Skip to main content
Erschienen in:

06.11.2019 | Review

Metabolic Imaging in Cardio-oncology

verfasst von: Dan Tong, Vlad G. Zaha

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Abstract

Tremendous progress in cancer detection and therapy has improved survival. However, cardiovascular complications are a major source of morbidity in cancer survivors. Cardiotoxicity is currently defined by structural myocardial changes and cardiac injury biomarkers. In many instances, such changes are late and irreversible. Therefore, diagnostic modalities that can identify early alterations in potentially reversible biochemical and molecular signaling processes are of interest. This review is focused on emerging translational metabolic imaging modalities. We present in context relevant mitochondrial biology aspects that ground the development and application of these technologies for detection of cancer therapy–related cardiac dysfunction (CTRCD). The application of these modalities may improve the assessment of cardiovascular risk when anticancer treatments with a defined cardiometabolic toxic mechanism are to be used. Also, they may serve as screening tools for cardiotoxicity when novel lines of cancer therapies are applied.
Literatur
1.
Zurück zum Zitat Plana, J. C., Galderisi, M., Barac, A., Ewer, M. S., Ky, B., Scherrer-Crosbie, M., Ganame, J., Sebag, I. A., Agler, D. A., Badano, L. P., Banchs, J., Cardinale, D., Carver, J., Cerqueira, M., JM, D. C., Edvardsen, T., Flamm, S. D., Force, T., Griffin, B. P., Jerusalem, G., Liu, J. E., Magalhaes, A., Marwick, T., Sanchez, L. Y., Sicari, R., Villarraga, H. R., & Lancellotti, P. (2014). Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr, 27, 911–939.PubMedCrossRef Plana, J. C., Galderisi, M., Barac, A., Ewer, M. S., Ky, B., Scherrer-Crosbie, M., Ganame, J., Sebag, I. A., Agler, D. A., Badano, L. P., Banchs, J., Cardinale, D., Carver, J., Cerqueira, M., JM, D. C., Edvardsen, T., Flamm, S. D., Force, T., Griffin, B. P., Jerusalem, G., Liu, J. E., Magalhaes, A., Marwick, T., Sanchez, L. Y., Sicari, R., Villarraga, H. R., & Lancellotti, P. (2014). Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr, 27, 911–939.PubMedCrossRef
2.
Zurück zum Zitat Jiji, R. S., Kramer, C. M., & Salerno, M. (2012). Non-invasive imaging and monitoring cardiotoxicity of cancer therapeutic drugs. J Nucl Cardiol, 19, 377–388.PubMedPubMedCentralCrossRef Jiji, R. S., Kramer, C. M., & Salerno, M. (2012). Non-invasive imaging and monitoring cardiotoxicity of cancer therapeutic drugs. J Nucl Cardiol, 19, 377–388.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Neubauer, S. (2007). The failing heart--an engine out of fuel. N Engl J Med, 356, 1140–1151.PubMedCrossRef Neubauer, S. (2007). The failing heart--an engine out of fuel. N Engl J Med, 356, 1140–1151.PubMedCrossRef
5.
Zurück zum Zitat Bertero, E., & Maack, C. (2018). Metabolic remodelling in heart failure. Nat Rev Cardiol, 15, 457–470.PubMedCrossRef Bertero, E., & Maack, C. (2018). Metabolic remodelling in heart failure. Nat Rev Cardiol, 15, 457–470.PubMedCrossRef
6.
Zurück zum Zitat Varga, Z. V., Ferdinandy, P., Liaudet, L., & Pacher, P. (2015). Drug-induced mitochondrial dysfunction and cardiotoxicity. Am J Physiol Heart Circ Physiol, 309, H1453–H1467.PubMedPubMedCentralCrossRef Varga, Z. V., Ferdinandy, P., Liaudet, L., & Pacher, P. (2015). Drug-induced mitochondrial dysfunction and cardiotoxicity. Am J Physiol Heart Circ Physiol, 309, H1453–H1467.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Doenst, T., Nguyen, T. D., & Abel, E. D. (2013). Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res, 113, 709–724.PubMedPubMedCentralCrossRef Doenst, T., Nguyen, T. D., & Abel, E. D. (2013). Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res, 113, 709–724.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Tsutsui, H., Kinugawa, S., & Matsushima, S. (2011). Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol, 301, H2181–H2190.PubMedCrossRef Tsutsui, H., Kinugawa, S., & Matsushima, S. (2011). Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol, 301, H2181–H2190.PubMedCrossRef
9.
Zurück zum Zitat van der Pol, A., van Gilst, W. H., Voors, A. A., & van der Meer, P. (2019). Treating oxidative stress in heart failure: past, present and future. Eur J Heart Fail, 21, 425–435.PubMedCrossRef van der Pol, A., van Gilst, W. H., Voors, A. A., & van der Meer, P. (2019). Treating oxidative stress in heart failure: past, present and future. Eur J Heart Fail, 21, 425–435.PubMedCrossRef
10.
Zurück zum Zitat Tahrir, F. G., Langford, D., Amini, S., Mohseni Ahooyi, T., & Khalili, K. (2019). Mitochondrial quality control in cardiac cells: mechanisms and role in cardiac cell injury and disease. J Cell Physiol, 234, 8122–8133.PubMedCrossRef Tahrir, F. G., Langford, D., Amini, S., Mohseni Ahooyi, T., & Khalili, K. (2019). Mitochondrial quality control in cardiac cells: mechanisms and role in cardiac cell injury and disease. J Cell Physiol, 234, 8122–8133.PubMedCrossRef
11.
Zurück zum Zitat Goldenthal, M. J. (2016). Mitochondrial involvement in myocyte death and heart failure. Heart Fail Rev, 21, 137–155.PubMedCrossRef Goldenthal, M. J. (2016). Mitochondrial involvement in myocyte death and heart failure. Heart Fail Rev, 21, 137–155.PubMedCrossRef
13.
Zurück zum Zitat Zaha, V. G., Qi, D., Su, K. N., Palmeri, M., Lee, H. Y., Hu, X., Wu, X., Shulman, G. I., Rabinovitch, P. S., Russell 3rd, R. R., & Young, L. H. (2016). AMPK is critical for mitochondrial function during reperfusion after myocardial ischemia. J Mol Cell Cardiol, 91, 104–113.PubMedCrossRef Zaha, V. G., Qi, D., Su, K. N., Palmeri, M., Lee, H. Y., Hu, X., Wu, X., Shulman, G. I., Rabinovitch, P. S., Russell 3rd, R. R., & Young, L. H. (2016). AMPK is critical for mitochondrial function during reperfusion after myocardial ischemia. J Mol Cell Cardiol, 91, 104–113.PubMedCrossRef
