Skip to main content
Erschienen in: European Journal of Nutrition 4/2019

08.05.2018 | Original Contribution

Metabolic influence of walnut phenolic extract on mitochondria in a colon cancer stem cell model

verfasst von: Jina Choi, Phil-Kyung Shin, Yuri Kim, Chang Pyo Hong, Sang-Woon Choi

Erschienen in: European Journal of Nutrition | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Walnut phenolic extract (WPE) reduces proliferation and enhances differentiation of colon cancer stem cells (CSCs). The present study investigated the metabolic influence of WPE on the mitochondrial function of colon CSCs to determine its underlying mechanism.

Methods

CD133+CD44+ HCT116 colon cancer cells were selected by fluorescence-activated cell sorting and were treated with or without 40 µg/mL WPE. RNA-sequencing (RNA-Seq) was performed to identify differentially expressed genes (DEGs), which were further validated with RT-PCR. WPE-induced alterations in mitochondrial function were investigated through a mitochondrial stress test by determining cellular oxygen consumption rate (OCR), an indicator of mitochondrial respiration, and extracellular acidification rate (ECAR), an indicator of glycolysis, which were further confirmed by glucose uptake and lactate production tests.

Results

RNA-Seq analysis identified two major functional clusters: metabolic and mitochondrial clusters. WPE treatment shifted the metabolic profile of cells towards the glycolysis pathway (ΔECAR = 36.98 mpH/min/ptn, p = 0.02) and oxidative pathway (ΔOCR = 29.18 pmol/min/ptn, p = 0.00001). Serial mitochondrial stimulations using respiration modulators, oligomycin, carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone, and rotenone/antimycin A, found an increased potential of mitochondrial respiration (ΔOCR = 111.5 pmol/min/ptn, p = 0.0006). WPE treatment also increased glucose uptake (Δ = 0.39 pmol/µL, p = 0.002) and lactate production (Δ = 0.08 nmol/µL, p = 0.005).

