr

Erschienen in: Journal of Ovarian Research | Ausgabe 1/2016

Abstract

Melatonin is an indolamine produced by the pineal gland and it can exert a potent antioxidant effect. Its free radical scavenger properties have been used to advantage in different organ transplants in animal experiments. Several concentrations and administration pathways have been tested and melatonin has shown encouraging beneficial results in many transplants of organs such as the liver, lungs, heart, pancreas, and kidneys. The objective of the present study was to review the scientific literature regarding the use of melatonin in ovary transplantation. A systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was carried out using the Cochrane and Pubmed databases and employing the terms ‘melatonin’ AND ‘ovary’ AND ‘transplantation.’ After analysis, 5 articles were extracted addressing melatonin use in ovary transplants and involving 503 animals. Melatonin enhanced various graft aspects like morphology, apoptosis, immunological reaction, revascularization, oxidative stress, and survival rate. Melatonin’s antioxidative and antiapoptotic properties seemingly produce positive effects on ovarian graft activity. Despite the promising results, further studies in humans need to be conducted to consolidate its use, as ovary transplantation for fertility preservation is gradually being moved from the experimental stage to a clinical setting.

Background

Melatonin is an indolamine produced mainly by the pineal gland [1, 2] and it has a potent freeradical scavenger activity with subsequent antioxidant and antiapoptotic functions [1, 3, 4]. Unlike vitamin C, which is hydrophilic, and vitamin E, which is lipophilic, the melatonin molecule carries both hydrophilic and lipophilic affinities and therefore diffuses broadly in diverse subcellular compartments like the membranes, cytoplasm, nucleus, and mitochondria [1, 4]. It has thus the ability to produce its antioxidative action rapidly and effectively as soon as the oxidative agents are produced [5]. There are reports about melatonin action on the rat ovary specific receptors MT1 and MT2 [6].
There are also studies indicating that one of the main challenges in achieving a successful transplant, is the reduction in graft follicular loss and damage. This is attainable through mitigation of the free radicals produced by the procedure [7] and primarily originating from ischemia-reperfusion distress [5]. Melatonin’s immunological and antiapoptotic properties are seen as potentially implicated in the enhancement of transplantation success [5], a welcome improvement even in heterologous and autologous grafting. There are other studies demonstrating the benefits of melatonin in experimental transplants of organ, like the liver [8], lungs [9], heart [10], pancreas [11, 12] and kidneys [13]. Enhancement of the graft function, immunological compliance, and antiapoptotic and antioxidative status are examples of the positive outcome.
As there is evidence that melatonin’s properties may experimentally improve the transplants of a variety of organs along different pathways, the aim of this review was to gather published studies of the indolamine’s use in ovary transplantation.

Methods

In this systematic review, the PubMed and Cochrane databases were searched for reports published in any language between October 1, 2003 – date of the first ever published related paper [14] – and October 31, 2015, with the search terms: ‘melatonin’ AND ‘ovary’ AND ‘transplantation.’
Data were extracted from the selected articles. Quality assessment was performed independently by two reviewers (M.E.S. and N.M.B.). When there was any disagreement, a third reviewer (L.L.D.) was consulted. The analysis followed the PRISMA statement for systematic reviews [15].
Six studies were identified and after detailed analysis of the content, one of them [16] was excluded for issue discrepancy (Fig. 1).