14.
Zurück zum Zitat Renu K, V GA, P BT and Arunachalam S. Molecular mechanism of doxorubicin-induced cardiomyopathy - an update Eur J Pharmacol 2018;818:241-253. Renu K, V GA, P BT and Arunachalam S. Molecular mechanism of doxorubicin-induced cardiomyopathy - an update Eur J Pharmacol 2018;818:241-253.
15.
Zurück zum Zitat Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol, 52, 1213–1225.PubMedCrossRef Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol, 52, 1213–1225.PubMedCrossRef
16.
Zurück zum Zitat Xu, M. F., Tang, P. L., Qian, Z. M., & Ashraf, M. (2001). Effects by doxorubicin on the myocardium are mediated by oxygen free radicals. Life Sci, 68, 889–901.PubMedCrossRef Xu, M. F., Tang, P. L., Qian, Z. M., & Ashraf, M. (2001). Effects by doxorubicin on the myocardium are mediated by oxygen free radicals. Life Sci, 68, 889–901.PubMedCrossRef
17.
Zurück zum Zitat Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., & Yeh, E. T. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med, 18, 1639–1642.PubMedCrossRef Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., & Yeh, E. T. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med, 18, 1639–1642.PubMedCrossRef
18.
Zurück zum Zitat Sterba, M., Popelova, O., Vavrova, A., Jirkovsky, E., Kovarikova, P., Gersl, V., & Simunek, T. (2013). Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection. Antioxid Redox Signal, 18, 899–929.PubMedPubMedCentralCrossRef Sterba, M., Popelova, O., Vavrova, A., Jirkovsky, E., Kovarikova, P., Gersl, V., & Simunek, T. (2013). Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection. Antioxid Redox Signal, 18, 899–929.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Ghigo, A., Li, M., & Hirsch, E. (1863). New signal transduction paradigms in anthracycline-induced cardiotoxicity. Biochim Biophys Acta, 2016, 1916–1925. Ghigo, A., Li, M., & Hirsch, E. (1863). New signal transduction paradigms in anthracycline-induced cardiotoxicity. Biochim Biophys Acta, 2016, 1916–1925.
20.
Zurück zum Zitat Jardines, L., Weiss, M., Fowble, B., & Greene, M. (1993). neu(c-erbB-2/HER2) and the epidermal growth factor receptor (EGFR) in breast cancer. Pathobiology., 61, 268–282.PubMedCrossRef Jardines, L., Weiss, M., Fowble, B., & Greene, M. (1993). neu(c-erbB-2/HER2) and the epidermal growth factor receptor (EGFR) in breast cancer. Pathobiology., 61, 268–282.PubMedCrossRef
21.
Zurück zum Zitat Force, T., Krause, D. S., & Van Etten, R. A. (2007). Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer, 7, 332–344.PubMedCrossRef Force, T., Krause, D. S., & Van Etten, R. A. (2007). Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer, 7, 332–344.PubMedCrossRef
22.
Zurück zum Zitat Moslehi, J. J. (2016). Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med, 375, 1457–1467.PubMedCrossRef Moslehi, J. J. (2016). Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med, 375, 1457–1467.PubMedCrossRef
23.
Zurück zum Zitat Feldman, A. M., Lorell, B. H., & Reis, S. E. (2000). Trastuzumab in the treatment of metastatic breast cancer: anticancer therapy versus cardiotoxicity. Circulation., 102, 272–274.PubMedCrossRef Feldman, A. M., Lorell, B. H., & Reis, S. E. (2000). Trastuzumab in the treatment of metastatic breast cancer: anticancer therapy versus cardiotoxicity. Circulation., 102, 272–274.PubMedCrossRef
24.
Zurück zum Zitat Grazette, L. P., Boecker, W., Matsui, T., Semigran, M., Force, T. L., Hajjar, R. J., & Rosenzweig, A. (2004). Inhibition of ErbB2 causes mitochondrial dysfunction in cardiomyocytes: implications for herceptin-induced cardiomyopathy. J Am Coll Cardiol, 44, 2231–2238.PubMedCrossRef Grazette, L. P., Boecker, W., Matsui, T., Semigran, M., Force, T. L., Hajjar, R. J., & Rosenzweig, A. (2004). Inhibition of ErbB2 causes mitochondrial dysfunction in cardiomyocytes: implications for herceptin-induced cardiomyopathy. J Am Coll Cardiol, 44, 2231–2238.PubMedCrossRef
25.
Zurück zum Zitat ElZarrad, M. K., Mukhopadhyay, P., Mohan, N., Hao, E., Dokmanovic, M., Hirsch, D. S., Shen, Y., Pacher, P., & Wu, W. J. (2013). Trastuzumab alters the expression of genes essential for cardiac function and induces ultrastructural changes of cardiomyocytes in mice. PLoS One, 8, e79543.PubMedPubMedCentralCrossRef ElZarrad, M. K., Mukhopadhyay, P., Mohan, N., Hao, E., Dokmanovic, M., Hirsch, D. S., Shen, Y., Pacher, P., & Wu, W. J. (2013). Trastuzumab alters the expression of genes essential for cardiac function and induces ultrastructural changes of cardiomyocytes in mice. PLoS One, 8, e79543.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Gordon, L. I., Burke, M. A., Singh, A. T., Prachand, S., Lieberman, E. D., Sun, L., Naik, T. J., Prasad, S. V., & Ardehali, H. (2009). Blockade of the erbB2 receptor induces cardiomyocyte death through mitochondrial and reactive oxygen species-dependent pathways. J Biol Chem, 284, 2080–2087.PubMedPubMedCentralCrossRef Gordon, L. I., Burke, M. A., Singh, A. T., Prachand, S., Lieberman, E. D., Sun, L., Naik, T. J., Prasad, S. V., & Ardehali, H. (2009). Blockade of the erbB2 receptor induces cardiomyocyte death through mitochondrial and reactive oxygen species-dependent pathways. J Biol Chem, 284, 2080–2087.PubMedPubMedCentralCrossRef
27.
28.
29.
