Skip to main content
Erschienen in: Cancer Cell International 1/2019

Open Access 01.12.2019 | Review

Mesenchymal stromal cells induce inhibitory effects on hepatocellular carcinoma through various signaling pathways

verfasst von: Jafar Ai, Neda Ketabchi, Javad Verdi, Nematollah Gheibi, Hossein Khadem Haghighian, Maria Kavianpour

Erschienen in: Cancer Cell International | Ausgabe 1/2019

Abstract

Hepatocellular carcinoma (HCC) is the most prevalent type of malignant liver disease worldwide. Molecular changes in HCC collectively contribute to Wnt/β-catenin, as a tumor proliferative signaling pathway, toll-like receptors (TLRs), nuclear factor-kappa B (NF-κB), as well as the c-Jun NH2-terminal kinase (JNK), predominant signaling pathways linked to the release of tumor-promoting cytokines. It should also be noted that the Hippo signaling pathway plays an important role in organ size control, particularly in promoting tumorigenesis and HCC development. Nowadays, mesenchymal stromal cells (MSCs)-based therapies have been the subject of in vitro, in vivo, and clinical studies for liver such as cirrhosis, liver failure, and HCC. At present, despite the importance of basic molecular pathways of malignancies, limited information has been obtained on this background. Therefore, it can be difficult to determine the true concept of interactions between MSCs and tumor cells. What is known, these cells could migrate toward tumor sites so apply effects via paracrine interaction on HCC cells. For example, one of the inhibitory effects of MSCs is the overexpression of dickkopf-related protein 1 (DKK-1) as an important antagonist of the Wnt signaling pathway. A growing body of research challenging the therapeutic roles of MSCs through the secretion of various trophic factors in HCC. This review illustrates the complex behavior of MSCs and precisely how their inhibitory signals interface with HCC tumor cells.
Hinweise
Jafar Ai and Neda Ketabchi contributed equally and should be considered co-first authors

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AP-1
activator protein-1
APC
adenomatous polyposis coli
CD14
cluster of differentiation 14
BAD
Bcl-2-associated death promoter
DKK-1
dickkopf 1
Dvl
dishevelled
EpCAM
epithelial cell adhesion molecule
ERK
extracellular signal-regulated kinases
FOXO
forkhead box
GPCR
G protein-coupled receptors
GSK3
glycogen synthase kinase 3
IKK
I-kappa-B kinase
IRAKs
IL-1 receptor-associated kinases
IL
interleukin
IFN
interferon
JNK
c-Jun N-terminal kinases
LBP
lipopolysaccharide binding protein
LRP5/6
low density lipoprotein receptor-related protein 5/6
MD2
myeloid differentiation factor 2
MyD88
myeloid differentiation primary response gene 88
mTOR
mammalian target of rapamycin
M-CSF
macrophage-colony stimulating factor
MMP
matrix metalloproteinases
MEK
MAPK/ERK kinase
MKKK
mitogen-activated protein kinase kinase kinase
MKK
mitogen-activated protein kinase kinase
NF-κB
nuclear factor
NEMO
NF-kappa-B essential modulator
PI3K
phosphoinositide 3-kinase
PTEN
phosphatase and tensin homolog
PKB
protein kinase B
PDGF
platelet-derived growth factor
RTK
receptor tyrosine kinases
sFRP
soluble frizzled related proteins (sFRP)
TERT
telomerase reverse transcriptase
TRIF
TIR-domain-containing adapter-inducing interferon-β
TNFa
tumor necrosis factor a
TLR4
toll-like receptor 4
TIRAP
TIR domain-containing adaptor protein
TRAF6
TNF receptor associated factor 6
TGFβ
transforming growth factor beta
TAK1
TGFβ- activated kinase
TSG-6
TNF-stimulated gene 6
Wif-1
Wnt inhibitory factor-1

Introduction

Hepatocellular carcinoma (HCC) is the most common type of liver malignancy, occurs predominantly in patients with underlying chronic liver disease and cirrhosis [1]. Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections, combined with the advanced stage of liver fibrosis are thought to be the major risk factors for HCC [2].
There are alternative treatments available for this particular type of cancer, including chemotherapy with anti-cancer agents like sorafenib, radiotherapy, and immunotherapy, as well as the surgical resection of tumoral lesions. Ultimately, liver transplantation is an accepted modality of treatment in this background [3]. Although a liver transplant may offer the best chance of survival in patients with end-stage liver disease, the potential complications of this procedure lead to an urgent need to develop new treatment strategies for HCC. Cell therapy research propose some new mechanisms for tissue regeneration that would be used as a suitable replacement alone or in combination with other medications [4, 5].
In recent years, considerable research has been devoted to developing effective HCC treatment options. In particular, mesenchymal stromal cells (MSCs) based therapies have been the subject of in vitro, in vivo, and clinical studies for liver dysfunction management purposes [6]. In addition to the differentiation capacity of MSCs as intrinsic drug stores, they are also able to secrete various trophic factors, affecting a large number of cells through the body [4]. MSCs, also known as fibroblast-like cells possess self-renewal capacity and multiple differentiation abilities to distinct lineages, such as osteocytes, adipocytes, and chondrocytes [7]. Mainly in the bone marrow, they have either been identified in various tissues and organs such as adipose, umbilical cord, kidney, brain, liver, and lung. These organs contain a subpopulation of stem cells as sources of putative MSCs for therapeutic purposes, largely due to findings related to their effectiveness in the treatment of several diseases [8].
The presence of these cells is confirmed mainly by evaluating the cell surface markers, such as CD29, CD51, CD73, CD90, and CD105, as well as the lack of CD45 and CD31 [9]. Still, the evidence of the homogenous population of such cells have not been identified in any research studies. The International Society for Cell and Gene Therapy (ISCT) proposed two criteria for the definition of MSCs based on heterogeneous and nonclonal cell populations, which are a mixture of stem cells with different multipotential properties, committed progenitors, and differentiated cells [10]. Despite the tumor homing nature and induction of cancer cell growth arrest by MSCs [9, 10], still little is known about the signaling molecules and how they work in such cells [11].
Molecular carcinogenesis of HCC could be variable due to either inactivation or loss of tumor suppressor genes such as cyclin-dependent kinase inhibitor 1A (P21, Cip1), tumor protein p53 (TP53), retinoblastoma (RB) and phosphatase and tensin homolog (PTEN) and/or activation of oncogenes including protein kinase B (PKB) and neuroblastoma Ras (N-Ras) [12, 13]. In addition, HCC is strongly correlated with abnormalities of signal transduction network that regulate self-renewal ability, proliferation and differentiation capacity of stem cell, for example, MAPK, mTOR, Notch, and Wnt/β-catenin pathways or another cytokine such as HGF, IGF, VEGF, and PDGF signaling [14, 15]. The homing potential of human MSCs to lesions of Kaposi’s sarcoma and their inhibitory activity on tumor growth by down-regulating the PKB is an example of the therapeutic potency of MSCs co-cultured with animal tumor cells [16]. Hajighasemlou et al. have indicated the huge therapeutic potential of intertumoral injection of MSCs as a cell-based therapy in HCC [17]. Increased MSC migration toward tumor sites is associated with improved biochemical test results due to their growth suppression effect on HCC cells. Nevertheless, we need more experimental data in which signaling pathways are highly involved in this background? In this review, we will discuss the inhibitory effects of MSCs on HCC cell proliferation with the key focus on related signaling transduction network.

Downregulation of Wnt signaling in HCC

Among the multiple signaling pathways, a significant amount of research has been done studying the Wnt signaling alteration as a common pathogenic basis of HCC [14]. The HCC tumor microenvironment is associated with a hyperactive Wnt signaling pathway, as well as the acquisition of stemness features by tumor cells [18]. It seems likely that the increased expression of downstream target genes is a key step within the pathological consequences of Wnt signaling in HCC cells [19].
The canonical Wnt signaling pathway launches its promotion effects by stabilization of cytosolic β-catenin and its nuclear translocation as a transcriptional regulator, whereby it works as a co-activator of T-cell factor (TCF) proteins [20]. An initiating event is probably caused by the Wnt ligands, through binding to the Frizzled (Fzd) receptors and co-receptors, lipoprotein receptor-related protein (LRP) 5 and 6 [21]. Members of the Wnt proto-oncogene family can lead to tumor formation by accelerating proliferation and cell cycle progression [21]. Thus, for example, increased expression of the anti-apoptotic protein B-cell lymphoma 2 (BCL-2) and proliferating cell nuclear antigen (PCNA) has been linked to Wnt3a in cancer cells [22]. Soluble Wnt antagonists, including soluble frizzled-related protein (sFRP), dickkopf-related protein 1 (DKK-1) and Wnt inhibitory factor-1 (WIF-1) differentially modulate the initiation of Wnt signaling in both normal and malignant cell populations [23, 24] (Fig. 1).
Yet, in spite of many advances in signal transduction pathways, the impact of MSCs on Wnt signaling and their inhibitory effect on HCC cell growth remain largely unknown. To date, there is a lot of evidence that MSCs release some factors such as DKK-1 that compete with Wnt for binding to LRP5/6, thus inhibits the Wnt signaling pathway [11, 25].
Qiao et al. have elucidated the inhibitory properties of MSCs on the dynamic growth of human breast cancer cell lines. These results indicate that MSC-conditioned medium induces down-regulation of β-catenin, while overexpression of DKK-1 enhances the inhibitory effect of MSCs on the Wnt signaling pathway [25] (Fig. 1). Similarly, Zhu et al. reported the DKK-1 secretion by MSCs cause decreased proliferation of chronic myelogenous leukemia cancer cells [26]. Furthermore, mechanisms underlying the inhibition of proliferation and promotion of apoptosis have been investigated in human HepG2 cell lines. MSC-derived DKK-1 protein could inhibit the expression of Wnt-related factors, including c-Myc, BCL-2, survivin, and β-catenin, thus leads to the dysregulation of this signaling pathway [11].
Telomerase reverse transcriptase (TERT) gene is involved in regulating the stemness properties by influencing the telomere length maintenance of normal stem cells [27]. TERT expression is controlled through binding of β-catenin to its promoter region; thereby creating a regulatory link between telomerase function and Wnt signaling [28]. In addition, epithelial cell adhesion molecule (EpCAM) overexpression has been observed during liver development, regeneration and following the recovery from cirrhosis [29]. While absent in adult hepatocytes, this cell-surface tumor marker is identified as a direct transcriptional target of the Wnt signaling in HCC [30] (Fig. 1).
Abnormal cytoplasmic and nuclear accumulation of β-catenin, as well as the elevated level of Wnt receptor, frizzled-7 (FZD-7) in up to 90% of HCCs, revealed the importance of MSCs inhibitory properties on the Wnt signaling pathway [31, 32]. Hence, a great amount of effort has been put in this issue for approaching a stem cell-based therapy and also improving the effectiveness of inhibitory drugs in HCC patients [33].