Results

All of the selected studies were published in the 12 years previous to this review. A total of 503 rodents (mice and rats) were studied. There are no reports of animal loss. Notwithstanding a study which used 5 human xenotransplanted ovarian samples, all were studies which experimentally analyzed the effects of melatonin on animals.
Except in the pioneer study by Sapmaz [14], who employed fresh ovaries, in all other researches, grafts were frozen and thawed. Many different concentrations (for the maintenance solution of the graft) and application routes (oral and intraperitoneal) were studied. Two studies adopted similar methodology and could be paired [17, 18].
The biological effects of melatonin on graft were enhancement of morphology; revascularization; and improved survival rate with concomitant reduction in apoptosis, immunological Th1/Th2 lymphocyte reaction, and oxidative stress (a decrease in oxidative factors and an increase in antioxidative agents). Results are summarized in Table 1.
Table 1
Effects of melatonin on ovary transplantation
Author
Species
Study model
Melatonin route and dosage
Results of melatonin use
Friedman, 2012 [3]
Human; Nu/nu Balb/c mice
Xenotransplanted thawed graft; donor: 5 cancer patients aged 6–23 years; recipient: 79 immunodeficient nu/nu Balb/c mice aged 10–12 weeks
Oral administration in feeding water; 240 mg/L
Reduced number of apoptosis and atretic follicles
Hemadi, 2012 [19]
Balb/c mice
Heterologous thawed graft; donor: mice aged 10 days; recipient: 180 mice aged 8–10 weeks; 900 transplants
Oral administration; 20–200 mg/kg/day
Enhanced follicle quality, quantity, and graft size with low dosage; diminished Th1/Th2 immunological reaction and longer graft lifespan with high dosage
Hemadi, 2011 [18]
F1 hybrid mice
Heterologous thawed graft; donor: mice aged 10 days; recipient: 60 mice aged 8–10 weeks
Graft: 100 μM PBF
Recipient: intraperitoneal for 2 days; 20 mg/kg/day
Enhanced corpora lutea, secondary and antral follicles
Hemadi, 2009 [17]
F1 hybrid mice
Heterologous thawed graft; donor: 120 mice aged 10 days; recipient: 36 mice aged 8–10 weeks
Graft: 100 μM PBF
Recipient: intraperitoneal for 2 days; 20 mg/kg/day
Improved mean graft survival, ovary size, and revascularization
Sapmaz, 2003 [14]
Wistar albino rats
Autologous fresh graft; 28 Wistar albino rats aged 12–14 weeks
intraperitoneal prior to transplantation; 20 mg/kg
Diminished ovarian and plasmatic malondialdehyde and ovarian necrosis; enhanced glutathione peroxidase and superoxide dismutase

Conclusions

The potential effects of melatonin use in animal ovary transplantation align with previously reported positive findings of its application in many experimental transplants of such organs as the liver [8], lungs [9], heart [10], pancreas [11, 12] and kidneys [13].
In our review we found evidence of the effects of melatonin on ovarian graft. Notwithstanding the administration routes (oral or intraperitoneal) and vehicles (graft), the selected studies reported a promising performance of the indolamine. This points to a wide solubility which enables it to spread rapidly throughout a variety of tissues. The effects comprised a wide range of properties, including follicle morphology and dynamics, apoptosis, graft survival range, immunologic activity and antioxidative mechanisms. The potent antioxidative properties of melatonin, along with its free radical scavenger activity, decrease oxidative stress and thus increase the survival rate. Melatonin not only acts directly as an anti-free radical agent, but also activates other enzymes, such as superoxide dismutase, glutathione peroxidase, and catalase [20, 21], with the potential to decrease oxidative damage. Even melatonin metabolites have free radical scavenger properties, thus triggering multiple synergistic antioxidative factors, a phenomenon referred to as the cascade effect [20, 21]. The antiapoptotic effect was also remarkable and is based on reduction of Bcl2 expression and caspase-3 activity [22]. The enhancement of ovarian graft function is also attributable to melatonin, given that it is known to modulate steroidogenesis and ovulatory function [23, 24]. The subsequent balance between free radicals and antioxidative substances in the ovarian follicle also improves oocyte and granulosa cell function [1, 2, 21]. Additionally, the indol also attenuated immunological reaction and improved revascularization, two essential properties for a successful graft allocation.
The present review has some limitations imposed by the studies it covered. The heterogeneity of methods made it difficult to compare results. The wide range of apparently beneficial melatonin action on ovarian transplantation is quite encouraging, but melatonin was studied only in animal models. Moreover, except for the Sapmaz [14] study, the other studies employed heterologous or xenotransplantation, which differs from clinical preservation of human fertility, for this method requires autologous transplantation. Melatonin was administered in the feeding water in two studies [3, 19]. Therefore, different water intake by the animals might have resulted in diverse plasmatic concentration of melatonin. Apart from Hemadi [19], who dosed melatonin plasmatic levels, the authors did not determine the in vivo availability of melatonin in blood or urine. Furthermore, no study used control animals (not even pinealectomized rodents or rodents submitted to continuous light) to isolate the effect of endogenous melatonin production.
Melatonin’s antioxidative and antiapoptotic properties seem to produce positive effects on ovarian graft. Despite the promising results, further studies are needed in humans to consolidate its use, as ovary transplantation for fertility preservation is gradually being moved from the experimental stage to a clinical setting.

Abbreviation

PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

Acknowledgements

Authors do not have any other professional to acknowledge for the manuscript elaboration.

Funding

No funding resource was involved in this manuscript.

Availability of data and material

Not applicable.