Zurück zum Zitat Kerkela, R., Woulfe, K. C., Durand, J. B., Vagnozzi, R., Kramer, D., Chu, T. F., Beahm, C., Chen, M. H., & Force, T. (2009). Sunitinib-induced cardiotoxicity is mediated by off-target inhibition of AMP-activated protein kinase. Clin Transl Sci, 2, 15–25.PubMedPubMedCentralCrossRef Kerkela, R., Woulfe, K. C., Durand, J. B., Vagnozzi, R., Kramer, D., Chu, T. F., Beahm, C., Chen, M. H., & Force, T. (2009). Sunitinib-induced cardiotoxicity is mediated by off-target inhibition of AMP-activated protein kinase. Clin Transl Sci, 2, 15–25.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Ross, J. M., Olson, L., & Coppotelli, G. (2015). Mitochondrial and ubiquitin proteasome system dysfunction in ageing and disease: two sides of the same coin? Int J Mol Sci, 16, 19458–19476.PubMedPubMedCentralCrossRef Ross, J. M., Olson, L., & Coppotelli, G. (2015). Mitochondrial and ubiquitin proteasome system dysfunction in ageing and disease: two sides of the same coin? Int J Mol Sci, 16, 19458–19476.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Maharjan, S., Oku, M., Tsuda, M., Hoseki, J., & Sakai, Y. (2014). Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition. Sci Rep, 4, 5896.PubMedPubMedCentralCrossRef Maharjan, S., Oku, M., Tsuda, M., Hoseki, J., & Sakai, Y. (2014). Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition. Sci Rep, 4, 5896.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Fu, H. Y., Minamino, T., Tsukamoto, O., Sawada, T., Asai, M., Kato, H., Asano, Y., Fujita, M., Takashima, S., Hori, M., & Kitakaze, M. (2008). Overexpression of endoplasmic reticulum-resident chaperone attenuates cardiomyocyte death induced by proteasome inhibition. Cardiovasc Res, 79, 600–610.PubMedCrossRef Fu, H. Y., Minamino, T., Tsukamoto, O., Sawada, T., Asai, M., Kato, H., Asano, Y., Fujita, M., Takashima, S., Hori, M., & Kitakaze, M. (2008). Overexpression of endoplasmic reticulum-resident chaperone attenuates cardiomyocyte death induced by proteasome inhibition. Cardiovasc Res, 79, 600–610.PubMedCrossRef
34.
Zurück zum Zitat Abdurrachim, D., & Prompers, J. J. (1864). Evaluation of cardiac energetics by non-invasive (31)P magnetic resonance spectroscopy. Biochim Biophys Acta Mol basis Dis, 2018, 1939–1948. Abdurrachim, D., & Prompers, J. J. (1864). Evaluation of cardiac energetics by non-invasive (31)P magnetic resonance spectroscopy. Biochim Biophys Acta Mol basis Dis, 2018, 1939–1948.
36.
Zurück zum Zitat Qureshi, W. T., & Nasir, U. B. (2017). Principals and clinical applications of magnetic resonance cardiac spectroscopy in heart failure. Heart Fail Rev, 22, 491–499.PubMedCrossRef Qureshi, W. T., & Nasir, U. B. (2017). Principals and clinical applications of magnetic resonance cardiac spectroscopy in heart failure. Heart Fail Rev, 22, 491–499.PubMedCrossRef
37.
Zurück zum Zitat Gabr, R. E., El-Sharkawy, A. M., Schar, M., Panjrath, G. S., Gerstenblith, G., Weiss, R. G., & Bottomley, P. A. (2018). Cardiac work is related to creatine kinase energy supply in human heart failure: a cardiovascular magnetic resonance spectroscopy study. J Cardiovasc Magn Reson, 20, 81.PubMedPubMedCentralCrossRef Gabr, R. E., El-Sharkawy, A. M., Schar, M., Panjrath, G. S., Gerstenblith, G., Weiss, R. G., & Bottomley, P. A. (2018). Cardiac work is related to creatine kinase energy supply in human heart failure: a cardiovascular magnetic resonance spectroscopy study. J Cardiovasc Magn Reson, 20, 81.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Maslov, M. Y., Chacko, V. P., Stuber, M., Moens, A. L., Kass, D. A., Champion, H. C., & Weiss, R. G. (2007). Altered high-energy phosphate metabolism predicts contractile dysfunction and subsequent ventricular remodeling in pressure-overload hypertrophy mice. Am J Physiol Heart Circ Physiol, 292, H387–H391.PubMedCrossRef Maslov, M. Y., Chacko, V. P., Stuber, M., Moens, A. L., Kass, D. A., Champion, H. C., & Weiss, R. G. (2007). Altered high-energy phosphate metabolism predicts contractile dysfunction and subsequent ventricular remodeling in pressure-overload hypertrophy mice. Am J Physiol Heart Circ Physiol, 292, H387–H391.PubMedCrossRef
39.
Zurück zum Zitat Maslov, M. Y., Chacko, V. P., Hirsch, G. A., Akki, A., Leppo, M. K., Steenbergen, C., & Weiss, R. G. (2010). Reduced in vivo high-energy phosphates precede adriamycin-induced cardiac dysfunction. Am J Physiol Heart Circ Physiol, 299, H332–H337.PubMedPubMedCentralCrossRef Maslov, M. Y., Chacko, V. P., Hirsch, G. A., Akki, A., Leppo, M. K., Steenbergen, C., & Weiss, R. G. (2010). Reduced in vivo high-energy phosphates precede adriamycin-induced cardiac dysfunction. Am J Physiol Heart Circ Physiol, 299, H332–H337.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Gupta, A., Rohlfsen, C., Leppo, M. K., Chacko, V. P., Wang, Y., Steenbergen, C., & Weiss, R. G. (2013). Creatine kinase-overexpression improves myocardial energetics, contractile dysfunction and survival in murine doxorubicin cardiotoxicity. PLoS One, 8, e74675.PubMedPubMedCentralCrossRef Gupta, A., Rohlfsen, C., Leppo, M. K., Chacko, V. P., Wang, Y., Steenbergen, C., & Weiss, R. G. (2013). Creatine kinase-overexpression improves myocardial energetics, contractile dysfunction and survival in murine doxorubicin cardiotoxicity. PLoS One, 8, e74675.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Landau, B. R., Spring-Robinson, C. L., Muzic Jr., R. F., Rachdaoui, N., Rubin, D., Berridge, M. S., Schumann, W. C., Chandramouli, V., Kern, T. S., & Ismail-Beigi, F. (2007). 6-Fluoro-6-deoxy-D-glucose as a tracer of glucose transport. Am J Physiol Endocrinol Metab, 293, E237–E245.PubMedCrossRef Landau, B. R., Spring-Robinson, C. L., Muzic Jr., R. F., Rachdaoui, N., Rubin, D., Berridge, M. S., Schumann, W. C., Chandramouli, V., Kern, T. S., & Ismail-Beigi, F. (2007). 6-Fluoro-6-deoxy-D-glucose as a tracer of glucose transport. Am J Physiol Endocrinol Metab, 293, E237–E245.PubMedCrossRef