Conclusions

WPE treatment shifts the mitochondrial metabolism of colon CSC towards more aerobic glycolysis, which might be associated with the alterations in the characteristics of colon CSC.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefPubMed Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefPubMed
5.
Zurück zum Zitat Fernandez-Arroyo S, Cuyas E, Bosch-Barrera J, Alarcon T, Joven J, Menendez JA (2015) Activation of the methylation cycle in cells reprogrammed into a stem cell-like state. Oncoscience 2(12):958–967PubMed Fernandez-Arroyo S, Cuyas E, Bosch-Barrera J, Alarcon T, Joven J, Menendez JA (2015) Activation of the methylation cycle in cells reprogrammed into a stem cell-like state. Oncoscience 2(12):958–967PubMed
6.
Zurück zum Zitat Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J (2010) The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28(4):721–733CrossRefPubMed Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J (2010) The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28(4):721–733CrossRefPubMed
7.
Zurück zum Zitat Facucho-Oliveira JM JCSJ (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev Rep 5:140PubMedCrossRef Facucho-Oliveira JM JCSJ (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev Rep 5:140PubMedCrossRef
8.
Zurück zum Zitat St John JC, Ramalho-Santos J, Gray HL, Petrosko P, Rawe VY, Navara CS, Simerly CR, Schatten GP (2005) The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells 7(3):141–153PubMedCrossRef St John JC, Ramalho-Santos J, Gray HL, Petrosko P, Rawe VY, Navara CS, Simerly CR, Schatten GP (2005) The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells 7(3):141–153PubMedCrossRef
9.
Zurück zum Zitat Cho YM, Kwon S, Pak YK, Seol HW, Choi YM, Park do J, Park KS, Lee HK (2006) Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun 348(4):1472–1478PubMedCrossRef Cho YM, Kwon S, Pak YK, Seol HW, Choi YM, Park do J, Park KS, Lee HK (2006) Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun 348(4):1472–1478PubMedCrossRef
10.
Zurück zum Zitat Facucho-Oliveira JM, Alderson J, Spikings EC, Egginton S, St John JC (2007) Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J Cell Sci 120(Pt 22):4025–4034CrossRefPubMed Facucho-Oliveira JM, Alderson J, Spikings EC, Egginton S, St John JC (2007) Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J Cell Sci 120(Pt 22):4025–4034CrossRefPubMed
11.
Zurück zum Zitat Shen YA, Wang CY, Hsieh YT, Chen YJ, Wei YH (2015) Metabolic reprogramming orchestrates cancer stem cell properties in nasopharyngeal carcinoma. Cell Cycle 14(1):86–98PubMedCrossRef Shen YA, Wang CY, Hsieh YT, Chen YJ, Wei YH (2015) Metabolic reprogramming orchestrates cancer stem cell properties in nasopharyngeal carcinoma. Cell Cycle 14(1):86–98PubMedCrossRef
12.
Zurück zum Zitat Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C, Terzic A (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14(2):264–271PubMedPubMedCentralCrossRef Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C, Terzic A (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14(2):264–271PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Hardman WE, Ion G (2008) Suppression of implanted MDA-MB 231 human breast cancer growth in nude mice by dietary walnut. Nutr Cancer 60(5):666–674PubMedCrossRef Hardman WE, Ion G (2008) Suppression of implanted MDA-MB 231 human breast cancer growth in nude mice by dietary walnut. Nutr Cancer 60(5):666–674PubMedCrossRef
14.
Zurück zum Zitat Reiter RJ, Tan DX, Manchester LC, Korkmaz A, Fuentes-Broto L, Hardman WE, Rosales-Corral SA, Qi W (2013) A walnut-enriched diet reduces the growth of LNCaP human prostate cancer xenografts in nude mice. Cancer Investig 31(6):365–373CrossRef Reiter RJ, Tan DX, Manchester LC, Korkmaz A, Fuentes-Broto L, Hardman WE, Rosales-Corral SA, Qi W (2013) A walnut-enriched diet reduces the growth of LNCaP human prostate cancer xenografts in nude mice. Cancer Investig 31(6):365–373CrossRef
15.
Zurück zum Zitat Tsoukas MA, Ko BJ, Witte TR, Dincer F, Hardman WE, Mantzoros CS (2015) Dietary walnut suppression of colorectal cancer in mice: mediation by miRNA patterns and fatty acid incorporation. J Nutr Biochem 26(7):776–783PubMedCrossRef Tsoukas MA, Ko BJ, Witte TR, Dincer F, Hardman WE, Mantzoros CS (2015) Dietary walnut suppression of colorectal cancer in mice: mediation by miRNA patterns and fatty acid incorporation. J Nutr Biochem 26(7):776–783PubMedCrossRef
16.
Zurück zum Zitat Lee J, Kim YS, Heo SC, Lee KL, Choi SW, Kim Y (2016) Walnut phenolic extract and its bioactive compounds suppress colon cancer cell growth by regulating colon cancer stemness. Nutrients 8(7):439PubMedCentralCrossRef Lee J, Kim YS, Heo SC, Lee KL, Choi SW, Kim Y (2016) Walnut phenolic extract and its bioactive compounds suppress colon cancer cell growth by regulating colon cancer stemness. Nutrients 8(7):439PubMedCentralCrossRef