Authors’ contributions

MES and NMB performed the independent articles selection, quality assessment and review text elaboration; LLD performed article quality assessment and review text review; JMS and ECB provided review text review. All authors read and approved the final manuscript.

Authors’ information

No further information to be noted.

Competing interests

The authors declare that have no conflict of interest regarding the elaboration of this manuscript.
Not applicable.
Not applicable.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Reiter RJ, Tan DX, Manchester LC, Paredes SD, Mayo JC, Sainz RM. Melatonin and reproduction revisited. Biol Reprod. 2009;81:445–56.CrossRefPubMed Reiter RJ, Tan DX, Manchester LC, Paredes SD, Mayo JC, Sainz RM. Melatonin and reproduction revisited. Biol Reprod. 2009;81:445–56.CrossRefPubMed
2.
Zurück zum Zitat Tamura H, Takasaki A, Taketani T, Tanabe M, Kizuka F, Lee F, et al. The role of melatonin as an antioxidant in the follicle. J Ovarian Res. 2012;5:5.CrossRefPubMedPubMedCentral Tamura H, Takasaki A, Taketani T, Tanabe M, Kizuka F, Lee F, et al. The role of melatonin as an antioxidant in the follicle. J Ovarian Res. 2012;5:5.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Friedman OR, Orvieto R, Fisch B, Felz C, Freud E, Ben-Haroush A, et al. Possible improvements in human ovarian grafting by various host and graft treatments. Hum Reprod. 2012;27:474–82.CrossRefPubMed Friedman OR, Orvieto R, Fisch B, Felz C, Freud E, Ben-Haroush A, et al. Possible improvements in human ovarian grafting by various host and graft treatments. Hum Reprod. 2012;27:474–82.CrossRefPubMed
4.
Zurück zum Zitat Wang F, Tian XZ, Zhang L, Tan DX, Reiter RJ, Liu GS. Melatonin promotes the in vitro development of pronuclear embryos and increases the efficiency of blastocyst implantation in murine. J Pineal Res. 2013;55:267–74.CrossRefPubMed Wang F, Tian XZ, Zhang L, Tan DX, Reiter RJ, Liu GS. Melatonin promotes the in vitro development of pronuclear embryos and increases the efficiency of blastocyst implantation in murine. J Pineal Res. 2013;55:267–74.CrossRefPubMed
5.
Zurück zum Zitat Reiter RJ, Maestroni GJM. Melatonin in relation to the antioxidative defense and immune systems: possible implications for cell and organ transplantation. J Mol Med. 1999;77:36–9.CrossRefPubMed Reiter RJ, Maestroni GJM. Melatonin in relation to the antioxidative defense and immune systems: possible implications for cell and organ transplantation. J Mol Med. 1999;77:36–9.CrossRefPubMed
6.
Zurück zum Zitat Soares-Jr JM, Masana MI, Ersahin C, Dubocovich ML. Functional melatonin receptors in rat ovaries at vários stages of the estrous cycle. J Pharmacol Exp Ther. 2003;306:694–702.CrossRef Soares-Jr JM, Masana MI, Ersahin C, Dubocovich ML. Functional melatonin receptors in rat ovaries at vários stages of the estrous cycle. J Pharmacol Exp Ther. 2003;306:694–702.CrossRef
7.
Zurück zum Zitat Demeestere I, Simon P, Emiliani S, Delbaere A, Englert Y. Orthotopic and heterotopic ovarian tissue transplantation. Human Reprod Update. 2009;0:1–17. Demeestere I, Simon P, Emiliani S, Delbaere A, Englert Y. Orthotopic and heterotopic ovarian tissue transplantation. Human Reprod Update. 2009;0:1–17.
8.
Zurück zum Zitat Vairetti M, Ferrigno A, Bertone R, Rizzo V, Richelmi P, Bertè F, et al. Exogenous melatonin enhances bile flow and ATP levels after cold storage and reperfusion in rat liver: implications for liver transplantation. J Pineal Res. 2005;38:223–30.CrossRefPubMed Vairetti M, Ferrigno A, Bertone R, Rizzo V, Richelmi P, Bertè F, et al. Exogenous melatonin enhances bile flow and ATP levels after cold storage and reperfusion in rat liver: implications for liver transplantation. J Pineal Res. 2005;38:223–30.CrossRefPubMed