42.
Zurück zum Zitat Manabe, O., Kikuchi, T., Scholte, A., El Mahdiui, M., Nishii, R., Zhang, M. R., Suzuki, E., & Yoshinaga, K. (2018). Radiopharmaceutical tracers for cardiac imaging. J Nucl Cardiol, 25, 1204–1236.PubMedCrossRef Manabe, O., Kikuchi, T., Scholte, A., El Mahdiui, M., Nishii, R., Zhang, M. R., Suzuki, E., & Yoshinaga, K. (2018). Radiopharmaceutical tracers for cardiac imaging. J Nucl Cardiol, 25, 1204–1236.PubMedCrossRef
43.
Zurück zum Zitat Bauckneht, M., Pastorino, F., Castellani, P., Cossu, V., Orengo, A. M., Piccioli, P., Emionite, L., Capitanio, S., Yosifov, N., Bruno, S., Lazzarini, E., Ponzoni, M., Ameri, P., Rubartelli, A., Ravera, S., Morbelli, S., Sambuceti, G., & Marini, C. (2019). Increased myocardial (18)F-FDG uptake as a marker of doxorubicin-induced oxidative stress. J Nucl Cardiol. Bauckneht, M., Pastorino, F., Castellani, P., Cossu, V., Orengo, A. M., Piccioli, P., Emionite, L., Capitanio, S., Yosifov, N., Bruno, S., Lazzarini, E., Ponzoni, M., Ameri, P., Rubartelli, A., Ravera, S., Morbelli, S., Sambuceti, G., & Marini, C. (2019). Increased myocardial (18)F-FDG uptake as a marker of doxorubicin-induced oxidative stress. J Nucl Cardiol.
44.
Zurück zum Zitat Sarocchi, M., Bauckneht, M., Arboscello, E., Capitanio, S., Marini, C., Morbelli, S., Miglino, M., Congiu, A. G., Ghigliotti, G., Balbi, M., Brunelli, C., Sambuceti, G., Ameri, P., & Spallarossa, P. (2018). An increase in myocardial 18-fluorodeoxyglucose uptake is associated with left ventricular ejection fraction decline in Hodgkin lymphoma patients treated with anthracycline. J Transl Med, 16, 295.PubMedPubMedCentralCrossRef Sarocchi, M., Bauckneht, M., Arboscello, E., Capitanio, S., Marini, C., Morbelli, S., Miglino, M., Congiu, A. G., Ghigliotti, G., Balbi, M., Brunelli, C., Sambuceti, G., Ameri, P., & Spallarossa, P. (2018). An increase in myocardial 18-fluorodeoxyglucose uptake is associated with left ventricular ejection fraction decline in Hodgkin lymphoma patients treated with anthracycline. J Transl Med, 16, 295.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Kim J, Cho SG, Kang SR, Yoo SW, Kwon SY, Min JJ, Bom HS and Song HC. Association between FDG uptake in the right ventricular myocardium and cancer therapy-induced cardiotoxicity. J Nucl Cardiol. 2019. Kim J, Cho SG, Kang SR, Yoo SW, Kwon SY, Min JJ, Bom HS and Song HC. Association between FDG uptake in the right ventricular myocardium and cancer therapy-induced cardiotoxicity. J Nucl Cardiol. 2019.
46.
Zurück zum Zitat O’Farrell, A. C., Evans, R., Silvola, J. M., Miller, I. S., Conroy, E., Hector, S., Cary, M., Murray, D. W., Jarzabek, M. A., Maratha, A., Alamanou, M., Udupi, G. M., Shiels, L., Pallaud, C., Saraste, A., Liljenback, H., Jauhiainen, M., Oikonen, V., Ducret, A., Cutler, P., McAuliffe, F. M., Rousseau, J. A., Lecomte, R., Gascon, S., Arany, Z., Ky, B., Force, T., Knuuti, J., Gallagher, W. M., Roivainen, A., & Byrne, A. T. (2017). A novel positron emission tomography (PET) approach to monitor cardiac metabolic pathway remodeling in response to sunitinib malate. PLoS One, 12, e0169964.PubMedPubMedCentralCrossRef O’Farrell, A. C., Evans, R., Silvola, J. M., Miller, I. S., Conroy, E., Hector, S., Cary, M., Murray, D. W., Jarzabek, M. A., Maratha, A., Alamanou, M., Udupi, G. M., Shiels, L., Pallaud, C., Saraste, A., Liljenback, H., Jauhiainen, M., Oikonen, V., Ducret, A., Cutler, P., McAuliffe, F. M., Rousseau, J. A., Lecomte, R., Gascon, S., Arany, Z., Ky, B., Force, T., Knuuti, J., Gallagher, W. M., Roivainen, A., & Byrne, A. T. (2017). A novel positron emission tomography (PET) approach to monitor cardiac metabolic pathway remodeling in response to sunitinib malate. PLoS One, 12, e0169964.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Taki, J., & Matsunari, I. (2007). Metabolic imaging using SPECT. Eur J Nucl Med Mol Imaging, 34(Suppl 1), S34–S48.PubMedCrossRef Taki, J., & Matsunari, I. (2007). Metabolic imaging using SPECT. Eur J Nucl Med Mol Imaging, 34(Suppl 1), S34–S48.PubMedCrossRef
48.
Zurück zum Zitat DeGrado, T. R., Coenen, H. H., & Stocklin, G. (1991). 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid (FTHA): evaluation in mouse of a new probe of myocardial utilization of long chain fatty acids. J Nucl Med, 32, 1888–1896.PubMed DeGrado, T. R., Coenen, H. H., & Stocklin, G. (1991). 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid (FTHA): evaluation in mouse of a new probe of myocardial utilization of long chain fatty acids. J Nucl Med, 32, 1888–1896.PubMed
49.
Zurück zum Zitat Tadamura, E., Kudoh, T., Hattori, N., Inubushi, M., Magata, Y., Konishi, J., Matsumori, A., Nohara, R., Sasayama, S., Yoshibayashi, M., & Tamaki, N. (1998). Impairment of BMIPP uptake precedes abnormalities in oxygen and glucose metabolism in hypertrophic cardiomyopathy. J Nucl Med, 39, 390–396.PubMed Tadamura, E., Kudoh, T., Hattori, N., Inubushi, M., Magata, Y., Konishi, J., Matsumori, A., Nohara, R., Sasayama, S., Yoshibayashi, M., & Tamaki, N. (1998). Impairment of BMIPP uptake precedes abnormalities in oxygen and glucose metabolism in hypertrophic cardiomyopathy. J Nucl Med, 39, 390–396.PubMed
50.
Zurück zum Zitat Nishimura, T. (1999). beta-Methyl-p-(123I)-iodophenyl pentadecanoic acid single-photon emission computed tomography in cardiomyopathy. Int J Card Imaging, 15, 41–48.PubMedCrossRef Nishimura, T. (1999). beta-Methyl-p-(123I)-iodophenyl pentadecanoic acid single-photon emission computed tomography in cardiomyopathy. Int J Card Imaging, 15, 41–48.PubMedCrossRef
51.