17.
Zurück zum Zitat Anderson KJ, Teuber SS, Gobeille A, Cremin P, Waterhouse AL, Steinberg FM (2001) Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation. J Nutr 131(11):2837–2842CrossRefPubMed Anderson KJ, Teuber SS, Gobeille A, Cremin P, Waterhouse AL, Steinberg FM (2001) Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation. J Nutr 131(11):2837–2842CrossRefPubMed
18.
Zurück zum Zitat Min SJ, Lim JY, Kim HR, Kim SJ, Kim Y (2015) Sasa quelpaertensis leaf extract inhibits colon cancer by regulating cancer cell stemness in vitro and in vivo. Int J Mol Sci 16(5):9976–9997PubMedPubMedCentralCrossRef Min SJ, Lim JY, Kim HR, Kim SJ, Kim Y (2015) Sasa quelpaertensis leaf extract inhibits colon cancer by regulating cancer cell stemness in vitro and in vivo. Int J Mol Sci 16(5):9976–9997PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578PubMedPubMedCentralCrossRef Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Bindea G, Galon J, Mlecnik B (2013) CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics 29(5):661–663PubMedPubMedCentralCrossRef Bindea G, Galon J, Mlecnik B (2013) CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics 29(5):661–663PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pages F, Trajanoski Z, Galon J (2009) ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25(8):1091–1093PubMedPubMedCentralCrossRef Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pages F, Trajanoski Z, Galon J (2009) ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25(8):1091–1093PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Arduini A, Serviddio G, Escobar J, Tormos AM, Bellanti F, Vina J, Monsalve M, Sastre J (2011) Mitochondrial biogenesis fails in secondary biliary cirrhosis in rats leading to mitochondrial DNA depletion and deletions. Am J Physiol Gastrointest Liver Physiol 301(1):G119–G127CrossRef Arduini A, Serviddio G, Escobar J, Tormos AM, Bellanti F, Vina J, Monsalve M, Sastre J (2011) Mitochondrial biogenesis fails in secondary biliary cirrhosis in rats leading to mitochondrial DNA depletion and deletions. Am J Physiol Gastrointest Liver Physiol 301(1):G119–G127CrossRef
25.
Zurück zum Zitat Ramm Sander P, Hau P, Koch S, Schutze K, Bogdahn U, Kalbitzer HR, Aigner L (2013) Stem cell metabolic and spectroscopic profiling. Trends Biotechnol 31(3):204–213CrossRefPubMed Ramm Sander P, Hau P, Koch S, Schutze K, Bogdahn U, Kalbitzer HR, Aigner L (2013) Stem cell metabolic and spectroscopic profiling. Trends Biotechnol 31(3):204–213CrossRefPubMed
26.
Zurück zum Zitat Dando I, Dalla Pozza E, Biondani G, Cordani M, Palmieri M, Donadelli M (2015) The metabolic landscape of cancer stem cells. IUBMB Life 67(9):687–693PubMedCrossRef Dando I, Dalla Pozza E, Biondani G, Cordani M, Palmieri M, Donadelli M (2015) The metabolic landscape of cancer stem cells. IUBMB Life 67(9):687–693PubMedCrossRef
27.
Zurück zum Zitat Kraft CS, LeMoine CM, Lyons CN, Michaud D, Mueller CR, Moyes CD (2006) Control of mitochondrial biogenesis during myogenesis. Am J Physiol Cell Physiol 290(4):C1119–C1127CrossRef Kraft CS, LeMoine CM, Lyons CN, Michaud D, Mueller CR, Moyes CD (2006) Control of mitochondrial biogenesis during myogenesis. Am J Physiol Cell Physiol 290(4):C1119–C1127CrossRef
28.
Zurück zum Zitat Chen CT, Shih YR, Kuo TK, Lee OK, Wei YH (2008) Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 26(4):960–968PubMedCrossRef Chen CT, Shih YR, Kuo TK, Lee OK, Wei YH (2008) Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 26(4):960–968PubMedCrossRef
29.
Zurück zum Zitat Tamada M, Nagano O, Tateyama S, Ohmura M, Yae T, Ishimoto T, Sugihara E, Onishi N, Yamamoto T, Yanagawa H, Suematsu M, Saya H (2012) Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells. Cancer Res 72(6):1438–1448PubMedCrossRef Tamada M, Nagano O, Tateyama S, Ohmura M, Yae T, Ishimoto T, Sugihara E, Onishi N, Yamamoto T, Yanagawa H, Suematsu M, Saya H (2012) Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells. Cancer Res 72(6):1438–1448PubMedCrossRef
30.
Zurück zum Zitat Li W, Cohen A, Sun Y, Squires J, Braas D, Graeber TG, Du L, Li G, Li Z, Xu X, Chen X, Huang J (2016) The role of CD44 in glucose metabolism in prostatic small cell neuroendocrine carcinoma. MCR 14(4):344–353PubMedCrossRef Li W, Cohen A, Sun Y, Squires J, Braas D, Graeber TG, Du L, Li G, Li Z, Xu X, Chen X, Huang J (2016) The role of CD44 in glucose metabolism in prostatic small cell neuroendocrine carcinoma. MCR 14(4):344–353PubMedCrossRef
31.