9.
Zurück zum Zitat Inci I, Inci D, Dutly A, Boehler A, Weder W. Melatonin attenuates posttransplant lung ischemia-reperfusion injury. Ann Thorac Surg. 2002;73:220–5.CrossRefPubMed Inci I, Inci D, Dutly A, Boehler A, Weder W. Melatonin attenuates posttransplant lung ischemia-reperfusion injury. Ann Thorac Surg. 2002;73:220–5.CrossRefPubMed
10.
Zurück zum Zitat Jung FJ, Yang L, Harter L, Inci I, Schneiter D, Lardinois D, et al. Melatonin in vivo prolongs cardiac allograft survival in rats. J Pineal Res. 2004;37:36–41.CrossRefPubMed Jung FJ, Yang L, Harter L, Inci I, Schneiter D, Lardinois D, et al. Melatonin in vivo prolongs cardiac allograft survival in rats. J Pineal Res. 2004;37:36–41.CrossRefPubMed
11.
Zurück zum Zitat García-Gil FA, Albendea CD, Escartín J, Lampreave F, Fuentes-Broto L, Roselló-Catafau J, et al. Melatonin prolongs graft survival of pancreas allotransplants in pigs. J Pineal Res. 2011;51:445–53.CrossRefPubMed García-Gil FA, Albendea CD, Escartín J, Lampreave F, Fuentes-Broto L, Roselló-Catafau J, et al. Melatonin prolongs graft survival of pancreas allotransplants in pigs. J Pineal Res. 2011;51:445–53.CrossRefPubMed
12.
Zurück zum Zitat Lin GJ, Huang S-H, Chen Y-W, Hueng D-Y, Chien M-W, Chia W-T, et al. Melatonin prolongs islet graft survival in diabetic NOD mice. J Pineal Res. 2009;47:284–92.CrossRefPubMed Lin GJ, Huang S-H, Chen Y-W, Hueng D-Y, Chien M-W, Chia W-T, et al. Melatonin prolongs islet graft survival in diabetic NOD mice. J Pineal Res. 2009;47:284–92.CrossRefPubMed
13.
Zurück zum Zitat Li Z, Nickkholgh A, Yi X, Bruns H, Gross M-L, Hoffmann K, et al. Melatonin protects kidney grafts from ischemia/reperfusion injury through inhibition of NF-kB and apoptosis after experimental kidney transplantation. J Pineal Res. 2009;46:365–72.CrossRefPubMed Li Z, Nickkholgh A, Yi X, Bruns H, Gross M-L, Hoffmann K, et al. Melatonin protects kidney grafts from ischemia/reperfusion injury through inhibition of NF-kB and apoptosis after experimental kidney transplantation. J Pineal Res. 2009;46:365–72.CrossRefPubMed
14.
Zurück zum Zitat Sapmaz E, Ayar A, Celik H, Sapmaz T, Kilic N, Yasar MA. Effects of melatonin and oxytetracycline in autologous intraperitoneal ovary transplantation in rats. Neuroendocrinol Lett. 2003;24:350–4.PubMed Sapmaz E, Ayar A, Celik H, Sapmaz T, Kilic N, Yasar MA. Effects of melatonin and oxytetracycline in autologous intraperitoneal ovary transplantation in rats. Neuroendocrinol Lett. 2003;24:350–4.PubMed
15.
Zurück zum Zitat Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;350:g7647.CrossRef Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;350:g7647.CrossRef
16.
Zurück zum Zitat Zhang L, Chai M, Tian X, Wang F, Fu Y, He C, et al. Effects of melatonin on superovulation and transgenic embryo transplantation in small-tailed han sheep (Ovis aries). Neuro Endocrinol Lett. 2013;34:294–301.PubMed Zhang L, Chai M, Tian X, Wang F, Fu Y, He C, et al. Effects of melatonin on superovulation and transgenic embryo transplantation in small-tailed han sheep (Ovis aries). Neuro Endocrinol Lett. 2013;34:294–301.PubMed
17.
Zurück zum Zitat Hemadi M, Abolhassani F, Akbari M, Sobhani A, Pasbakhsh P, Ährlund-Richter L, et al. Melatonin promotes the cumulus–oocyte complexes quality of vitrified–thawed murine ovaries; with increased mean number of follicles survival and ovary size following heterotopic transplantation. Eur J Pharmacol. 2009;618:84–90.CrossRefPubMed Hemadi M, Abolhassani F, Akbari M, Sobhani A, Pasbakhsh P, Ährlund-Richter L, et al. Melatonin promotes the cumulus–oocyte complexes quality of vitrified–thawed murine ovaries; with increased mean number of follicles survival and ovary size following heterotopic transplantation. Eur J Pharmacol. 2009;618:84–90.CrossRefPubMed