Zurück zum Zitat Saito, K., Takeda, K., Okamoto, S., Okamoto, R., Makino, K., Tameda, Y., Nomura, Y., Maeda, H., Ichihara, T., & Nakano, T. (2000). Detection of doxorubicin cardiotoxicity by using iodine-123 BMIPP early dynamic SPECT: quantitative evaluation of early abnormality of fatty acid metabolism with the Rutland method. J Nucl Cardiol, 7, 553–561.PubMedCrossRef Saito, K., Takeda, K., Okamoto, S., Okamoto, R., Makino, K., Tameda, Y., Nomura, Y., Maeda, H., Ichihara, T., & Nakano, T. (2000). Detection of doxorubicin cardiotoxicity by using iodine-123 BMIPP early dynamic SPECT: quantitative evaluation of early abnormality of fatty acid metabolism with the Rutland method. J Nucl Cardiol, 7, 553–561.PubMedCrossRef
52.
Zurück zum Zitat Naya, M., & Tamaki, N. (2014). Imaging of myocardial oxidative metabolism in heart failure. Curr Cardiovasc Imaging Rep, 7, 9244.PubMedCrossRef Naya, M., & Tamaki, N. (2014). Imaging of myocardial oxidative metabolism in heart failure. Curr Cardiovasc Imaging Rep, 7, 9244.PubMedCrossRef
53.
Zurück zum Zitat Croteau, E., Gascon, S., Bentourkia, M., Langlois, R., Rousseau, J. A., Lecomte, R., & Benard, F. (2012). [11C]Acetate rest-stress protocol to assess myocardial perfusion and oxygen consumption reserve in a model of congestive heart failure in rats. Nucl Med Biol, 39, 287–294.PubMedCrossRef Croteau, E., Gascon, S., Bentourkia, M., Langlois, R., Rousseau, J. A., Lecomte, R., & Benard, F. (2012). [11C]Acetate rest-stress protocol to assess myocardial perfusion and oxygen consumption reserve in a model of congestive heart failure in rats. Nucl Med Biol, 39, 287–294.PubMedCrossRef
54.
Zurück zum Zitat Brown, M. A., Myears, D. W., & Bergmann, S. R. (1988). Noninvasive assessment of canine myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography. J Am Coll Cardiol, 12, 1054–1063.PubMedCrossRef Brown, M. A., Myears, D. W., & Bergmann, S. R. (1988). Noninvasive assessment of canine myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography. J Am Coll Cardiol, 12, 1054–1063.PubMedCrossRef
55.
Zurück zum Zitat Klein, L. J., Visser, F. C., Knaapen, P., Peters, J. H., Teule, G. J., Visser, C. A., & Lammertsma, A. A. (2001). Carbon-11 acetate as a tracer of myocardial oxygen consumption. Eur J Nucl Med, 28, 651–668.PubMedCrossRef Klein, L. J., Visser, F. C., Knaapen, P., Peters, J. H., Teule, G. J., Visser, C. A., & Lammertsma, A. A. (2001). Carbon-11 acetate as a tracer of myocardial oxygen consumption. Eur J Nucl Med, 28, 651–668.PubMedCrossRef
56.
Zurück zum Zitat Nony, P., Guastalla, J. P., Rebattu, P., Landais, P., Lievre, M., Bontemps, L., Itti, R., Beaune, J., Andre-Fouet, X., & Janier, M. (2000). In vivo measurement of myocardial oxidative metabolism and blood flow does not show changes in cancer patients undergoing doxorubicin therapy. Cancer Chemother Pharmacol, 45, 375–380.PubMedCrossRef Nony, P., Guastalla, J. P., Rebattu, P., Landais, P., Lievre, M., Bontemps, L., Itti, R., Beaune, J., Andre-Fouet, X., & Janier, M. (2000). In vivo measurement of myocardial oxidative metabolism and blood flow does not show changes in cancer patients undergoing doxorubicin therapy. Cancer Chemother Pharmacol, 45, 375–380.PubMedCrossRef
57.
Zurück zum Zitat Apps, A., Lau, J., Peterzan, M., Neubauer, S., Tyler, D., & Rider, O. (2018). Hyperpolarised magnetic resonance for in vivo real-time metabolic imaging. Heart., 104, 1484–1491.PubMedCrossRef Apps, A., Lau, J., Peterzan, M., Neubauer, S., Tyler, D., & Rider, O. (2018). Hyperpolarised magnetic resonance for in vivo real-time metabolic imaging. Heart., 104, 1484–1491.PubMedCrossRef
58.
Zurück zum Zitat Lauritzen, M. H., Sogaard, L. V., Madsen, P. L., & Ardenkjaer-Larsen, J. H. (2014). Hyperpolarized metabolic MR in the study of cardiac function and disease. Curr Pharm Des, 20, 6162–6170.PubMedCrossRef Lauritzen, M. H., Sogaard, L. V., Madsen, P. L., & Ardenkjaer-Larsen, J. H. (2014). Hyperpolarized metabolic MR in the study of cardiac function and disease. Curr Pharm Des, 20, 6162–6170.PubMedCrossRef
59.
Zurück zum Zitat Kurhanewicz, J., Vigneron, D. B., Ardenkjaer-Larsen, J. H., Bankson, J. A., Brindle, K., Cunningham, C. H., Gallagher, F. A., Keshari, K. R., Kjaer, A., Laustsen, C., Mankoff, D. A., Merritt, M. E., Nelson, S. J., Pauly, J. M., Lee, P., Ronen, S., Tyler, D. J., Rajan, S. S., Spielman, D. M., Wald, L., Zhang, X., Malloy, C. R., & Rizi, R. (2019). Hyperpolarized (13)C MRI: Path to clinical translation in oncology. Neoplasia., 21, 1–16.PubMedCrossRef Kurhanewicz, J., Vigneron, D. B., Ardenkjaer-Larsen, J. H., Bankson, J. A., Brindle, K., Cunningham, C. H., Gallagher, F. A., Keshari, K. R., Kjaer, A., Laustsen, C., Mankoff, D. A., Merritt, M. E., Nelson, S. J., Pauly, J. M., Lee, P., Ronen, S., Tyler, D. J., Rajan, S. S., Spielman, D. M., Wald, L., Zhang, X., Malloy, C. R., & Rizi, R. (2019). Hyperpolarized (13)C MRI: Path to clinical translation in oncology. Neoplasia., 21, 1–16.PubMedCrossRef
60.
Zurück zum Zitat Rider, O. J., & Tyler, D. J. (2013). Clinical implications of cardiac hyperpolarized magnetic resonance imaging. J Cardiovasc Magn Reson, 15, 93.PubMedPubMedCentralCrossRef Rider, O. J., & Tyler, D. J. (2013). Clinical implications of cardiac hyperpolarized magnetic resonance imaging. J Cardiovasc Magn Reson, 15, 93.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Malloy, C. R., Merritt, M. E., & Sherry, A. D. (2011). Could 13C MRI assist clinical decision-making for patients with heart disease? NMR Biomed, 24, 973–979.PubMedPubMedCentralCrossRef Malloy, C. R., Merritt, M. E., & Sherry, A. D. (2011). Could 13C MRI assist clinical decision-making for patients with heart disease? NMR Biomed, 24, 973–979.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Schroeder, M. A., Lau, A. Z., Chen, A. P., Gu, Y., Nagendran, J., Barry, J., Hu, X., Dyck, J. R., Tyler, D. J., Clarke, K., Connelly, K. A., Wright, G. A., & Cunningham, C. H. (2013). Hyperpolarized (13)C magnetic resonance reveals early- and late-onset changes to in vivo pyruvate metabolism in the failing heart. Eur J Heart Fail, 15, 130–140.PubMedCrossRef Schroeder, M. A., Lau, A. Z., Chen, A. P., Gu, Y., Nagendran, J., Barry, J., Hu, X., Dyck, J. R., Tyler, D. J., Clarke, K., Connelly, K. A., Wright, G. A., & Cunningham, C. H. (2013). Hyperpolarized (13)C magnetic resonance reveals early- and late-onset changes to in vivo pyruvate metabolism in the failing heart. Eur J Heart Fail, 15, 130–140.PubMedCrossRef