MSCs reduce inflammation in HCC

There is strong scientific evidence that infections with specific types of bacteria or viruses like hepatitis may increase the risk of HCC via induction of inflammation [34]. Similarly, contamination with aflatoxin B1 or environmental pollutants, including aromatic amines, vinyl chloride, polycyclic aromatic hydrocarbons, and nitrosamines are thought to be the general risk factors for HCC development [35].
The role of molecular changes in the acquisition of drug resistance phenotype may help to identify the prognostic markers and novel therapeutic approaches for HCC treatment [36]. The pro-tumorigenic effects of inflammation sustain via a feed-forward cytokine and chemokine network that attract more inflammatory cells toward the tumor microenvironment [37]. Multiple signal transduction pathways such as nuclear factor-kappa B (NF-κB) and c-Jun NH2-terminal kinase (JNK) are highly involved in the pathogenesis of viral diseases. For instance, the HCV core and HBV X (HBx) proteins are the most powerful inducers described to date, participating in the activation of NF-κB and activator protein 1 (AP-1) transcription factors [38]. Yen et al. have examined different signaling pathways related to the HBx-induced HCC development, as the overexpression of this protein lead to the upregulation of IκB kinase β (IKKβ), tuberous sclerosis complex 1 (TSC1) and mammalian target of rapamycin (mTOR) in HCC cells. Moreover, the elevated levels of pIKKβ, pTSC1, and pS6K1 are strongly correlated with a poor prognosis in HBV-associated hepatoma [39]. Here, we have tried to provide a comprehensive look into the role of toll-like receptors (TLRs), NF-κB and the JNK signaling pathways in HCC development.

TLR signaling in HCC

TLRs are able to recognize the various patterns of pathogen- and host tissue–derived molecules and thus give rise to inflammation [40]. Their function has been mediated by the Toll/interleukin-1 receptor (TIR) domain [41]. TLR4 belonging to the pattern recognition receptor (PRR) superfamily, commonly play a central role in innate immunity. The 95 kDa integral membrane protein consists of an extracellular domain named leucine-rich repeat (LRR), as well as a cytoplasmic TIR domain, directing ligand recognition and signal transduction, respectively [42]. It has a limitless capacity for detecting pathogen-associated molecular patterns (PAMPs) or different classes of damage-associated molecular patterns (DAMPs), all lead to the production of required cytokines and pro-inflammatory proteins [43]. The adapter protein myeloid differentiation factor 88 (MyD88) acts as an intracellular signal transducer in cooperation with interleukin-1 receptor-associated kinase 1 and 4 (IRAK1/4), following the TLR4 activation [44]. Following the phosphorylation of these factors by TRAF6, TAK1 kinase is recruited into the cluster of signaling pathways [45]. Once activated, TAK1 activates the IκB kinase (IKK) complex that finally gives rise to NF-κB and JNK activation [46] (Fig. 2).
There are numerous factors that can activate the TLRs signaling in the liver, such as HBV, HCV, alcohol, and nonalcoholic steatohepatitis (NASH). Among TLRs, TLR4 and 9 suppress viral replication in HBV-transgenic mice [47, 48]. HBV replication cycle occurring via the upregulation of TLR2 thus results in a marked increase in tumor necrosis factor-alpha (TNF-α) production [49]. HCV core and NS3 proteins cause inflammation and activate TLR2 on immune cells to release cytokines [50, 51]. Moreover, excessive alcohol intake is highly associated with increased intestinal permeability and elevated levels of endotoxin [52]. In vivo studies have indicated that lipopolysaccharides (LPS) levels are significantly increased in cirrhosis, and can directly activate the hepatic stellate cells [53, 54]. LPS activates the TLR4-mediated pathway and thus, enhances the expression of proinflammatory cytokine [55, 56]. TLR4 and MyD88 deficient Mice have a considerable reduction in the number of chemically induced HCC, highlighting a direct influence of TLR signaling on hepatocarcinogenesis [57]. MyD88, as a TLR adapter protein, is necessary for NF-κB activation, and its downregulation is strongly associated with liver tumorigenesis suppression [58]. Therefore, the indispensable role of TLR4-MyD88 signaling in HCC development creates new approaches to disease prevention and treatment [36] (Fig. 2).

NF-κB signaling activation in HCC

NF-κB is present broadly in the majority of cells and is a key transcription factor in cellular proliferation, differentiation, carcinogenesis, and apoptosis [59]. Across several studies, researchers have shown that NF-κB contributes to tumorigenesis by affecting the tumor cells and tumor-associated inflammatory cells mechanisms [6062]. Overall, the inhibition of NF-κB activity provides convincing evidence of a novel therapeutic implication for HCC [63]. Numerous proinflammatory stimuli upregulate NF-κB, by phosphorylation of IKK and degradation of the κB inhibitor (IκB) proteins [64]. Members of the TNF family, like the B-cell activating factor (BAFF), CD40 ligand, and lymphotoxin β (LTβ) demonstrating a key role in activating the NF-κB pathway [65].
Active NF-κB controls the expression of several anti-apoptotic proteins, including cIAPs, c-FLIP, and BCL-X that are essential for maintaining cancer cells [66]. Tumor cells with continuous NF-κB activity are highly resistant to antitumor agents and thus, specific inhibition of NF-κB may promote cell sensitivity to applied treatment [67]. Overexpression of IKKα and IKKβ kinases, essential for NF-κB activation, is definitely needed for the acquisition of malignant HCC properties [68]. Surprisingly, downregulation of NF-κB and p-IκBα has been demonstrated in treated HCC cell lines, but how MSCs can regulate the NF-κB signaling pathway mostly remain unclear [69]. However, the role of various factors present in the MSCs-conditioned media should not be ignored for the downregulation of the NF-κB pathway in tumor cells (Fig. 2).

JNK Signaling activation in HCC

The JNK is a major member of the mitogen-activated kinases (MAPKs) family, together with extracellular regulated kinase (ERK) and p38 [70]. JNKs activation in response to stress signals and pro-inflammatory stimuli would eventually enhance the phosphorylation of MAPK kinases MKK4 and MKK7 [71]. They also phosphorylate the transcription factors c-Jun, JunD, as well as the activating transcription factor (ATF), which contribute to AP-1 complex formation [72]. A number of studies have emphasized the importance of active JNK signaling for hepatocyte proliferation and apoptosis [73]. It is clearly recognized that cellular immortality occurs due to a DNA mutation in association with JNK activation [74]. Phosphorylation of c-Jun proto-oncogene via the JNK pathway may promote the development and progression of HCC disease [75] (Fig. 3). Approximately 70% of HCC tissues show positive immunostaining for phosphorylated JNK, which revealed the vital role of this protein kinase in human HCC pathogenesis [36].
Tong et al. described the spontaneous occurrence of intestinal tumors in JNK1 knockout mice, suggesting a suppressor role for JNK1 in intestinal tumor development [76]. Possibly, signal transmission by a number of growth factors provokes JNKs by activating the receptor tyrosine kinases, as well as the phosphorylation of various receptors [77]. In vitro modeling of HCC studies revealed the pathogenic impact of several HBV and HCV proteins on JNK activation [78]. Viral proteins such as the HBV X and HCV core proteins generally induce the accumulation of reactive oxygen species (ROS) in hepatocytes [79, 80]. Sustained production of ROS then activates the JNK via either stimulating upstream MEK kinases (MEKKs) or inhibiting MAP kinase phosphatases (MKPs) [81, 82]. Thus, ROS-JNK signaling is found to be a major determinant of HCC progression [83, 84] (Fig. 3).
Molecules involved in MSCs homing to tumor microenvironments are mainly consisting of several inflammatory cytokines (TNF-α, IL-1β, IFN-γ, and IL-6), chemokines (CXCR4, CXCL7, CXCL6, and CXCL5) and growth factors (PDGF, HGF), [85, 86]. Interestingly, MSCs are able to suppress tumor cell growth by releasing inhibitory factors-containing exosomes against the proliferation of signaling pathways [87]. Moreover, the secretion of IL-1ra by MSCs prevents the IL-α / β activity by producing TSG-6, followed by the downregulation of NF-κB signaling and decreased the production of inflammatory cytokines. Secretion of prostaglandin E2 (PGE2) is another effective way of reducing inflammation by MSCs that accomplished by the production of IL-10, as a potent anti-inflammatory cytokine [88, 89]. Khakoo et al. indicated that MSCs inhibit the target cell PKB signaling activity through a contact-dependent way [16]. In total, the downregulation of NF-κB is suggested to be a beneficial behavior of MSCs to inhibit tumor cell proliferation and invasion (Fig. 2).

Hippo signaling pathway in HCC

The control of organ size following multiple cell proliferation is fundamental through the developmental process, as an increased organ size due to injury should be returned to normal values by regeneration [90]. The Hippo signaling pathway is mainly involved in the regulation of organ growth and overall organ size. This signal transduction cascade mediates cell proliferation, differentiation, and survival, as well as the homeostasis and development in cooperation with other signaling interactions. Any disruption in key components of this pathway has a great potential in tumor formation and in particular HCC [91]. Recent studies have shown the essential role of Hippo signaling in stem cell regulation, especially in liver cancer progenitor cells that ultimately lead to hepatocarcinogenesis [92, 93].
This signaling pathway consists of a number of highly conserved components: the protein kinase Hippo (Hpo), the scaffold protein Salvador (Sav), the protein kinase Warts (Wts), and Mob as a tumor suppressor (Mats) that are homologous to mammalian Mst1/2, WW45, LATS1/2, and Mob1, respectively. Their essential role in organ size control is considered as the main reason for possessing an evolutionary conservation pattern, as any mutation in genes encoding Hippo signaling proteins can lead to significant changes in organ morphology or growth parameters [94].
Similar to other pathways, Hippo signaling is negatively controlled by phosphorylation via the growth modulator Yorkie (Yki) or its mammalian homolog Yes-associated protein (YAP). So that the overexpression of this factor or mutations in core Hippo pathway components resulted in the activation of two major cell proliferation markers, Cyclin E and Drosophila inhibitor of apoptosis protein 1 (DIAP1) to prevent cell death [95, 96]. In recent studies, YAP has been reported as an oncogene in many human tumors, especially for those with HCC. Zhao et al. reported a significant increase in YAP expression in nearly 54% of patients with HCC compared to normal liver tissue. This study concluded that the uncontrolled YAP expression could play an increasingly important role through HCC development [97]. The same results were also observed in the study by Xu et al., in which 62% of examined samples showed a higher level of protein expression, associated with tumor aggressiveness and unfavorable prognosis of HCC [98].
Since the Hippo signaling pathway has recently been discovered, more extensive studies should be performed related to the effect of MSCs on HCC development. A novel study suggested that the transcriptional co-activator with PDZ-binding motif (TAZ), one of the nuclear effectors of this signaling cascade, can effectively modulate cell proliferation and the formation of epithelial–mesenchymal transition (EMT) in HCC [99]. The expression of TAZ is significantly increased in HCC, as the knockdown of this downstream regulatory target can prevent tumorigenesis and reduces HCC cell migration. The EMT process occurs as a result of decreased expression of epithelial genes such as E‐cadherin and the increased expression of mesenchymal genes such as N‐cadherin, vimentin, Snail, and Slug [100]. Eventually, the two most important factors of the Hippo signaling pathway, TAZ, and YAP, have a significant impact on the key step of transdifferentiation process development [101]. Surprisingly, the hypoxic state of tumor microenvironment cause increased secretion of prostaglandin E2 (PGE2) from the surrounded MSCs and ultimately increase the YAP protein level in HCC cells [102, 103]. Due to a lack of research that comprehensively analyze the effect of MSCs on Hippo signaling, genetic modification of mesenchymal cells or considering these multipotent stromal cells as drug delivery vehicles may possibly decrease the negative feedback effects of this signaling cascade and prevent HCC tumor progression.