18.
Zurück zum Zitat Hemadi M, Saki G, Shokri S, Ghasemi FM. Follicular dynamics in neonate vitrified ovarian grafts after host treatment with melatonin. Folia Morphol. 2011;70:18–23. Hemadi M, Saki G, Shokri S, Ghasemi FM. Follicular dynamics in neonate vitrified ovarian grafts after host treatment with melatonin. Folia Morphol. 2011;70:18–23.
19.
Zurück zum Zitat Hemadi M, Shokri S, Pourmatroud E, Moramezi F, Khodadai A. Follicular dynamic and immunoreactions of the vitrified ovarian graft after host treatment with variable regimens of melatonin. Am J Reprod Immunol. 2012;67:401–12.CrossRefPubMed Hemadi M, Shokri S, Pourmatroud E, Moramezi F, Khodadai A. Follicular dynamic and immunoreactions of the vitrified ovarian graft after host treatment with variable regimens of melatonin. Am J Reprod Immunol. 2012;67:401–12.CrossRefPubMed
20.
Zurück zum Zitat Ferreira CS, Carvalho KC, Maganhin CC, Paiotti AP, Oshima CT, Simões MJ, Baracat EC, Soares JM Jr. Does melatonin influence the apoptosis in rat uterus of animals exposed to continuous light? Apoptosis. 2016;21(2):155-62. Ferreira CS, Carvalho KC, Maganhin CC, Paiotti AP, Oshima CT, Simões MJ, Baracat EC, Soares JM Jr. Does melatonin influence the apoptosis in rat uterus of animals exposed to continuous light? Apoptosis. 2016;21(2):155-62.
21.
Zurück zum Zitat Cruz MHC, Leal CLV, Cruz JF, Tan DX, Reiter RJ. Essential actions of melatonin in protecting the ovary from oxidative damage. Theriogenology. 2014;82:925–32.CrossRefPubMed Cruz MHC, Leal CLV, Cruz JF, Tan DX, Reiter RJ. Essential actions of melatonin in protecting the ovary from oxidative damage. Theriogenology. 2014;82:925–32.CrossRefPubMed
22.
Zurück zum Zitat Ferreira CS, Maganhin CC, Simões RS, Girão MJBC, Baracat EC, Soares-Jr JM. Melatonina: modulador de morte celular. Rev Assoc Med Bras. 2010;56:715–8.CrossRef Ferreira CS, Maganhin CC, Simões RS, Girão MJBC, Baracat EC, Soares-Jr JM. Melatonina: modulador de morte celular. Rev Assoc Med Bras. 2010;56:715–8.CrossRef
23.
Zurück zum Zitat Maganhin CC, Carbonel AAF, Hatty JH, Fuchs LFP, Oliveira-Junior IS, Simões MJ, et al. Efeitos da melatonina no sistema genital feminino: breve revisão. Rev Assoc Med Bras. 2008;54:267–71.CrossRefPubMed Maganhin CC, Carbonel AAF, Hatty JH, Fuchs LFP, Oliveira-Junior IS, Simões MJ, et al. Efeitos da melatonina no sistema genital feminino: breve revisão. Rev Assoc Med Bras. 2008;54:267–71.CrossRefPubMed
24.
Zurück zum Zitat Romeu LRG, Motta ELA, Maganhin CC, Oshima CTF, Fonseca MC, Barrueco KF, et al. Effects of melatonin on histomorphology and on the expression of steroid receptors, VEGF, and PCNA in ovaries of pinealectomized female rats. Fertil Steril. 2011;95:1379–1384A.CrossRefPubMed Romeu LRG, Motta ELA, Maganhin CC, Oshima CTF, Fonseca MC, Barrueco KF, et al. Effects of melatonin on histomorphology and on the expression of steroid receptors, VEGF, and PCNA in ovaries of pinealectomized female rats. Fertil Steril. 2011;95:1379–1384A.CrossRefPubMed
Metadaten
Titel
Melatonin influence in ovary transplantation: systematic review
verfasst von
M. E. Shiroma
N. M. Botelho
L. L. Damous
E. C. Baracat
J. M. Soares-Jr
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
Journal of Ovarian Research / Ausgabe 1/2016
Elektronische ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-016-0245-8

Weitere Artikel der Ausgabe 1/2016

Journal of Ovarian Research 1/2016 Zur Ausgabe

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.