63.
Zurück zum Zitat Cunningham, C. H., Lau, J. Y., Chen, A. P., Geraghty, B. J., Perks, W. J., Roifman, I., Wright, G. A., & Connelly, K. A. (2016). Hyperpolarized 13C metabolic MRI of the human heart: initial experience. Circ Res, 119, 1177–1182.PubMedPubMedCentralCrossRef Cunningham, C. H., Lau, J. Y., Chen, A. P., Geraghty, B. J., Perks, W. J., Roifman, I., Wright, G. A., & Connelly, K. A. (2016). Hyperpolarized 13C metabolic MRI of the human heart: initial experience. Circ Res, 119, 1177–1182.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Ball, D. R., Rowlands, B., Dodd, M. S., Le Page, L., Ball, V., Carr, C. A., Clarke, K., & Tyler, D. J. (2014). Hyperpolarized butyrate: a metabolic probe of short chain fatty acid metabolism in the heart. Magn Reson Med, 71, 1663–1669.PubMedCrossRef Ball, D. R., Rowlands, B., Dodd, M. S., Le Page, L., Ball, V., Carr, C. A., Clarke, K., & Tyler, D. J. (2014). Hyperpolarized butyrate: a metabolic probe of short chain fatty acid metabolism in the heart. Magn Reson Med, 71, 1663–1669.PubMedCrossRef
65.
66.
Zurück zum Zitat Flori, A., Liserani, M., Frijia, F., Giovannetti, G., Lionetti, V., Casieri, V., Positano, V., Aquaro, G. D., Recchia, F. A., Santarelli, M. F., Landini, L., Ardenkjaer-Larsen, J. H., & Menichetti, L. (2015). Real-time cardiac metabolism assessed with hyperpolarized [1-(13) C]acetate in a large-animal model. Contrast Media Mol Imaging, 10, 194–202.PubMedCrossRef Flori, A., Liserani, M., Frijia, F., Giovannetti, G., Lionetti, V., Casieri, V., Positano, V., Aquaro, G. D., Recchia, F. A., Santarelli, M. F., Landini, L., Ardenkjaer-Larsen, J. H., & Menichetti, L. (2015). Real-time cardiac metabolism assessed with hyperpolarized [1-(13) C]acetate in a large-animal model. Contrast Media Mol Imaging, 10, 194–202.PubMedCrossRef
67.
Zurück zum Zitat Bastiaansen, J. A., Merritt, M. E., & Comment, A. (2016). Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1-(13)C]butyrate and [1-(13)C]pyruvate. Sci Rep, 6, 25573.PubMedPubMedCentralCrossRef Bastiaansen, J. A., Merritt, M. E., & Comment, A. (2016). Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1-(13)C]butyrate and [1-(13)C]pyruvate. Sci Rep, 6, 25573.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Boutagy, N. E., Wu, J., Cai, Z., Zhang, W., Booth, C. J., Kyriakides, T. C., Pfau, D., Mulnix, T., Liu, Z., Miller, E. J., Young, L. H., Carson, R. E., Huang, Y., Liu, C., & Sinusas, A. J. (2018). In vivo reactive oxygen species detection with a novel positron emission tomography tracer, (18)F-DHMT, allows for early detection of anthracycline-induced cardiotoxicity in rodents. JACC Basic Transl Sci, 3, 378–390.PubMedPubMedCentralCrossRef Boutagy, N. E., Wu, J., Cai, Z., Zhang, W., Booth, C. J., Kyriakides, T. C., Pfau, D., Mulnix, T., Liu, Z., Miller, E. J., Young, L. H., Carson, R. E., Huang, Y., Liu, C., & Sinusas, A. J. (2018). In vivo reactive oxygen species detection with a novel positron emission tomography tracer, (18)F-DHMT, allows for early detection of anthracycline-induced cardiotoxicity in rodents. JACC Basic Transl Sci, 3, 378–390.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Keshari, K. R., Kurhanewicz, J., Bok, R., Larson, P. E., Vigneron, D. B., & Wilson, D. M. (2011). Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging. Proc Natl Acad Sci U S A, 108, 18606–18611.PubMedPubMedCentralCrossRef Keshari, K. R., Kurhanewicz, J., Bok, R., Larson, P. E., Vigneron, D. B., & Wilson, D. M. (2011). Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging. Proc Natl Acad Sci U S A, 108, 18606–18611.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Lippert, A. R., Keshari, K. R., Kurhanewicz, J., & Chang, C. J. (2011). A hydrogen peroxide-responsive hyperpolarized 13C MRI contrast agent. J Am Chem Soc, 133, 3776–3779.PubMedPubMedCentralCrossRef Lippert, A. R., Keshari, K. R., Kurhanewicz, J., & Chang, C. J. (2011). A hydrogen peroxide-responsive hyperpolarized 13C MRI contrast agent. J Am Chem Soc, 133, 3776–3779.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Qin, H., Carroll, V. N., Sriram, R., Villanueva-Meyer, J. E., von Morze, C., Wang, Z. J., Mutch, C. A., Keshari, K. R., Flavell, R. R., Kurhanewicz, J., & Wilson, D. M. (2018). Imaging glutathione depletion in the rat brain using ascorbate-derived hyperpolarized MR and PET probes. Sci Rep, 8, 7928.PubMedPubMedCentralCrossRef Qin, H., Carroll, V. N., Sriram, R., Villanueva-Meyer, J. E., von Morze, C., Wang, Z. J., Mutch, C. A., Keshari, K. R., Flavell, R. R., Kurhanewicz, J., & Wilson, D. M. (2018). Imaging glutathione depletion in the rat brain using ascorbate-derived hyperpolarized MR and PET probes. Sci Rep, 8, 7928.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Moe, G. W., & Marin-Garcia, J. (2016). Role of cell death in the progression of heart failure. Heart Fail Rev, 21, 157–167.PubMedCrossRef Moe, G. W., & Marin-Garcia, J. (2016). Role of cell death in the progression of heart failure. Heart Fail Rev, 21, 157–167.PubMedCrossRef
73.