Discussion

HCC is considered as a common malignant condition, caused by impaired hepatic stem cell function [104]. There are multiple signal transduction pathways, regulate the self-renewal, differentiation and cell fate specifications of precursor cells. Therefore, understanding the exact mechanism of these signaling cascades may provide an alternative way to explore the link between stemness and tumorigenesis [105]. Increasing evidence has indicated that adult stem cells may be considered as an effective therapeutic tool for cancer therapy [106]. Certain studies have described the intrinsic ability of MSCs to decrease the growth rate of numerous cancer cell types [107]. Ma et al. directly injected human umbilical cord MSCs (hUC-MSCs) xenograft transplanted into immunodeficient mice, bearing MDA-MB-231 breast cancer stem cells. Surprisingly, the hUC-MSCs lead to reduced tumor volume and tumor weight in mice models [108]. Zhang et al. investigation on hUC-MSCs, transfected with IL-21 gene determined the ability of such modified cells to suppress the proliferation of ovarian cancer cells in vitro and in vivo [109]. Subramanian et al. research confirmed that hUC-MSCs did not transform into tumor-associated fibroblasts, making them invulnerable than bone marrow MSCs [110].
MSCs are thought to suppress tumor growth in different ways: induction of inflammatory cell infiltration, angiogenesis inhibition, suppression of Wnt, NF-κB, and PKB signaling molecules. Paracrine effects of these multipotent cells also lead to cell cycle arrest and apoptosis via Dkk1 and oncostatin M activity [11, 25, 69, 111114]. Ryu et al. reported that adipose tissue-derived MSCs are able to grow at high cell density, followed by the prevention of MCF-7 cell growth through IFN-β production [115]. Moreover, MSCs primed with IFN-γ or cultured with tri-dimensional systems can express TNF-related apoptosis-inducing ligand (TRAIL), which triggers tumor cell-specific apoptosis [116, 117]. The result of Loebinger et al. study confirmed that MSCs could reduce colony formation of squamous and adenocarcinoma lung cancer cells by expressing TRAIL. This protein binds to its receptors and leading to the activation apoptosis pathway in tumor cells. [118].
In addition, Zhao et al. study indicated that 3D cultured MSCs have an inhibitory effect on HepG2 cell proliferation, by releasing the IL-24 and the activation of the JAK1-STAT3 signaling pathway. This study suggested a more feasible way for MSCs to inhibit tumor cell growth and invasion [119].
In contrast to numerous research that expresses the inhibitory role of MSCs on tumor cells, some reports showed enhanced tumor growth due to the homing capability of MSCs to tumor sites [120]. The Supportive of confounding behavior effect of MSCs toward tumor cells are highly associated with the dose of injected multipotent stromal cells to targeted organs [113]. Depending on the exact experimental conditions, MSCs can exert tumor-promoting or tumor-limiting outcomes (Table 1). Various hypotheses have been recommended to explain the dualistic behavior of MSCs in cancer. TLR4-primed MSCs are polarized into pro-inflammatory MSC1 phenotype, whereas TLR3-primed MSCs are specialized as classical immunosuppressive MSC2 [121]. In cancer models, MSC1-based treatment of established tumors in a case of strong immune system attenuates tumor growth and metastasis, while MSC2-treated animals would display an increase in tumor growth rate and metastatic potential [122]. As both hypotheses are not mutually exclusive likely both are concomitantly true, making our prediction about the role of MSCs on the cancerous process extremely difficult. However, the reasons behind this apparent discrepancy need to be further investigated.
Table 1
Dual effect of MSCs on HCC
References
Effects
Cell lines
Results
Hou et al. [11]
Inhibit
HEK 293 and HepG2 cell lines
Wnt signaling pathway may have a function in MSC-mediated tumor cell inhibition
Yan-rong Lu et al. [113]
Inhibit
murine hepatoma H22, lymphoma (YAC-1 and EL-4) and rat insulinoma INS-1 cell lines
MSCs had potential inhibitory effects on tumor cell growth in vitro and in vivo without host immunosuppression, by inducing apoptotic cell death and G0/G1 phase arrest of cancer cells
Li et al. [132]
Inhibit
MHCC97-H cell line
MSC could be useful in controlling metastatic recurrence of HCC
Zhao et al. [133]
Inhibit
HepG2, Huh7, SMMC7721, and Bel7402 cell lines
inhibited HCC cell proliferation and division induced HCC cell death through the downregulation of Akt signaling
El Asmar et al. [105]
Inhibit
DENA and CCl4 induction in rat model
tumor suppressive effects as evidenced by down regulation of Wnt signaling target genes concerned with anti-apoptosis, mitogenesis, cell proliferation and cell cycle regulation
Li et al. [134]
Inhibit
MHCC97-H cell line
The metastatic potential of tumor cells was downregulated after hMSC engraftment and hMSCs induce further tumor cells apoptosis
Qiao et al. [135]
Inhibit
H7402 and HepG2 cell lines
The Wnt signaling pathway may have a role in hMSC-mediated targeting and tumor cell inhibition
Qiao et al. [69]
Inhibit
H7402 cell line
NF‐κB downregulation is one of reasons for the depression of tumor cell proliferation mediated by hMSCs
Bruno et al. [136]
Inhibit
HepG2 cell line
MVs from human MSCs inhibited in vitro cell growth
Ma et al. [137]
Inhibit
H22 cell line
BMSCs pulsed with TEX could enhance its antitumor activities
Abd-Allah et al. [138]
Inhibit
HEPA 1-6 cell line
MSCs could inhibit cell division of HCC and potentiate their death
Seyhoun et al. [139]
Inhibit
HepG2 cell line
Combination therapy MSCs and sorafenib to the treatment of HCC that significantly improves the results
Hajighasemlou et al. [140]
Inhibit
HepG2 cell line
Local injection of MSCs can be used as cell therapy to fight neoplasms
Hernanda et al. [141]
Promote
Huh7 cell line
MSCs are enriched in human HCC tumor compartment and could exert trophic effects on tumor cells
Yan et al. [142]
Promote
MHCC97L cell line
HCC progression, and may be a potential therapeutic target
Gong et al. [143]
Promote
HepG-2 cell line
promote the growth of microvascular in hepatoma cells
Jing et al. [144]
Promote
SMMC-7721 cell line
MSCs in tumor inflammatory microenvironment could promote tumor metastasis through TGFβ-induced EMT
Bhattacharya et al. [145]
Promote
SK-Hep1 cell line
stimulation of cancer-associated fibroblasts and EMT markers
Liu et al. [146]
Promote
HCCLM3 cell line
significantly enhance the tumor cell metastasis, which was due to the EMT of HCC cells induced by TGF-β
CCl4 carbon tetrachloride, DENA diethylenetriamine, EMT epithelial to mesenchymal transition, HCC Hepatocellular carcinoma, hMSCs human mesenchymal stem cells, MVs Microvesicles, TGF-β transforming growth factor beta
On the other hand, in some instances, tumor cells can inhibit the PDGF-BB and IL-1β production by MSCs, which in turn reduces the angiogenesis and tumor growth [123] (Fig. 1). In a recent study by Pan et al., trophic factors released from MSCs suppress the translation initiation factor eIF4E via the MAPK signaling pathway. Therefore, the secretion of vascular endothelial growth factor (VEGF) could be a revolutionary new way of treating cancer by altering the tumor cell fate specifications [124]. MSCs also produce the exosomes-loaded with miR-122 that significantly increases the sensitivity of HCC cells to sorafenib, leading to in vivo tumor growth arrest [125].
Targeted localization of MSCs in tumor sites will have a significant impact on the achievement of specific antitumor therapy [126]. MSCs exhibit an intrinsic homing property, enabling a collective cell migration to inflammatory sites. The exploitation of this process will be a valuable asset to directed therapy [127]. The capability to express exogenous gene products, genetic stability and allogeneic properties turn MSCs into efficient carriers for antitumor therapy [128]; previously demonstrated not only in tumor models but also in a wide range of other diseases such as graft-versus-host disease, multiple sclerosis, and arthritis [129131].
Therefore, MSCs have multiple immunosuppressant properties that required for tumor growth inhibition and also likely to be effective in cancer treatment via producing several factors such as microRNAs. Nevertheless, more detailed information about the interactions between MSCs and tumor cells will help us to develop novel therapeutic approaches in the future. Yet, an important issue remains unanswered regarding the time and the approximate number of such regulatory cells that are delivered to target organs. However, their role as an adjunct in patients with liver tumors looks hopeful and promising.

Conclusions

Recent studies have suggested the use of cell-based therapeutic approaches for cancer treatment. Here we discussed the inhibitory role of normal human MSCs on HepG2 cell proliferation, proposing the valuable impact of these multipotent stromal cells on liver cancer therapy. While the exact molecular mechanisms between the MSCs and tumors cells are still unknown, but the overall results of several studies revealed the suppression effect of MSCs on HCC through both inflammation mediators and vital signaling pathways. Therefore, further research needed to develop a novel clinical application of MSCs for HCC patients.

