Skip to main content
Erschienen in: Lung 4/2017

02.06.2017

Metabolic Impact of Rapamycin (Sirolimus) and B-Estradiol Using Mouse Embryonic Fibroblasts as a Model for Lymphangioleiomyomatosis

verfasst von: Katherine M. Marsh, David Schipper, Alice S. Ferng, Kitsie Johnson, Julia Fisher, Shannon Knapp, Destiny Dicken, Zain Khalpey

Erschienen in: Lung | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Introduction

Lymphangioleiomyomatosis (LAM) is a rare, progressive cystic lung disease that predominantly affects women of childbearing age. Exogenous rapamycin (sirolimus) has been shown to improve clinical outcomes and was recently approved to treat LAM, whereas estrogen (E2) is implicated in disease progression. No consistent metabolic model currently exists for LAM, therefore wild-type mouse embryonic fibroblasts (MEF +/+) and TSC2 knockout cells (MEF −/−) were used in this study as a model for LAM.

Methods

Oxygen consumption rates (OCR) and redox potential were measured to determine metabolic state across control cells, MEF +/+ and −/− cells treated with rapamycin (Rapa), and MEF +/+ and −/− cells treated with E2. An XF96 extracellular flux analyzer from Seahorse Bioscience® was used to measure OCR, and a RedoxSYS™ ORP was used to measure redox potential.

Results

OCR of MEF −/− cells treated with rapamycin (MEF −/− Rapa) versus MEF −/− control were significantly lower across all conditions. The static oxidation reduction potential of the MEF −/− Rapa group was also lower, approaching significance. The coupling efficiency and ratio of ATP-linked respiration to maximum respiration were statistically lower in MEF −/− Rapa compared to MEF +/+ Rapa. There were no significant metabolic findings across any of the MEF cells treated with E2. MEF −/− control cells versus MEF +/+ control cells were not found to significantly differ.