Zurück zum Zitat Zeng, W., Wang, X., Xu, P., Liu, G., Eden, H. S., & Chen, X. (2015). Molecular imaging of apoptosis: from micro to macro. Theranostics, 5, 559–582.PubMedPubMedCentralCrossRef Zeng, W., Wang, X., Xu, P., Liu, G., Eden, H. S., & Chen, X. (2015). Molecular imaging of apoptosis: from micro to macro. Theranostics, 5, 559–582.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Wang, X., Feng, H., Zhao, S., Xu, J., Wu, X., Cui, J., Zhang, Y., Qin, Y., Liu, Z., Gao, T., Gao, Y., & Zeng, W. (2017). SPECT and PET radiopharmaceuticals for molecular imaging of apoptosis: from bench to clinic. Oncotarget., 8, 20476–20495.PubMedPubMedCentralCrossRef Wang, X., Feng, H., Zhao, S., Xu, J., Wu, X., Cui, J., Zhang, Y., Qin, Y., Liu, Z., Gao, T., Gao, Y., & Zeng, W. (2017). SPECT and PET radiopharmaceuticals for molecular imaging of apoptosis: from bench to clinic. Oncotarget., 8, 20476–20495.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Zhao, Y., Watanabe, A., Zhao, S., Kobayashi, T., Fukao, K., Tanaka, Y., Nakano, T., Yoshida, T., Takemoto, H., Tamaki, N., & Kuge, Y. (2014). Suppressive effects of irbesartan on inflammation and apoptosis in atherosclerotic plaques of apoE-/- mice: molecular imaging with 14C-FDG and 99mTc-annexin A5. PLoS One, 9, e89338.PubMedPubMedCentralCrossRef Zhao, Y., Watanabe, A., Zhao, S., Kobayashi, T., Fukao, K., Tanaka, Y., Nakano, T., Yoshida, T., Takemoto, H., Tamaki, N., & Kuge, Y. (2014). Suppressive effects of irbesartan on inflammation and apoptosis in atherosclerotic plaques of apoE-/- mice: molecular imaging with 14C-FDG and 99mTc-annexin A5. PLoS One, 9, e89338.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Benali, K., Louedec, L., Azzouna, R. B., Merceron, O., Nassar, P., Al Shoukr, F., Petiet, A., Barbato, D., Michel, J. B., Sarda-Mantel, L., Le Guludec, D., & Rouzet, F. (2014). Preclinical validation of 99mTc-annexin A5-128 in experimental autoimmune myocarditis and infective endocarditis: comparison with 99mTc-HYNIC-annexin A5. Mol Imaging, 13. Benali, K., Louedec, L., Azzouna, R. B., Merceron, O., Nassar, P., Al Shoukr, F., Petiet, A., Barbato, D., Michel, J. B., Sarda-Mantel, L., Le Guludec, D., & Rouzet, F. (2014). Preclinical validation of 99mTc-annexin A5-128 in experimental autoimmune myocarditis and infective endocarditis: comparison with 99mTc-HYNIC-annexin A5. Mol Imaging, 13.
77.
Zurück zum Zitat Wakabayashi, H., Taki, J., Inaki, A., Shiba, K., Matsunari, I., & Kinuya, S. (2015). Correlation between apoptosis and left ventricular remodeling in subacute phase of myocardial ischemia and reperfusion. EJNMMI Res, 5, 72.PubMedPubMedCentralCrossRef Wakabayashi, H., Taki, J., Inaki, A., Shiba, K., Matsunari, I., & Kinuya, S. (2015). Correlation between apoptosis and left ventricular remodeling in subacute phase of myocardial ischemia and reperfusion. EJNMMI Res, 5, 72.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Gabrielson, K. L., Mok, G. S., Nimmagadda, S., Bedja, D., Pin, S., Tsao, A., Wang, Y., Sooryakumar, D., Yu, S. J., Pomper, M. G., & Tsui, B. M. (2008). Detection of dose response in chronic doxorubicin-mediated cell death with cardiac technetium 99 m annexin V single-photon emission computed tomography. Mol Imaging, 7, 132–138.PubMedCrossRef Gabrielson, K. L., Mok, G. S., Nimmagadda, S., Bedja, D., Pin, S., Tsao, A., Wang, Y., Sooryakumar, D., Yu, S. J., Pomper, M. G., & Tsui, B. M. (2008). Detection of dose response in chronic doxorubicin-mediated cell death with cardiac technetium 99 m annexin V single-photon emission computed tomography. Mol Imaging, 7, 132–138.PubMedCrossRef
79.
Zurück zum Zitat Belhocine, T. Z., Blankenberg, F. G., Kartachova, M. S., Stitt, L. W., Vanderheyden, J. L., Hoebers, F. J., & Van de Wiele, C. (2015). (99 m)Tc-Annexin A5 quantification of apoptotic tumor response: a systematic review and meta-analysis of clinical imaging trials. Eur J Nucl Med Mol Imaging, 42, 2083–2097.PubMedCrossRef Belhocine, T. Z., Blankenberg, F. G., Kartachova, M. S., Stitt, L. W., Vanderheyden, J. L., Hoebers, F. J., & Van de Wiele, C. (2015). (99 m)Tc-Annexin A5 quantification of apoptotic tumor response: a systematic review and meta-analysis of clinical imaging trials. Eur J Nucl Med Mol Imaging, 42, 2083–2097.PubMedCrossRef
80.
Zurück zum Zitat Su, H., Chen, G., Gangadharmath, U., Gomez, L. F., Liang, Q., Mu, F., Mocharla, V. P., Szardenings, A. K., Walsh, J. C., Xia, C. F., Yu, C., & Kolb, H. C. (2013). Evaluation of [(18)F]-CP18 as a PET imaging tracer for apoptosis. Mol Imaging Biol, 15, 739–747.PubMedCrossRef Su, H., Chen, G., Gangadharmath, U., Gomez, L. F., Liang, Q., Mu, F., Mocharla, V. P., Szardenings, A. K., Walsh, J. C., Xia, C. F., Yu, C., & Kolb, H. C. (2013). Evaluation of [(18)F]-CP18 as a PET imaging tracer for apoptosis. Mol Imaging Biol, 15, 739–747.PubMedCrossRef
81.
Zurück zum Zitat Su, H., Gorodny, N., Gomez, L. F., Gangadharmath, U., Mu, F., Chen, G., Walsh, J. C., Szardenings, K., Kolb, H. C., & Tamarappoo, B. (2015). Noninvasive molecular imaging of apoptosis in a mouse model of anthracycline-induced cardiotoxicity. Circ Cardiovasc Imaging, 8, e001952.PubMedPubMedCentralCrossRef Su, H., Gorodny, N., Gomez, L. F., Gangadharmath, U., Mu, F., Chen, G., Walsh, J. C., Szardenings, K., Kolb, H. C., & Tamarappoo, B. (2015). Noninvasive molecular imaging of apoptosis in a mouse model of anthracycline-induced cardiotoxicity. Circ Cardiovasc Imaging, 8, e001952.PubMedPubMedCentralCrossRef
Metadaten
Titel
Metabolic Imaging in Cardio-oncology
verfasst von
Dan Tong
Vlad G. Zaha
Publikationsdatum
06.11.2019
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 3/2020
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-019-09927-9