Acknowledgements

Not applicable.
This study was considered exempt by the KAUMS Institutional Review Board.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Ayuso C, Rimola J, Vilana R, Burrel M, Darnell A, García-Criado Á, et al. Diagnosis and staging of hepatocellular carcinoma (HCC): current guidelines. Eur J Radiol. 2018;101:72–81.PubMedCrossRef Ayuso C, Rimola J, Vilana R, Burrel M, Darnell A, García-Criado Á, et al. Diagnosis and staging of hepatocellular carcinoma (HCC): current guidelines. Eur J Radiol. 2018;101:72–81.PubMedCrossRef
2.
Zurück zum Zitat El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142(6):1264–73.PubMedCrossRef El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142(6):1264–73.PubMedCrossRef
3.
Zurück zum Zitat Janevska D, Chaloska-Ivanova V, Janevski VJ. Hepatocellular carcinoma: risk factors, diagnosis and treatment. Open Access Maced J Med Sci. 2015;3(4):732.PubMedPubMedCentralCrossRef Janevska D, Chaloska-Ivanova V, Janevski VJ. Hepatocellular carcinoma: risk factors, diagnosis and treatment. Open Access Maced J Med Sci. 2015;3(4):732.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Serhal R, Saliba N, Hilal G, Moussa M, Hassan GS, El Atat O, et al. Effect of adipose-derived mesenchymal stem cells on hepatocellular carcinoma: in vitro inhibition of carcinogenesis. World J Gastroenterol. 2019;25(5):567.PubMedPubMedCentralCrossRef Serhal R, Saliba N, Hilal G, Moussa M, Hassan GS, El Atat O, et al. Effect of adipose-derived mesenchymal stem cells on hepatocellular carcinoma: in vitro inhibition of carcinogenesis. World J Gastroenterol. 2019;25(5):567.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Crissien AM, Frenette CJG. Current management of hepatocellular carcinoma. Hepatology. 2014;10(3):153. Crissien AM, Frenette CJG. Current management of hepatocellular carcinoma. Hepatology. 2014;10(3):153.
6.
Zurück zum Zitat El-Ansary M, Abdel-Aziz I, Mogawer S, Abdel-Hamid S, Hammam O, Teaema S, et al. Phase II trial: undifferentiated versus differentiated autologous mesenchymal stem cells transplantation in Egyptian patients with HCV induced liver cirrhosis. Stem Cell Rev Rep. 2012;8(3):972–81.PubMedCrossRef El-Ansary M, Abdel-Aziz I, Mogawer S, Abdel-Hamid S, Hammam O, Teaema S, et al. Phase II trial: undifferentiated versus differentiated autologous mesenchymal stem cells transplantation in Egyptian patients with HCV induced liver cirrhosis. Stem Cell Rev Rep. 2012;8(3):972–81.PubMedCrossRef
7.
Zurück zum Zitat Moradian Tehrani R, Verdi J, Noureddini M, Salehi R, Salarinia R, Mosalaei M, et al. Mesenchymal stem cells: a new platform for targeting suicide genes in cancer. J Cell Physiol. 2018;233(5):3831–45.PubMedCrossRef Moradian Tehrani R, Verdi J, Noureddini M, Salehi R, Salarinia R, Mosalaei M, et al. Mesenchymal stem cells: a new platform for targeting suicide genes in cancer. J Cell Physiol. 2018;233(5):3831–45.PubMedCrossRef
8.
Zurück zum Zitat Elahi KC, Klein G, Avci-Adali M, Sievert KD, MacNeil S, Aicher WK. Human mesenchymal stromal cells from different sources diverge in their expression of cell surface proteins and display distinct differentiation patterns. Stem cells Int. 2016;2016:5646384.PubMedCrossRef Elahi KC, Klein G, Avci-Adali M, Sievert KD, MacNeil S, Aicher WK. Human mesenchymal stromal cells from different sources diverge in their expression of cell surface proteins and display distinct differentiation patterns. Stem cells Int. 2016;2016:5646384.PubMedCrossRef
11.
Zurück zum Zitat Hou L, Wang X, Zhou Y, Ma H, Wang Z, He J, et al. Inhibitory effect and mechanism of mesenchymal stem cells on liver cancer cells. Tumor Biol. 2014;35(2):1239–50.CrossRef Hou L, Wang X, Zhou Y, Ma H, Wang Z, He J, et al. Inhibitory effect and mechanism of mesenchymal stem cells on liver cancer cells. Tumor Biol. 2014;35(2):1239–50.CrossRef
13.
Zurück zum Zitat Ho C, Wang C, Mattu S, Destefanis G, Ladu S, Delogu S, et al. AKT and N-Ras co-activation in the mouse liver promotes rapid carcinogenesis via mTORC1, FOXM1/SKP2, and c-Myc pathways. Hepatology (Baltimore, MD). 2012;55(3):833.CrossRef Ho C, Wang C, Mattu S, Destefanis G, Ladu S, Delogu S, et al. AKT and N-Ras co-activation in the mouse liver promotes rapid carcinogenesis via mTORC1, FOXM1/SKP2, and c-Myc pathways. Hepatology (Baltimore, MD). 2012;55(3):833.CrossRef
14.
Zurück zum Zitat Vilchez V, Turcios L, Marti F, Gedaly R. Targeting Wnt/β-catenin pathway in hepatocellular carcinoma treatment. World J Gastroenterol. 2016;22(2):823.PubMedPubMedCentralCrossRef Vilchez V, Turcios L, Marti F, Gedaly R. Targeting Wnt/β-catenin pathway in hepatocellular carcinoma treatment. World J Gastroenterol. 2016;22(2):823.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Galuppo R, Maynard E, Shah M, Daily MF, Chen C, Spear BT, et al. Synergistic inhibition of HCC and liver cancer stem cell proliferation by targeting RAS/RAF/MAPK and WNT/β-catenin pathways. Anticancer Res. 2014;34(4):1709–13.PubMedPubMedCentral Galuppo R, Maynard E, Shah M, Daily MF, Chen C, Spear BT, et al. Synergistic inhibition of HCC and liver cancer stem cell proliferation by targeting RAS/RAF/MAPK and WNT/β-catenin pathways. Anticancer Res. 2014;34(4):1709–13.PubMedPubMedCentral
16.
Zurück zum Zitat Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med. 2006;203(5):1235–47.PubMedPubMedCentralCrossRef Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med. 2006;203(5):1235–47.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Hajighasemlou S, Pakzad S, Ai J, Muhammadnejad S, Mirmoghtadaei M, Hosseinzadeh F, et al. Characterization and validation of hepatocellular carcinoma (HCC) xenograft tumor as a suitable liver cancer model for preclinical mesenchymal stem cell studies. Asian Pac J Cancer Prev. 2018;19(6):1627–31.PubMedPubMedCentral Hajighasemlou S, Pakzad S, Ai J, Muhammadnejad S, Mirmoghtadaei M, Hosseinzadeh F, et al. Characterization and validation of hepatocellular carcinoma (HCC) xenograft tumor as a suitable liver cancer model for preclinical mesenchymal stem cell studies. Asian Pac J Cancer Prev. 2018;19(6):1627–31.PubMedPubMedCentral
18.
Zurück zum Zitat Dhanasekaran R, Bandoh S, Roberts LR. Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Research. 2016;5:879.CrossRef Dhanasekaran R, Bandoh S, Roberts LR. Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Research. 2016;5:879.CrossRef
19.
Zurück zum Zitat Wands JR, Kim M. WNT/β-catenin signaling and hepatocellular carcinoma. Hepatology. 2014;60(2):452–4.PubMedCrossRef Wands JR, Kim M. WNT/β-catenin signaling and hepatocellular carcinoma. Hepatology. 2014;60(2):452–4.PubMedCrossRef
20.
21.
22.
Zurück zum Zitat Muncan V, Sansom OJ, Tertoolen L, Phesse TJ, Begthel H, Sancho E, et al. Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc. Mol Cell Biol. 2006;26(22):8418–26.PubMedPubMedCentralCrossRef Muncan V, Sansom OJ, Tertoolen L, Phesse TJ, Begthel H, Sancho E, et al. Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc. Mol Cell Biol. 2006;26(22):8418–26.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Byun T, Karimi M, Marsh J, Milovanovic T, Lin F, Holcombe R. Expression of secreted Wnt antagonists in gastrointestinal tissues: potential role in stem cell homeostasis. J Clin Pathol. 2005;58(5):515–9.PubMedPubMedCentralCrossRef Byun T, Karimi M, Marsh J, Milovanovic T, Lin F, Holcombe R. Expression of secreted Wnt antagonists in gastrointestinal tissues: potential role in stem cell homeostasis. J Clin Pathol. 2005;58(5):515–9.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Ramachandran I, Thavathiru E, Ramalingam S, Natarajan G, Mills W, Benbrook D, et al. Wnt inhibitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo. Oncogene. 2012;31(22):2725.PubMedCrossRef Ramachandran I, Thavathiru E, Ramalingam S, Natarajan G, Mills W, Benbrook D, et al. Wnt inhibitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo. Oncogene. 2012;31(22):2725.PubMedCrossRef
25.
Zurück zum Zitat Qiao L, Xu Z, Zhao T, Ye L, Zhang X. Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett. 2008;269(1):67–77.PubMedCrossRef Qiao L, Xu Z, Zhao T, Ye L, Zhang X. Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett. 2008;269(1):67–77.PubMedCrossRef
27.
Zurück zum Zitat Flores I, Blasco MA. The role of telomeres and telomerase in stem cell aging. FEBS Lett. 2010;584(17):3826–30.PubMedCrossRef Flores I, Blasco MA. The role of telomeres and telomerase in stem cell aging. FEBS Lett. 2010;584(17):3826–30.PubMedCrossRef
28.
Zurück zum Zitat Ozturk MB, Li Y, Tergaonkar V. Current insights to regulation and role of telomerase in human diseases. Antioxidants. 2017;6(1):17.PubMedCentralCrossRef Ozturk MB, Li Y, Tergaonkar V. Current insights to regulation and role of telomerase in human diseases. Antioxidants. 2017;6(1):17.PubMedCentralCrossRef
29.
Zurück zum Zitat Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology. 2009;136(3):1012–24.PubMedCrossRef Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology. 2009;136(3):1012–24.PubMedCrossRef
30.
Zurück zum Zitat Yamashita T, Budhu A, Forgues M, Wang XW. Activation of hepatic stem cell marker EpCAM by Wnt–β-catenin signaling in hepatocellular carcinoma. Cancer Res. 2007;67(22):10831–9.PubMedCrossRef Yamashita T, Budhu A, Forgues M, Wang XW. Activation of hepatic stem cell marker EpCAM by Wnt–β-catenin signaling in hepatocellular carcinoma. Cancer Res. 2007;67(22):10831–9.PubMedCrossRef
31.
Zurück zum Zitat Merle P, de la Monte S, Kim M, Herrmann M, Tanaka S, Von Dem Bussche A, et al. Functional consequences of frizzled-7 receptor overexpression in human hepatocellular carcinoma. Gastroenterology. 2004;127(4):1110–22.PubMedCrossRef Merle P, de la Monte S, Kim M, Herrmann M, Tanaka S, Von Dem Bussche A, et al. Functional consequences of frizzled-7 receptor overexpression in human hepatocellular carcinoma. Gastroenterology. 2004;127(4):1110–22.PubMedCrossRef