Conclusion

MEF cells are thought to be a feasible metabolic model for LAM, which has implications for future pharmacologic and biologic testing.
Literatur
1.
Zurück zum Zitat Gupta N, Vassallo R, Wikenheiser-Brokamp KA, McCormack FX (2015) Diffuse cystic lung disease. Part I. Am J Respir Crit Care Med 191(12):1354–1366CrossRefPubMedPubMedCentral Gupta N, Vassallo R, Wikenheiser-Brokamp KA, McCormack FX (2015) Diffuse cystic lung disease. Part I. Am J Respir Crit Care Med 191(12):1354–1366CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat von Ranke FM, Zanetti G, e Silva JL, Neto CAA, Godoy MC, Souza CA et al (2015) Tuberous sclerosis complex: state-of-the-art review with a focus on pulmonary involvement. Lung 193(5):619–627CrossRef von Ranke FM, Zanetti G, e Silva JL, Neto CAA, Godoy MC, Souza CA et al (2015) Tuberous sclerosis complex: state-of-the-art review with a focus on pulmonary involvement. Lung 193(5):619–627CrossRef
4.
Zurück zum Zitat Grzegorek I, Drozdz K, Podhorska-Okolow M, Szuba A, Dziegiel P (2013) LAM cells biology and lymphangioleiomyomatosis. Folia Histochem Cytobiol 51(1):1–10CrossRefPubMed Grzegorek I, Drozdz K, Podhorska-Okolow M, Szuba A, Dziegiel P (2013) LAM cells biology and lymphangioleiomyomatosis. Folia Histochem Cytobiol 51(1):1–10CrossRefPubMed
6.
Zurück zum Zitat Uhlenbrock K, Weiwad M, Wetzker R, Fischer G, Wittinghofer A, Rubio I (2009) Reassessment of the role of FKBP38 in the Rheb/mTORC1 pathway. FEBS Lett 583(6):965–970CrossRefPubMed Uhlenbrock K, Weiwad M, Wetzker R, Fischer G, Wittinghofer A, Rubio I (2009) Reassessment of the role of FKBP38 in the Rheb/mTORC1 pathway. FEBS Lett 583(6):965–970CrossRefPubMed
8.
Zurück zum Zitat Schieke SM, Phillips D, McCoy JP Jr, Aponte AM, Shen RF, Balaban RS et al (2006) The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 281(37):27643–27652CrossRefPubMed Schieke SM, Phillips D, McCoy JP Jr, Aponte AM, Shen RF, Balaban RS et al (2006) The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 281(37):27643–27652CrossRefPubMed
9.
Zurück zum Zitat Corradetti MN, Inoki K, Bardeesy N, DePinho RA, Guan KL (2004) Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev 18(13):1533–1538CrossRefPubMedPubMedCentral Corradetti MN, Inoki K, Bardeesy N, DePinho RA, Guan KL (2004) Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev 18(13):1533–1538CrossRefPubMedPubMedCentral
10.
11.
Zurück zum Zitat Sun Q, Chen X, Ma J, Peng H, Wang F, Zha X et al (2011) Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci USA 108(10):4129–4134CrossRefPubMedPubMedCentral Sun Q, Chen X, Ma J, Peng H, Wang F, Zha X et al (2011) Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci USA 108(10):4129–4134CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat McCormack FX, Inoue Y, Moss J, Singer LG, Strange C, Nakata K et al (2011) Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med 364(17):1595–1606CrossRefPubMedPubMedCentral McCormack FX, Inoue Y, Moss J, Singer LG, Strange C, Nakata K et al (2011) Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med 364(17):1595–1606CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Radzikowska E (2015) Lymphangioleiomyomatosis: new treatment perspectives. Lung 193(4):467–475CrossRefPubMed Radzikowska E (2015) Lymphangioleiomyomatosis: new treatment perspectives. Lung 193(4):467–475CrossRefPubMed
14.
Zurück zum Zitat Valentin-Mendoza S, Nieves-Nieves J, Fernandez-Medero R, Fernandez-Gonzales R, Adorno-Fontanez J, Adorno-Fontanez E (2013) Pulmonary lymphangioleiomyomatosis: literature update. Bol Asoc Med P R. 105(3):64–69 Valentin-Mendoza S, Nieves-Nieves J, Fernandez-Medero R, Fernandez-Gonzales R, Adorno-Fontanez J, Adorno-Fontanez E (2013) Pulmonary lymphangioleiomyomatosis: literature update. Bol Asoc Med P R. 105(3):64–69
15.
Zurück zum Zitat Yu JJ, Robb VA, Morrison TA, Ariazi EA, Karbowniczek M, Astrinidis A et al (2009) Estrogen promotes the survival and pulmonary metastasis of tuberin-null cells. Proc Natl Acad Sci USA 106(8):2635–2640CrossRefPubMedPubMedCentral Yu JJ, Robb VA, Morrison TA, Ariazi EA, Karbowniczek M, Astrinidis A et al (2009) Estrogen promotes the survival and pulmonary metastasis of tuberin-null cells. Proc Natl Acad Sci USA 106(8):2635–2640CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Li C, Lee PS, Sun Y, Gu X, Zhang E, Guo Y et al (2014) Estradiol and mTORC2 cooperate to enhance prostaglandin biosynthesis and tumorigenesis in TSC2-deficient LAM cells. J Exp Med 211(1):15–28CrossRefPubMedPubMedCentral Li C, Lee PS, Sun Y, Gu X, Zhang E, Guo Y et al (2014) Estradiol and mTORC2 cooperate to enhance prostaglandin biosynthesis and tumorigenesis in TSC2-deficient LAM cells. J Exp Med 211(1):15–28CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Gu X, Yu JJ, Ilter D, Blenis N, Henske EP, Blenis J (2013) Integration of