Kompaktes Leitlinien-Wissen Innere Medizin (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Kardiologie

Lp(a) zur Risikoeinschätzung bei Thoraxschmerzen

Der Lp(a)-Wert kann dazu beitragen, bei stabilen Patienten mit neu aufgetretenen Thoraxschmerzen und ohne KHK-Diagnose die Wahrscheinlichkeit für das Vorliegen von Koronarstenosen abzuschätzen.

Finerenon bei eGFR-Verlust nicht gleich absetzen!

Der Mineralokortikoid-Rezeptor-Antagonist Finerenon verbessert die Prognose bei Herzinsuffizienz mit leicht reduzierter oder erhaltener Ejektionsfraktion. Ein Rückgang der eGFR zu Beginn der Therapie scheint diese Wirkung nicht wesentlich zu mindern.

LVAD auch bei kalt-trockener terminaler Herzinsuffizienz wirksam

Auch Personen mit kalt-trockener terminaler Herzinsuffizienz profitieren von einem linksventrikulären Unterstützungssystem (LVAD), wie Daten aus einem US-Register nahelegen. Doch es gibt Besonderheiten.     

Koronare Herzkrankheit: Das waren die Top-Studien 2024

Zum Thema Koronare Herzkrankheit gab es 2024 wichtige neue Studien. Beleuchtet wurden darin unter anderem der Stellenwert von Betablockern nach Herzinfarkt, neue Optionen für eine Lipidsenkung sowie die Therapie bei infarktbedingtem kardiogenem Schock.

EKG Essentials: EKG befunden mit System (Link öffnet in neuem Fenster)

In diesem CME-Kurs können Sie Ihr Wissen zur EKG-Befundung anhand von zwölf Video-Tutorials auffrischen und 10 CME-Punkte sammeln.
Praxisnah, relevant und mit vielen Tipps & Tricks vom Profi.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.