32.
Zurück zum Zitat Inagawa S, Itabashi M, Adachi S, Kawamoto T, Hori M, Shimazaki J, et al. Expression and prognostic roles of β-catenin in hepatocellular carcinoma: correlation with tumor progression and postoperative survival. Clin Cancer Res. 2002;8(2):450–6.PubMed Inagawa S, Itabashi M, Adachi S, Kawamoto T, Hori M, Shimazaki J, et al. Expression and prognostic roles of β-catenin in hepatocellular carcinoma: correlation with tumor progression and postoperative survival. Clin Cancer Res. 2002;8(2):450–6.PubMed
33.
Zurück zum Zitat Dahmani R, Just P-A, Perret C. The Wnt/β-catenin pathway as a therapeutic target in human hepatocellular carcinoma. Clin Res Hepatol Gastroenterol. 2011;35(11):709–13.PubMedCrossRef Dahmani R, Just P-A, Perret C. The Wnt/β-catenin pathway as a therapeutic target in human hepatocellular carcinoma. Clin Res Hepatol Gastroenterol. 2011;35(11):709–13.PubMedCrossRef
34.
Zurück zum Zitat Hoshida Y, Fuchs BC, Bardeesy N, Baumert TF, Chung RT. Pathogenesis and prevention of hepatitis C virus-induced hepatocellular carcinoma. J Hepatol. 2014;61(1):S79–90.PubMedPubMedCentralCrossRef Hoshida Y, Fuchs BC, Bardeesy N, Baumert TF, Chung RT. Pathogenesis and prevention of hepatitis C virus-induced hepatocellular carcinoma. J Hepatol. 2014;61(1):S79–90.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Rapisarda V, Loreto C, Malaguarnera M, Ardiri A, Proiti M, Rigano G, et al. Hepatocellular carcinoma and the risk of occupational exposure. World J Hepatol. 2016;8(13):573.PubMedPubMedCentralCrossRef Rapisarda V, Loreto C, Malaguarnera M, Ardiri A, Proiti M, Rigano G, et al. Hepatocellular carcinoma and the risk of occupational exposure. World J Hepatol. 2016;8(13):573.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Maeda S. NF-κB, JNK, and TLR signaling pathways in hepatocarcinogenesis. Gastroenterol Res Pract. 2010;2010:286–97.CrossRef Maeda S. NF-κB, JNK, and TLR signaling pathways in hepatocarcinogenesis. Gastroenterol Res Pract. 2010;2010:286–97.CrossRef
38.
Zurück zum Zitat Sun B, Karin M. NF-κB signaling, liver disease and hepatoprotective agents. Oncogene. 2008;27(48):6228.PubMedCrossRef Sun B, Karin M. NF-κB signaling, liver disease and hepatoprotective agents. Oncogene. 2008;27(48):6228.PubMedCrossRef
39.
Zurück zum Zitat Yen C-J, Lin Y-J, Yen C-S, Tsai H-W, Tsai T-F, Chang K-Y, et al. Hepatitis B virus X protein upregulates mTOR signaling through IKKβ to increase cell proliferation and VEGF production in hepatocellular carcinoma. PLoS ONE. 2012;7(7):e41931.PubMedPubMedCentralCrossRef Yen C-J, Lin Y-J, Yen C-S, Tsai H-W, Tsai T-F, Chang K-Y, et al. Hepatitis B virus X protein upregulates mTOR signaling through IKKβ to increase cell proliferation and VEGF production in hepatocellular carcinoma. PLoS ONE. 2012;7(7):e41931.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Ippagunta SK, Pollock JA, Sharma N, Lin W, Chen T, Tawaratsumida K, et al. Identification of Toll-like receptor signaling inhibitors based on selective activation of hierarchically acting signaling proteins. Sci Signal. 2018;11(543):eaaq1077.PubMedCrossRefPubMedCentral Ippagunta SK, Pollock JA, Sharma N, Lin W, Chen T, Tawaratsumida K, et al. Identification of Toll-like receptor signaling inhibitors based on selective activation of hierarchically acting signaling proteins. Sci Signal. 2018;11(543):eaaq1077.PubMedCrossRefPubMedCentral
41.
Zurück zum Zitat Narayanan KB, Park HH. Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways. Apoptosis. 2015;20(2):196–209.PubMedCrossRef Narayanan KB, Park HH. Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways. Apoptosis. 2015;20(2):196–209.PubMedCrossRef
42.
Zurück zum Zitat Botos I, Segal DM, Davies DRJS. The structural biology of Toll-like receptors. J Anim Sci Technol. 2011;19(4):447–59. Botos I, Segal DM, Davies DRJS. The structural biology of Toll-like receptors. J Anim Sci Technol. 2011;19(4):447–59.
43.
Zurück zum Zitat Shabani F, Farasat A, Mahdavi M, Gheibi N. Calprotectin (S100A8/S100A9): a key protein between inflammation and cancer. Inflamm Res. 2018;2018:1–12. Shabani F, Farasat A, Mahdavi M, Gheibi N. Calprotectin (S100A8/S100A9): a key protein between inflammation and cancer. Inflamm Res. 2018;2018:1–12.
44.
Zurück zum Zitat Vollmer S, Strickson S, Zhang T, Gray N, Lee K, Rao V, et al. The mechanism of activation of IRAK1 and IRAK4 by interleukin-1 and Toll-like receptor agonists. Biochem J. 2017;2017:0097. Vollmer S, Strickson S, Zhang T, Gray N, Lee K, Rao V, et al. The mechanism of activation of IRAK1 and IRAK4 by interleukin-1 and Toll-like receptor agonists. Biochem J. 2017;2017:0097.
45.
Zurück zum Zitat Dunne A, Carpenter S, Brikos C, Gray P, Strelow A, Wesche H, et al. IRAK1 and IRAK4 promote phosphorylation, ubiquitination and degradation of MyD88 adapter-like (MAL). J Biol Chem. 2010;109:098137. Dunne A, Carpenter S, Brikos C, Gray P, Strelow A, Wesche H, et al. IRAK1 and IRAK4 promote phosphorylation, ubiquitination and degradation of MyD88 adapter-like (MAL). J Biol Chem. 2010;109:098137.
46.
Zurück zum Zitat Israël A. The IKK complex, a central regulator of NF-κB activation. Cold Spring Harbor Persp Biol. 2010;2(3):a000158. Israël A. The IKK complex, a central regulator of NF-κB activation. Cold Spring Harbor Persp Biol. 2010;2(3):a000158.
47.
Zurück zum Zitat Suslov A, Boldanova T, Wang X, Wieland S, Heim MH. Hepatitis B virus does not interfere with innate immune responses in the human liver. Gastroenterology. 2018;154(6):1778–90.PubMedCrossRef Suslov A, Boldanova T, Wang X, Wieland S, Heim MH. Hepatitis B virus does not interfere with innate immune responses in the human liver. Gastroenterology. 2018;154(6):1778–90.PubMedCrossRef
48.
Zurück zum Zitat Isogawa M, Robek MD, Furuichi Y, Chisari FV. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo. J Virol. 2005;79(11):7269–72.PubMedPubMedCentralCrossRef Isogawa M, Robek MD, Furuichi Y, Chisari FV. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo. J Virol. 2005;79(11):7269–72.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Visvanathan K, Skinner NA, Thompson AJ, Riordan SM, Sozzi V, Edwards R, et al. Regulation of Toll-like receptor-2 expression in chronic hepatitis B by the precore protein. Hepatology. 2007;45(1):102–10.PubMedCrossRef Visvanathan K, Skinner NA, Thompson AJ, Riordan SM, Sozzi V, Edwards R, et al. Regulation of Toll-like receptor-2 expression in chronic hepatitis B by the precore protein. Hepatology. 2007;45(1):102–10.PubMedCrossRef
50.
Zurück zum Zitat Modhiran N, Watterson D, Muller DA, Panetta AK, Sester DP, Liu L, et al. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med. 2015;7(304):304ra142.PubMedCrossRef Modhiran N, Watterson D, Muller DA, Panetta AK, Sester DP, Liu L, et al. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med. 2015;7(304):304ra142.PubMedCrossRef
51.
Zurück zum Zitat Dolganiuc A, Oak S, Kodys K, Golenbock DT, Finberg RW, Kurt-Jones E, et al. Hepatitis C core and nonstructural 3 proteins trigger toll-like receptor 2-mediated pathways and inflammatory activation. Gastroenterology. 2004;127(5):1513–24.PubMedCrossRef Dolganiuc A, Oak S, Kodys K, Golenbock DT, Finberg RW, Kurt-Jones E, et al. Hepatitis C core and nonstructural 3 proteins trigger toll-like receptor 2-mediated pathways and inflammatory activation. Gastroenterology. 2004;127(5):1513–24.PubMedCrossRef
52.
Zurück zum Zitat Seki E, Schnabl B. Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut. J Physiol. 2012;590(3):447–58.PubMedCrossRef Seki E, Schnabl B. Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut. J Physiol. 2012;590(3):447–58.PubMedCrossRef
53.
Zurück zum Zitat Seki E, De Minicis S, Österreicher CH, Kluwe J, Osawa Y, Brenner DA, et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat Med. 2007;13(11):1324.PubMedCrossRef Seki E, De Minicis S, Österreicher CH, Kluwe J, Osawa Y, Brenner DA, et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat Med. 2007;13(11):1324.PubMedCrossRef
54.
Zurück zum Zitat Douhara A, Moriya K, Yoshiji H, Noguchi R, Namisaki T, Kitade M, et al. Reduction of endotoxin attenuates liver fibrosis through suppression of hepatic stellate cell activation and remission of intestinal permeability in a rat non-alcoholic steatohepatitis model. Mol Med Rep. 2015;11(3):1693–700.PubMedCrossRef Douhara A, Moriya K, Yoshiji H, Noguchi R, Namisaki T, Kitade M, et al. Reduction of endotoxin attenuates liver fibrosis through suppression of hepatic stellate cell activation and remission of intestinal permeability in a rat non-alcoholic steatohepatitis model. Mol Med Rep. 2015;11(3):1693–700.PubMedCrossRef
55.
Zurück zum Zitat Zhu T, Wenjuan T, Tan Z, Liu L. Effects of inhibited expression of IRF3 in LPS-stimulated Kupffer cells on the activation of signal transduction pathways. Chin J Microbiol Immunol. 2015;8:587–94. Zhu T, Wenjuan T, Tan Z, Liu L. Effects of inhibited expression of IRF3 in LPS-stimulated Kupffer cells on the activation of signal transduction pathways. Chin J Microbiol Immunol. 2015;8:587–94.
56.
Zurück zum Zitat Yu L-X, Ling Y, Wang H-Y. Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Prec Oncol. 2018;2(1):6.CrossRef Yu L-X, Ling Y, Wang H-Y. Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Prec Oncol. 2018;2(1):6.CrossRef
57.
Zurück zum Zitat Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology. 2008;48(1):322–35.PubMedCrossRef Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology. 2008;48(1):322–35.PubMedCrossRef
58.