mTOR and estrogen-ERK2 signaling in lymphangioleiomyomatosis pathogenesis. Proc Natl Acad Sci USA 110(37):14960–14965CrossRefPubMedPubMedCentral Gu X, Yu JJ, Ilter D, Blenis N, Henske EP, Blenis J (2013) Integration of mTOR and estrogen-ERK2 signaling in lymphangioleiomyomatosis pathogenesis. Proc Natl Acad Sci USA 110(37):14960–14965CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Yu J, Astrinidis A, Howard S, Henske EP (2004) Estradiol and tamoxifen stimulate LAM-associated angiomyolipoma cell growth and activate both genomic and nongenomic signaling pathways. Am J Physiol Lung Cell Mol Physiol 286(4):L694–L700CrossRefPubMed Yu J, Astrinidis A, Howard S, Henske EP (2004) Estradiol and tamoxifen stimulate LAM-associated angiomyolipoma cell growth and activate both genomic and nongenomic signaling pathways. Am J Physiol Lung Cell Mol Physiol 286(4):L694–L700CrossRefPubMed
19.
Zurück zum Zitat York B, Lou D, Panettieri RA Jr, Krymskaya VP, Vanaman TC, Noonan DJ (2005) Cross-talk between tuberin, calmodulin, and estrogen signaling pathways. FASEB J 19(9):1202–1204PubMed York B, Lou D, Panettieri RA Jr, Krymskaya VP, Vanaman TC, Noonan DJ (2005) Cross-talk between tuberin, calmodulin, and estrogen signaling pathways. FASEB J 19(9):1202–1204PubMed
20.
Zurück zum Zitat Finlay G (2004) The LAM cell: what is it, where does it come from, and why does it grow? Am J Physiol Lung Cell Mol Physiol 286(4):L690–L693CrossRefPubMed Finlay G (2004) The LAM cell: what is it, where does it come from, and why does it grow? Am J Physiol Lung Cell Mol Physiol 286(4):L690–L693CrossRefPubMed
21.
Zurück zum Zitat Ferrans VJ, Yu ZX, Nelson WK, Valencia JC, Tatsuguchi A, Avila NA et al (2000) Lymphangioleiomyomatosis (LAM): a review of clinical and morphological features. J Nippon Med Sch 67(5):311–329CrossRefPubMed Ferrans VJ, Yu ZX, Nelson WK, Valencia JC, Tatsuguchi A, Avila NA et al (2000) Lymphangioleiomyomatosis (LAM): a review of clinical and morphological features. J Nippon Med Sch 67(5):311–329CrossRefPubMed
22.
Zurück zum Zitat Kwiatkowski DJ, Zhang H, Bandura JL, Heiberger KM, Glogauer M, el-Hashemite N et al (2002) A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum Mol Genet 11(5):525–534CrossRefPubMed Kwiatkowski DJ, Zhang H, Bandura JL, Heiberger KM, Glogauer M, el-Hashemite N et al (2002) A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum Mol Genet 11(5):525–534CrossRefPubMed
23.
Zurück zum Zitat Zhang H, Cicchetti G, Onda H, Koon HB, Asrican K, Bajraszewski N et al (2003) Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J Clin Invest 112(8):1223–1233CrossRefPubMedPubMedCentral Zhang H, Cicchetti G, Onda H, Koon HB, Asrican K, Bajraszewski N et al (2003) Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J Clin Invest 112(8):1223–1233CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Zhang H, Bajraszewski N, Wu E, Wang H, Moseman AP, Dabora SL et al (2007) PDGFRs are critical for PI3 K/Akt activation and negatively regulated by mTOR. J Clin Invest 117(3):730–738CrossRefPubMedPubMedCentral Zhang H, Bajraszewski N, Wu E, Wang H, Moseman AP, Dabora SL et al (2007) PDGFRs are critical for PI3 K/Akt activation and negatively regulated by mTOR. J Clin Invest 117(3):730–738CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Niu H, Wang J, Li H, He P (2011) Rapamycin potentiates cytotoxicity by docetaxel possibly through downregulation of Survivin in lung cancer cells. J Exp Clin Cancer Res 30(1):28CrossRefPubMedPubMedCentral Niu H, Wang J, Li H, He P (2011) Rapamycin potentiates cytotoxicity by docetaxel possibly through downregulation of Survivin in lung cancer cells. J Exp Clin Cancer Res 30(1):28CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Divakaruni AS, Paradyse A, Ferrick DA, Murphy AN, Jastroch M (2014) Analysis and interpretation of microplate-based oxygen consumption and pH data. Methods Enzymol 547:309–354CrossRefPubMed Divakaruni AS, Paradyse A, Ferrick DA, Murphy AN, Jastroch M (2014) Analysis and interpretation of microplate-based oxygen consumption and pH data. Methods Enzymol 547:309–354CrossRefPubMed
27.
Zurück zum Zitat Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53(3):983–997CrossRefPubMed Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53(3):983–997CrossRefPubMed
Metadaten
Titel
Metabolic Impact of Rapamycin (Sirolimus) and B-Estradiol Using Mouse Embryonic Fibroblasts as a Model for Lymphangioleiomyomatosis
verfasst von
Katherine M. Marsh
David Schipper
Alice S. Ferng
Kitsie Johnson
Julia Fisher
Shannon Knapp
Destiny Dicken
Zain Khalpey
Publikationsdatum
02.06.2017
Verlag
Springer US
Erschienen in
Lung / Ausgabe 4/2017
Print ISSN: 0341-2040
Elektronische ISSN: 1432-1750
DOI
https://doi.org/10.1007/s00408-017-0016-3

Weitere Artikel der Ausgabe 4/2017

Lung 4/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.