Zurück zum Zitat Chen KY, Liu X, Bu P, Lin CS, Rakhilin N, Locasale JW, Shen X (2014) A metabolic signature of colon cancer initiating cells. In: Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society IEEE engineering in medicine and biology society annual conference 2014, pp 4759–4762 Chen KY, Liu X, Bu P, Lin CS, Rakhilin N, Locasale JW, Shen X (2014) A metabolic signature of colon cancer initiating cells. In: Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society IEEE engineering in medicine and biology society annual conference 2014, pp 4759–4762
32.
Zurück zum Zitat Krauss S, Zhang CY, Lowell BB (2005) The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol 6(3):248–261PubMedCrossRef Krauss S, Zhang CY, Lowell BB (2005) The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol 6(3):248–261PubMedCrossRef
33.
Zurück zum Zitat Wang Y, Huang L, Abdelrahim M, Cai Q, Truong A, Bick R, Poindexter B, Sheikh-Hamad D (2009) Stanniocalcin-1 suppresses superoxide generation in macrophages through induction of mitochondrial UCP2. J Leukoc Biol 86(4):981–988PubMedPubMedCentralCrossRef Wang Y, Huang L, Abdelrahim M, Cai Q, Truong A, Bick R, Poindexter B, Sheikh-Hamad D (2009) Stanniocalcin-1 suppresses superoxide generation in macrophages through induction of mitochondrial UCP2. J Leukoc Biol 86(4):981–988PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Ricquier D, Casteilla L, Bouillaud F (1991) Molecular studies of the uncoupling protein. FASEB J 5(9):2237–2242PubMedCrossRef Ricquier D, Casteilla L, Bouillaud F (1991) Molecular studies of the uncoupling protein. FASEB J 5(9):2237–2242PubMedCrossRef
35.
Zurück zum Zitat Ayyasamy V, Owens KM, Desouki MM, Liang P, Bakin A, Thangaraj K, Buchsbaum DJ, LoBuglio AF, Singh KK (2011) Cellular model of Warburg effect identifies tumor promoting function of UCP2 in breast cancer and its suppression by genipin. PloS One 6(9):e24792PubMedPubMedCentralCrossRef Ayyasamy V, Owens KM, Desouki MM, Liang P, Bakin A, Thangaraj K, Buchsbaum DJ, LoBuglio AF, Singh KK (2011) Cellular model of Warburg effect identifies tumor promoting function of UCP2 in breast cancer and its suppression by genipin. PloS One 6(9):e24792PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Zhang J, Khvorostov I, Hong JS, Oktay Y, Vergnes L, Nuebel E, Wahjudi PN, Setoguchi K, Wang G, Do A, Jung HJ, McCaffery JM, Kurland IJ, Reue K, Lee WN, Koehler CM, Teitell MA (2011) UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J 30(24):4860–4873PubMedPubMedCentralCrossRef Zhang J, Khvorostov I, Hong JS, Oktay Y, Vergnes L, Nuebel E, Wahjudi PN, Setoguchi K, Wang G, Do A, Jung HJ, McCaffery JM, Kurland IJ, Reue K, Lee WN, Koehler CM, Teitell MA (2011) UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J 30(24):4860–4873PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Vozza A, Parisi G, De Leonardis F, Lasorsa FM, Castegna A, Amorese D, Marmo R, Calcagnile VM, Palmieri L, Ricquier D, Paradies E, Scarcia P, Palmieri F, Bouillaud F, Fiermonte G (2014) UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci USA 111(3):960–965PubMedCrossRefPubMedCentral Vozza A, Parisi G, De Leonardis F, Lasorsa FM, Castegna A, Amorese D, Marmo R, Calcagnile VM, Palmieri L, Ricquier D, Paradies E, Scarcia P, Palmieri F, Bouillaud F, Fiermonte G (2014) UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci USA 111(3):960–965PubMedCrossRefPubMedCentral
38.
Zurück zum Zitat Ding S, Li C, Cheng N, Cui X, Xu X, Zhou G (2015) Redox regulation in cancer stem cells. Oxid Med Cell Longev 2015:750–798CrossRef Ding S, Li C, Cheng N, Cui X, Xu X, Zhou G (2015) Redox regulation in cancer stem cells. Oxid Med Cell Longev 2015:750–798CrossRef
39.
Zurück zum Zitat Mody N, Parhami F, Sarafian TA, Demer LL (2001) Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 31(4):509–519CrossRefPubMed Mody N, Parhami F, Sarafian TA, Demer LL (2001) Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 31(4):509–519CrossRefPubMed
40.
41.
Zurück zum Zitat Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Huttemann M (2013) Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 47(1):9–23PubMedCrossRef Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Huttemann M (2013) Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 47(1):9–23PubMedCrossRef
Metadaten
Titel
Metabolic influence of walnut phenolic extract on mitochondria in a colon cancer stem cell model
verfasst von
Jina Choi
Phil-Kyung Shin
Yuri Kim
Chang Pyo Hong
Sang-Woon Choi
Publikationsdatum
08.05.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nutrition / Ausgabe 4/2019
Print ISSN: 1436-6207
Elektronische ISSN: 1436-6215
DOI
https://doi.org/10.1007/s00394-018-1708-z

Weitere Artikel der Ausgabe 4/2019

European Journal of Nutrition 4/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.