Zurück zum Zitat Trucco LD, Roselli E, Araya P, Nuñez NG, Mena HA, Bocco JL, et al. Downregulation of adaptor protein MyD88 compromises the angiogenic potential of B16 murine melanoma. PLoS ONE. 2017;12(6):e0179897.PubMedPubMedCentralCrossRef Trucco LD, Roselli E, Araya P, Nuñez NG, Mena HA, Bocco JL, et al. Downregulation of adaptor protein MyD88 compromises the angiogenic potential of B16 murine melanoma. PLoS ONE. 2017;12(6):e0179897.PubMedPubMedCentralCrossRef
59.
60.
Zurück zum Zitat Stein I, Bramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431(7007):461–6.PubMedCrossRef Stein I, Bramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431(7007):461–6.PubMedCrossRef
61.
Zurück zum Zitat Luo J-L, Kamata H, Karin M. IKK/NF-κB signaling: balancing life and death—a new approach to cancer therapy. J Clin Investig. 2005;115(10):2625–32.PubMedCrossRefPubMedCentral Luo J-L, Kamata H, Karin M. IKK/NF-κB signaling: balancing life and death—a new approach to cancer therapy. J Clin Investig. 2005;115(10):2625–32.PubMedCrossRefPubMedCentral
62.
Zurück zum Zitat Greten FR, Arkan MC, Bollrath J, Hsu L-C, Goode J, Miething C, et al. NF-κB is a negative regulator of IL-1β secretion as revealed by genetic and pharmacological inhibition of IKKβ. Cell. 2007;130(5):918–31.PubMedPubMedCentralCrossRef Greten FR, Arkan MC, Bollrath J, Hsu L-C, Goode J, Miething C, et al. NF-κB is a negative regulator of IL-1β secretion as revealed by genetic and pharmacological inhibition of IKKβ. Cell. 2007;130(5):918–31.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. BBA Gene Regul Mech. 2010;1799(10):775–87. Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. BBA Gene Regul Mech. 2010;1799(10):775–87.
65.
66.
68.
Zurück zum Zitat Jiang R, Xia Y, Li J, Deng L, Zhao L, Shi J, et al. High expression levels of IKKα and IKKβ are necessary for the malignant properties of liver cancer. Int J Cancer. 2010;126(5):1263–74.PubMedCrossRef Jiang R, Xia Y, Li J, Deng L, Zhao L, Shi J, et al. High expression levels of IKKα and IKKβ are necessary for the malignant properties of liver cancer. Int J Cancer. 2010;126(5):1263–74.PubMedCrossRef
69.
Zurück zum Zitat Qiao L, Zhao TJ, Wang FZ, Shan CL, Ye LH, Zhang XD. NF-κB downregulation may be involved the depression of tumor cell proliferation mediated by human mesenchymal stem cells 1. Acta Pharmacol Sin. 2008;29(3):333–40.PubMedCrossRef Qiao L, Zhao TJ, Wang FZ, Shan CL, Ye LH, Zhang XD. NF-κB downregulation may be involved the depression of tumor cell proliferation mediated by human mesenchymal stem cells 1. Acta Pharmacol Sin. 2008;29(3):333–40.PubMedCrossRef
71.
Zurück zum Zitat Eaton GJ Jr. Apoptosis signal-regulating kinase 1 modulates endochondral bone formation and osteoarthritis progression. Philadelphia: Thomas Jefferson University; 2015. Eaton GJ Jr. Apoptosis signal-regulating kinase 1 modulates endochondral bone formation and osteoarthritis progression. Philadelphia: Thomas Jefferson University; 2015.
72.
Zurück zum Zitat Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol. 2002;4(5):E131.PubMedCrossRef Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol. 2002;4(5):E131.PubMedCrossRef
73.
Zurück zum Zitat Seki E, Brenner DA, Karin M. A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches. Gastroenterology. 2012;143(2):307–20.PubMedCrossRef Seki E, Brenner DA, Karin M. A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches. Gastroenterology. 2012;143(2):307–20.PubMedCrossRef
74.
Zurück zum Zitat Maeda S, Omata M. Inflammation and cancer: role of nuclear factor-kappaB activation. Cancer Sci. 2008;99(5):836–42.PubMedCrossRef Maeda S, Omata M. Inflammation and cancer: role of nuclear factor-kappaB activation. Cancer Sci. 2008;99(5):836–42.PubMedCrossRef
75.
Zurück zum Zitat Trierweiler C, Hockenjos B, Zatloukal K, Thimme R, Blum H, Wagner E, et al. The transcription factor c-JUN/AP-1 promotes HBV-related liver tumorigenesis in mice. Cell Death Differ. 2016;23(4):576.PubMedCrossRef Trierweiler C, Hockenjos B, Zatloukal K, Thimme R, Blum H, Wagner E, et al. The transcription factor c-JUN/AP-1 promotes HBV-related liver tumorigenesis in mice. Cell Death Differ. 2016;23(4):576.PubMedCrossRef
76.
Zurück zum Zitat Tong C, Yin Z, Song Z, Dockendorff A, Huang C, Mariadason J, et al. c-Jun NH2-terminal kinase 1 plays a critical role in intestinal homeostasis and tumor suppression. Am J Pathol. 2007;171(1):297–303.PubMedPubMedCentralCrossRef Tong C, Yin Z, Song Z, Dockendorff A, Huang C, Mariadason J, et al. c-Jun NH2-terminal kinase 1 plays a critical role in intestinal homeostasis and tumor suppression. Am J Pathol. 2007;171(1):297–303.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Katz M, Amit I, Yarden Y. Regulation of MAPKs by growth factors and receptor tyrosine kinases. BBA Mol Cell Res. 2007;1773(8):1161–76. Katz M, Amit I, Yarden Y. Regulation of MAPKs by growth factors and receptor tyrosine kinases. BBA Mol Cell Res. 2007;1773(8):1161–76.
78.
Zurück zum Zitat Choi J, Corder NL, Koduru B, Wang Y. Oxidative stress and hepatic Nox proteins in chronic hepatitis C and hepatocellular carcinoma. Free Radical Biol Med. 2014;72:267–84.CrossRef Choi J, Corder NL, Koduru B, Wang Y. Oxidative stress and hepatic Nox proteins in chronic hepatitis C and hepatocellular carcinoma. Free Radical Biol Med. 2014;72:267–84.CrossRef
79.
80.
Zurück zum Zitat Suhail M, Abdel-Hafiz H, Ali A, Fatima K, Damanhouri GA, Azhar E, et al. Potential mechanisms of hepatitis B virus induced liver injury. WJG. 2014;20(35):12462.PubMedCrossRefPubMedCentral Suhail M, Abdel-Hafiz H, Ali A, Fatima K, Damanhouri GA, Azhar E, et al. Potential mechanisms of hepatitis B virus induced liver injury. WJG. 2014;20(35):12462.PubMedCrossRefPubMedCentral
81.
Zurück zum Zitat Chen F, Beezhold K, Castranova V. JNK1, a potential therapeutic target for hepatocellular carcinoma. BBA Rev Cancer. 2009;1796(2):242–51. Chen F, Beezhold K, Castranova V. JNK1, a potential therapeutic target for hepatocellular carcinoma. BBA Rev Cancer. 2009;1796(2):242–51.
82.
Zurück zum Zitat Neuveut C, Wei Y, Buendia MA. Mechanisms of HBV-related hepatocarcinogenesis. J Hepatol. 2010;52(4):594–604.PubMedCrossRef Neuveut C, Wei Y, Buendia MA. Mechanisms of HBV-related hepatocarcinogenesis. J Hepatol. 2010;52(4):594–604.PubMedCrossRef
83.
Zurück zum Zitat Min L, He B, Hui L, editors. Mitogen-activated protein kinases in hepatocellular carcinoma development. Seminars in cancer biology. New York: Elsevier; 2011. Min L, He B, Hui L, editors. Mitogen-activated protein kinases in hepatocellular carcinoma development. Seminars in cancer biology. New York: Elsevier; 2011.
84.
Zurück zum Zitat Park GB, Choi Y, Kim YS, Lee H-K, Kim D, Hur DY. ROS-mediated JNK/p38-MAPK activation regulates Bax translocation in Sorafenib-induced apoptosis of EBV-transformed B cells. Int J Oncol. 2014;44(3):977–85.PubMedCrossRef Park GB, Choi Y, Kim YS, Lee H-K, Kim D, Hur DY. ROS-mediated JNK/p38-MAPK activation regulates Bax translocation in Sorafenib-induced apoptosis of EBV-transformed B cells. Int J Oncol. 2014;44(3):977–85.PubMedCrossRef
86.
Zurück zum Zitat Arango-Rodriguez ML, Ezquer F, Ezquer M, Conget P. Could cancer and infection be adverse effects of mesenchymal stromal cell therapy? World J Stem Cells. 2015;7(2):408.PubMedPubMedCentralCrossRef Arango-Rodriguez ML, Ezquer F, Ezquer M, Conget P. Could cancer and infection be adverse effects of mesenchymal stromal cell therapy? World J Stem Cells. 2015;7(2):408.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Maia J, Caja S, Strano Moraes MC, Couto N, Costa-Silva B. Exosome-based cell-cell communication in the tumor microenvironment. Front Cell Dev Biol. 2018;6:18.PubMedPubMedCentralCrossRef Maia J, Caja S, Strano Moraes MC, Couto N, Costa-Silva B. Exosome-based cell-cell communication in the tumor microenvironment. Front Cell Dev Biol. 2018;6:18.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Prockop DJ, Oh JY. Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther. 2012;20(1):14–20.PubMedCrossRef Prockop DJ, Oh JY. Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther. 2012;20(1):14–20.PubMedCrossRef
89.
Zurück zum Zitat Lin L, Du L. The role of secreted factors in stem cells-mediated immune regulation. Cell Immunol. 2018;326:24–32.PubMedCrossRef Lin L, Du L. The role of secreted factors in stem cells-mediated immune regulation. Cell Immunol. 2018;326:24–32.PubMedCrossRef
90.
Zurück zum Zitat Davis JR, Tapon NJD. Hippo signalling during development. Development. 2019;146(18):167106.CrossRef Davis JR, Tapon NJD. Hippo signalling during development. Development. 2019;146(18):167106.CrossRef
93.
Zurück zum Zitat Johnson RL. Hippo signaling and epithelial cell plasticity in mammalian liver development, homeostasis, injury and disease. Sci China Life Sci. 2019;26:1–8. Johnson RL. Hippo signaling and epithelial cell plasticity in mammalian liver development, homeostasis, injury and disease. Sci China Life Sci. 2019;26:1–8.
95.
Zurück zum Zitat Zheng T, Wang J, Jiang H, Liu LJ. Hippo signaling in oval cells and hepatocarcinogenesis. Cancer Lett. 2011;302(2):91–9.PubMedCrossRef Zheng T, Wang J, Jiang H, Liu LJ. Hippo signaling in oval cells and hepatocarcinogenesis. Cancer Lett. 2011;302(2):91–9.PubMedCrossRef
96.
Zurück zum Zitat Jie L, Fan W, Weiqi D, Yingqun Z, Ling X, Miao S, et al. The hippo-yes association protein pathway in liver cancer. Gastroenterol Res Pract. 2013;2013:187070.PubMedPubMedCentralCrossRef Jie L, Fan W, Weiqi D, Yingqun Z, Ling X, Miao S, et al. The hippo-yes association protein pathway in liver cancer. Gastroenterol Res Pract. 2013;2013:187070.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21(21):2747–61.PubMedPubMedCentralCrossRef Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21(21):2747–61.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Xu MZ, Yao TJ, Lee NP, Ng IO, Chan YT, Zender L, et al. Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer. 2009;115(19):4576–85.PubMedCrossRef Xu MZ, Yao TJ, Lee NP, Ng IO, Chan YT, Zender L, et al. Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer. 2009;115(19):4576–85.PubMedCrossRef
99.
Zurück zum Zitat Chan SW, Lim CJ, Guo K, Ng CP, Lee I, Hunziker W, et al. A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res. 2008;68(8):2592–8.PubMedCrossRef Chan SW, Lim CJ, Guo K, Ng CP, Lee I, Hunziker W, et al. A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res. 2008;68(8):2592–8.PubMedCrossRef
100.
Zurück zum Zitat Xiao H, Jiang N, Zhou B, Liu Q, Du CJ. TAZ regulates cell proliferation and epithelial–mesenchymal transition of human hepatocellular carcinoma. Cancer Sci. 2015;106(2):151–9.PubMedPubMedCentralCrossRef Xiao H, Jiang N, Zhou B, Liu Q, Du CJ. TAZ regulates cell proliferation and epithelial–mesenchymal transition of human hepatocellular carcinoma. Cancer Sci. 2015;106(2):151–9.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Yuan F, Zhou W, Zou C, Zhang Z, Hu H, Dai Z, et al. Expression of Oct4 in HCC and modulation to wnt/β-catenin and TGF-β signal pathways. Mol Cell Biochem. 2010;343(1–2):155–62.PubMedCrossRef Yuan F, Zhou W, Zou C, Zhang Z, Hu H, Dai Z, et al. Expression of Oct4 in HCC and modulation to wnt/β-catenin and TGF-β signal pathways. Mol Cell Biochem. 2010;343(1–2):155–62.PubMedCrossRef
105.
Zurück zum Zitat El Asmar MF, Atta HM, Mahfouz S, Fouad HH, Roshdy NK, Rashed LA, et al. Efficacy of mesenchymal stem cells in suppression of hepatocarcinorigenesis in rats: possible role of Wnt signaling. J Exp Clin Cancer Res. 2011;30(1):49.PubMedPubMedCentralCrossRef El Asmar MF, Atta HM, Mahfouz S, Fouad HH, Roshdy NK, Rashed LA, et al. Efficacy of mesenchymal stem cells in suppression of hepatocarcinorigenesis in rats: possible role of Wnt signaling. J Exp Clin Cancer Res. 2011;30(1):49.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Zhang C-L, Huang T, Wu B-L, He W-X, Liu D. Stem cells in cancer therapy: opportunities and challenges. Oncotarget. 2017;8(43):75756.PubMedPubMedCentral Zhang C-L, Huang T, Wu B-L, He W-X, Liu D. Stem cells in cancer therapy: opportunities and challenges. Oncotarget. 2017;8(43):75756.PubMedPubMedCentral
107.
Zurück zum Zitat Gomes CMF. The dual role of mesenchymal stem cells in tumor progression. Stem Cell Res Therapy. 2013;4(2):42.CrossRef Gomes CMF. The dual role of mesenchymal stem cells in tumor progression. Stem Cell Res Therapy. 2013;4(2):42.CrossRef
108.
Zurück zum Zitat Ma Y, Hao X, Zhang S, Zhang J. The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells. Breast Cancer Res Treat. 2012;133(2):473–85.PubMedCrossRef Ma Y, Hao X, Zhang S, Zhang J. The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells. Breast Cancer Res Treat. 2012;133(2):473–85.PubMedCrossRef
109.
Zurück zum Zitat Zhang Y, Wang J, Wu D, Li M, Zhao F, Ren M, et al. il-21-secreting hUcMscs combined with mir-200c inhibit tumor growth and metastasis via repression of Wnt/β-catenin signaling and epithelial–mesenchymal transition in epithelial ovarian cancer. OncoTargets Therapy. 2018;11:2037.PubMedCrossRefPubMedCentral Zhang Y, Wang J, Wu D, Li M, Zhao F, Ren M, et al. il-21-secreting hUcMscs combined with mir-200c inhibit tumor growth and metastasis via repression of Wnt/β-catenin signaling and epithelial–mesenchymal transition in epithelial ovarian cancer. OncoTargets Therapy. 2018;11:2037.PubMedCrossRefPubMedCentral
110.
Zurück zum Zitat Subramanian A, Shu-Uin G, Kae-Siang N, Gauthaman K, Biswas A, Choolani M, et al. Human umbilical cord wharton’s jelly mesenchymal stem cells do not transform to tumor-associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells. J Cell Biochem. 2012;113(6):1886–95.PubMedCrossRef Subramanian A, Shu-Uin G, Kae-Siang N, Gauthaman K, Biswas A, Choolani M, et al. Human umbilical cord wharton’s jelly mesenchymal stem cells do not transform to tumor-associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells. J Cell Biochem. 2012;113(6):1886–95.PubMedCrossRef
111.
Zurück zum Zitat Ohlsson LB, Varas L, Kjellman C, Edvardsen K, Lindvall M. Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol. 2003;75(3):248–55.PubMedCrossRef Ohlsson LB, Varas L, Kjellman C, Edvardsen K, Lindvall M. Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol. 2003;75(3):248–55.PubMedCrossRef
112.
Zurück zum Zitat Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S, Bhattacharya J. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood. 2009;113(18):4197–205.PubMedPubMedCentralCrossRef Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S, Bhattacharya J. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood. 2009;113(18):4197–205.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Lu Y, Yuan Y, Wang X, Wei L, Chen Y, Cong C, et al. The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther. 2008;7(2):245–51.PubMedCrossRef Lu Y, Yuan Y, Wang X, Wei L, Chen Y, Cong C, et al. The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther. 2008;7(2):245–51.PubMedCrossRef
114.
Zurück zum Zitat Wang ML, Pan CM, Chiou SH, Chen WH, Chang HY, Lee OKS, et al. Oncostatin M modulates the mesenchymal–epithelial transition of lung adenocarcinoma cells by a mesenchymal stem cell-mediated paracrine effect. Cancer Res. 2012;72(22):6051–64.PubMedCrossRef Wang ML, Pan CM, Chiou SH, Chen WH, Chang HY, Lee OKS, et al. Oncostatin M modulates the mesenchymal–epithelial transition of lung adenocarcinoma cells by a mesenchymal stem cell-mediated paracrine effect. Cancer Res. 2012;72(22):6051–64.PubMedCrossRef
115.
Zurück zum Zitat Ryu H, Oh J-E, Rhee K-J, Baik SK, Kim J, Kang SJ, et al. Adipose tissue-derived mesenchymal stem cells cultured at high density express IFN-β and suppress the growth of MCF-7 human breast cancer cells. Cancer Lett. 2014;352(2):220–7.PubMedCrossRef Ryu H, Oh J-E, Rhee K-J, Baik SK, Kim J, Kang SJ, et al. Adipose tissue-derived mesenchymal stem cells cultured at high density express IFN-β and suppress the growth of MCF-7 human breast cancer cells. Cancer Lett. 2014;352(2):220–7.PubMedCrossRef
116.
Zurück zum Zitat Du J, Zhou L, Chen X, Yan S, Ke M, Lu X, et al. IFN-γ-primed human bone marrow mesenchymal stem cells induce tumor cell apoptosis in vitro via tumor necrosis factor-related apoptosis-inducing ligand. Int J Biochem Cell Biol. 2012;44(8):1305–14.PubMedCrossRef Du J, Zhou L, Chen X, Yan S, Ke M, Lu X, et al. IFN-γ-primed human bone marrow mesenchymal stem cells induce tumor cell apoptosis in vitro via tumor necrosis factor-related apoptosis-inducing ligand. Int J Biochem Cell Biol. 2012;44(8):1305–14.PubMedCrossRef
118.
Zurück zum Zitat Loebinger M, Sage E, Davies D. Janes SJBjoc. TRAIL-expressing mesenchymal stem cells kill the putative cancer stem cell population. 2010;103(11):1692. Loebinger M, Sage E, Davies D. Janes SJBjoc. TRAIL-expressing mesenchymal stem cells kill the putative cancer stem cell population. 2010;103(11):1692.
119.
Zurück zum Zitat Zhao D, Hou L, Pan M, Hua J, Wang Z, He J, et al. Inhibitory effect and mechanism of mesenchymal stem cells cultured in 3D system on hepatoma cells HepG2. Appl Biochem Biotechnol. 2018;184(1):212–27.PubMedCrossRef Zhao D, Hou L, Pan M, Hua J, Wang Z, He J, et al. Inhibitory effect and mechanism of mesenchymal stem cells cultured in 3D system on hepatoma cells HepG2. Appl Biochem Biotechnol. 2018;184(1):212–27.PubMedCrossRef
120.
Zurück zum Zitat Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst. 2004;96(21):1593–603.PubMedCrossRef Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst. 2004;96(21):1593–603.PubMedCrossRef
121.
Zurück zum Zitat Waterman RS, Tomchuck SL, Henkle SL, Betancourt AMJ. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS ONE. 2010;5(4):e10088.PubMedPubMedCentralCrossRef Waterman RS, Tomchuck SL, Henkle SL, Betancourt AMJ. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS ONE. 2010;5(4):e10088.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Waterman RS, Henkle SL, Betancourt AMJ. Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis. PLoS ONE. 2012;7(9):e45590.PubMedPubMedCentralCrossRef Waterman RS, Henkle SL, Betancourt AMJ. Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis. PLoS ONE. 2012;7(9):e45590.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Gwendal L. Recent discoveries concerning the tumor-mesenchymal stem cell interactions. BBA Rev Cancer. 2016;1866(2):290–9. Gwendal L. Recent discoveries concerning the tumor-mesenchymal stem cell interactions. BBA Rev Cancer. 2016;1866(2):290–9.
124.
Zurück zum Zitat Pan M, Hou L, Zhang J, Zhao D, Hua J, Wang Z, et al. Inhibitory effect and molecular mechanism of mesenchymal stem cells on NSCLC cells. Mol Cell Biochem. 2018;441(1–2):63–76.PubMedCrossRef Pan M, Hou L, Zhang J, Zhao D, Hua J, Wang Z, et al. Inhibitory effect and molecular mechanism of mesenchymal stem cells on NSCLC cells. Mol Cell Biochem. 2018;441(1–2):63–76.PubMedCrossRef
125.
Zurück zum Zitat Lou G, Song X, Yang F, Wu S, Wang J, Chen Z, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 2015;8(1):122.PubMedPubMedCentralCrossRef Lou G, Song X, Yang F, Wu S, Wang J, Chen Z, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 2015;8(1):122.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Kean TJ, Lin P, Caplan AI, Dennis JE. MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int. 2013;2013:732742.PubMedPubMedCentralCrossRef Kean TJ, Lin P, Caplan AI, Dennis JE. MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int. 2013;2013:732742.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Hu Y-L, Fu Y-H, Tabata Y, Gao J-Q. Mesenchymal stem cells: a promising targeted-delivery vehicle in cancer gene therapy. J Control Release. 2010;147(2):154–62.PubMedCrossRef Hu Y-L, Fu Y-H, Tabata Y, Gao J-Q. Mesenchymal stem cells: a promising targeted-delivery vehicle in cancer gene therapy. J Control Release. 2010;147(2):154–62.PubMedCrossRef
128.
Zurück zum Zitat Zhou J, Tan X, Tan Y, Li Q, Ma J, Wang G. Mesenchymal stem cell derived exosomes in cancer progression, metastasis and drug delivery: a comprehensive review. J Cancer. 2018;9(17):3129.PubMedPubMedCentralCrossRef Zhou J, Tan X, Tan Y, Li Q, Ma J, Wang G. Mesenchymal stem cell derived exosomes in cancer progression, metastasis and drug delivery: a comprehensive review. J Cancer. 2018;9(17):3129.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Goto T, Murata M, Terakura S, Nishida T, Adachi Y, Ushijima Y, et al. Phase I study of cord blood transplantation with intrabone marrow injection of mesenchymal stem cells: a clinical study protocol. Medicine. 2018;97:17.CrossRef Goto T, Murata M, Terakura S, Nishida T, Adachi Y, Ushijima Y, et al. Phase I study of cord blood transplantation with intrabone marrow injection of mesenchymal stem cells: a clinical study protocol. Medicine. 2018;97:17.CrossRef
130.
Zurück zum Zitat Fernández O, Izquierdo G, Fernández V, Leyva L, Reyes V, Guerrero M, et al. Adipose-derived mesenchymal stem cells (AdMSC) for the treatment of secondary-progressive multiple sclerosis: a triple blinded, placebo controlled, randomized phase I/II safety and feasibility study. PLoS ONE. 2018;13(5):e0195891.PubMedPubMedCentralCrossRef Fernández O, Izquierdo G, Fernández V, Leyva L, Reyes V, Guerrero M, et al. Adipose-derived mesenchymal stem cells (AdMSC) for the treatment of secondary-progressive multiple sclerosis: a triple blinded, placebo controlled, randomized phase I/II safety and feasibility study. PLoS ONE. 2018;13(5):e0195891.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Al-Najar M, Khalil H, Al-Ajlouni J, Al-Antary E, Hamdan M, Rahmeh R, et al. Intra-articular injection of expanded autologous bone marrow mesenchymal cells in moderate and severe knee osteoarthritis is safe: a phase I/II study. J Orthop Surg Res. 2017;12(1):190.PubMedPubMedCentralCrossRef Al-Najar M, Khalil H, Al-Ajlouni J, Al-Antary E, Hamdan M, Rahmeh R, et al. Intra-articular injection of expanded autologous bone marrow mesenchymal cells in moderate and severe knee osteoarthritis is safe: a phase I/II study. J Orthop Surg Res. 2017;12(1):190.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Li GC, Ye QH, Xue YH, Sun HJ, Zhou HJ, Ren N, et al. Human mesenchymal stem cells inhibit metastasis of a hepatocellular carcinoma model using the MHCC97-H cell line. Cancer Sci. 2010;101(12):2546–53.PubMedCrossRef Li GC, Ye QH, Xue YH, Sun HJ, Zhou HJ, Ren N, et al. Human mesenchymal stem cells inhibit metastasis of a hepatocellular carcinoma model using the MHCC97-H cell line. Cancer Sci. 2010;101(12):2546–53.PubMedCrossRef
133.
Zurück zum Zitat Zhao W, Ren G, Zhang L, Zhang Z, Liu J, Kuang P, et al. Efficacy of mesenchymal stem cells derived from human adipose tissue in inhibition of hepatocellular carcinoma cells in vitro. Cancer Biother Radiopharm. 2012;27(9):606–13.PubMedCrossRef Zhao W, Ren G, Zhang L, Zhang Z, Liu J, Kuang P, et al. Efficacy of mesenchymal stem cells derived from human adipose tissue in inhibition of hepatocellular carcinoma cells in vitro. Cancer Biother Radiopharm. 2012;27(9):606–13.PubMedCrossRef
134.
Zurück zum Zitat Li T, Song B, Du X, Wei Z. Huo TJEjomr. Effect of bone-marrow-derived mesenchymal stem cells on high-potential hepatocellular carcinoma in mouse models: an intervention study. 2013;18(1):34. Li T, Song B, Du X, Wei Z. Huo TJEjomr. Effect of bone-marrow-derived mesenchymal stem cells on high-potential hepatocellular carcinoma in mouse models: an intervention study. 2013;18(1):34.
135.
Zurück zum Zitat Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res. 2008;18(4):500.PubMedCrossRef Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res. 2008;18(4):500.PubMedCrossRef
136.
Zurück zum Zitat Bruno S, Collino F, Deregibus MC, Grange C, Tetta C, Camussi GJ, et al. Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev. 2012;22(5):758–71.PubMedCrossRef Bruno S, Collino F, Deregibus MC, Grange C, Tetta C, Camussi GJ, et al. Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev. 2012;22(5):758–71.PubMedCrossRef
137.
Zurück zum Zitat Ma B, Jiang H, Jia J, Di L, Song G, Yu J, et al. Murine bone marrow stromal cells pulsed with homologous tumor-derived exosomes inhibit proliferation of liver cancer cells. Clin Transl Oncol. 2012;14(10):764–73.PubMedCrossRef Ma B, Jiang H, Jia J, Di L, Song G, Yu J, et al. Murine bone marrow stromal cells pulsed with homologous tumor-derived exosomes inhibit proliferation of liver cancer cells. Clin Transl Oncol. 2012;14(10):764–73.PubMedCrossRef
138.
Zurück zum Zitat Abd-Allah SH, Shalaby SM, Amal S, Elkader EA, Hussein S, Emam E, et al. Effect of bone marrow–derived mesenchymal stromal cells on hepatoma. Cytotherapy. 2014;16(9):1197–206.PubMedCrossRef Abd-Allah SH, Shalaby SM, Amal S, Elkader EA, Hussein S, Emam E, et al. Effect of bone marrow–derived mesenchymal stromal cells on hepatoma. Cytotherapy. 2014;16(9):1197–206.PubMedCrossRef
139.
Zurück zum Zitat Seyhoun I, Hajighasemlou S, Muhammadnejad S, Ai J, Nikbakht M, Alizadeh A, et al. Combination therapy of sorafenib with mesenchymal stem cells as a novel cancer treatment regimen in xenograft models of hepatocellular carcinoma. J Cell Physiol. 2018;234(6):9495–503.PubMedCrossRef Seyhoun I, Hajighasemlou S, Muhammadnejad S, Ai J, Nikbakht M, Alizadeh A, et al. Combination therapy of sorafenib with mesenchymal stem cells as a novel cancer treatment regimen in xenograft models of hepatocellular carcinoma. J Cell Physiol. 2018;234(6):9495–503.PubMedCrossRef
140.
Zurück zum Zitat Hajighasemlou S, Pakzad S, Ai J, Muhammadnejad S, Mirmoghtadaei M, Hosseinzadeh F, et al. Characterization and Validation of hepatocellular carcinoma (HCC) xenograft tumor as a suitable liver cancer model for preclinical mesenchymal stem cell studies. APJCP. 2018;19(6):1627.PubMedPubMedCentral Hajighasemlou S, Pakzad S, Ai J, Muhammadnejad S, Mirmoghtadaei M, Hosseinzadeh F, et al. Characterization and Validation of hepatocellular carcinoma (HCC) xenograft tumor as a suitable liver cancer model for preclinical mesenchymal stem cell studies. APJCP. 2018;19(6):1627.PubMedPubMedCentral
141.
Zurück zum Zitat Hernanda PY, Pedroza-Gonzalez A, van der Laan LJ, Bröker ME, Hoogduijn MJ, Ijzermans JN, et al. Tumor promotion through the mesenchymal stem cell compartment in human hepatocellular carcinoma. Carcinogenesis. 2013;34(10):2330–40.PubMedPubMedCentralCrossRef Hernanda PY, Pedroza-Gonzalez A, van der Laan LJ, Bröker ME, Hoogduijn MJ, Ijzermans JN, et al. Tumor promotion through the mesenchymal stem cell compartment in human hepatocellular carcinoma. Carcinogenesis. 2013;34(10):2330–40.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Yan XL, Jia YL, Chen L, Zeng Q, Zhou JN, Fu CJ, et al. Hepatocellular carcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression: role of the S100A4-miR155-SOCS1-MMP9 axis. Hepatology. 2013;57(6):2274–86.PubMedCrossRef Yan XL, Jia YL, Chen L, Zeng Q, Zhou JN, Fu CJ, et al. Hepatocellular carcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression: role of the S100A4-miR155-SOCS1-MMP9 axis. Hepatology. 2013;57(6):2274–86.PubMedCrossRef
143.
Zurück zum Zitat Gong P, Wang Y, Wang Y, Jin S, Luo H, Zhang J, et al. Effect of bone marrow mesenchymal stem cells on hepatocellular carcinoma in microcirculation. Tumor Biol. 2013;34(4):2161–8.CrossRef Gong P, Wang Y, Wang Y, Jin S, Luo H, Zhang J, et al. Effect of bone marrow mesenchymal stem cells on hepatocellular carcinoma in microcirculation. Tumor Biol. 2013;34(4):2161–8.CrossRef
144.
Zurück zum Zitat Jing Y, Han Z, Liu Y, Sun K, Zhang S, Jiang G, et al. Mesenchymal stem cells in inflammation microenvironment accelerates hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition. PLoS ONE. 2012;7(8):e43272.PubMedPubMedCentralCrossRef Jing Y, Han Z, Liu Y, Sun K, Zhang S, Jiang G, et al. Mesenchymal stem cells in inflammation microenvironment accelerates hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition. PLoS ONE. 2012;7(8):e43272.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Bhattacharya SD, Mi Z, Talbot LJ, Guo H, Kuo PCJS. Human mesenchymal stem cell and epithelial hepatic carcinoma cell lines in admixture: concurrent stimulation of cancer-associated fibroblasts and epithelial-to-mesenchymal transition markers. Surgery. 2012;152(3):449–54.PubMedCrossRef Bhattacharya SD, Mi Z, Talbot LJ, Guo H, Kuo PCJS. Human mesenchymal stem cell and epithelial hepatic carcinoma cell lines in admixture: concurrent stimulation of cancer-associated fibroblasts and epithelial-to-mesenchymal transition markers. Surgery. 2012;152(3):449–54.PubMedCrossRef
146.
Zurück zum Zitat Liu C, Liu Y, Xu X, Guo X, Sun G, Ma X. Mesenchymal stem cells enhance the metastasis of 3D-cultured hepatocellular carcinoma cells. BMC Cancer. 2016;16(1):566.PubMedPubMedCentralCrossRef Liu C, Liu Y, Xu X, Guo X, Sun G, Ma X. Mesenchymal stem cells enhance the metastasis of 3D-cultured hepatocellular carcinoma cells. BMC Cancer. 2016;16(1):566.PubMedPubMedCentralCrossRef
Metadaten
Titel
Mesenchymal stromal cells induce inhibitory effects on hepatocellular carcinoma through various signaling pathways
verfasst von
Jafar Ai
Neda Ketabchi
Javad Verdi
Nematollah Gheibi
Hossein Khadem Haghighian
Maria Kavianpour
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Cancer Cell International / Ausgabe 1/2019
Elektronische ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-019-1038-0

Weitere Artikel der Ausgabe 1/2019

Cancer Cell International 1/2019 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.