Skip to main content
Erschienen in: Diabetologia 1/2008

01.01.2008 | Article

Metal-activated C-peptide facilitates glucose clearance and the release of a nitric oxide stimulus via the GLUT1 transporter

verfasst von: J. A. Meyer, J. M. Froelich, G. E. Reid, W. K. A. Karunarathne, D. M. Spence

Erschienen in: Diabetologia | Ausgabe 1/2008

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Proinsulin C-peptide has been implicated in reducing complications associated with diabetes and also in improving blood flow. We hypothesised that incubation of erythrocytes with C-peptide would improve the ability of these cells to release ATP, a stimulus for nitric oxide production.

Methods

Erythrocytes obtained from rabbits (n = 11) and both healthy and type 2 diabetic humans (n = 7) were incubated with C-peptide in the absence and presence of Fe2+ and Cr3+, and the resulting ATP release was measured via chemiluminescence. This release was also measured in the presence and absence of phloretin, an inhibitor of GLUT1, and also of mannose, a glycolysis inhibitor. To determine glucose transport, 14C-labelled glucose was added to erythrocytes in the presence and absence of the C-peptide–metal complex and the aforementioned inhibitors.

Results

The release of ATP from the erythrocytes of patients with diabetes increased from 64 ± 13 to 260 ± 39 nmol/l upon incubation of the cells in C-peptide. The C-peptide activity was dependent upon binding to Fe2+, which was extended upon binding to Cr3+. The increase in ATP release from the erythrocytes is due to metal-activated C-peptide stimulation of glucose transfer into the erythrocytes via the GLUT1 transporter. In the presence of C-peptide complexed to Cr3+, the amount of glucose transferred into the erythrocyte increased by 31%.

Conclusions/interpretation

When complexed to Fe2+ or Cr3+, C-peptide has the ability to promote ATP release from erythrocytes. This release is due to an increase in glucose transport through GLUT1.
Literatur
1.
Zurück zum Zitat Kunt T, Forst T, Pfutzner A, Beyer J, Wahren J (1999) The physiological impact of proinsulin C-peptide. Pathophysiology 5:257–262CrossRef Kunt T, Forst T, Pfutzner A, Beyer J, Wahren J (1999) The physiological impact of proinsulin C-peptide. Pathophysiology 5:257–262CrossRef
2.
Zurück zum Zitat Johansson BL, Kernell A, Sjoberg S, Wahren J (1993) Influence of combined C-peptide and insulin administration on renal function and metabolic control in diabetes type 1. J Clin Endocrinol Metab 77:976–981PubMedCrossRef Johansson BL, Kernell A, Sjoberg S, Wahren J (1993) Influence of combined C-peptide and insulin administration on renal function and metabolic control in diabetes type 1. J Clin Endocrinol Metab 77:976–981PubMedCrossRef
3.
Zurück zum Zitat Johansson BL, Sjoeberg S, Wahren J (1992) The influence of human C-peptide on renal function and glucose utilisation in type 1 (insulin-dependent) diabetic patients. Diabetologia 35:121–128PubMedCrossRef Johansson BL, Sjoeberg S, Wahren J (1992) The influence of human C-peptide on renal function and glucose utilisation in type 1 (insulin-dependent) diabetic patients. Diabetologia 35:121–128PubMedCrossRef
4.
Zurück zum Zitat Ido Y, Vindigni A, Chang K et al (1997) Prevention of vascular and neural dysfunction in diabetic rats by C-peptide. Science 277:563–566PubMedCrossRef Ido Y, Vindigni A, Chang K et al (1997) Prevention of vascular and neural dysfunction in diabetic rats by C-peptide. Science 277:563–566PubMedCrossRef
5.
Zurück zum Zitat Forst T, Kunt T (2004) Effects of C-peptide on microvascular blood flow and blood hemorheology. Exp Diabesity Res 5:51–64PubMedCrossRef Forst T, Kunt T (2004) Effects of C-peptide on microvascular blood flow and blood hemorheology. Exp Diabesity Res 5:51–64PubMedCrossRef
6.
Zurück zum Zitat Forst T, Kunt T, Pohlmann T et al (1998) Biological activity of C-peptide on the skin microcirculation in patients with insulin-dependent diabetes mellitus. J Clin Invest 101:2036–2041PubMedCrossRef Forst T, Kunt T, Pohlmann T et al (1998) Biological activity of C-peptide on the skin microcirculation in patients with insulin-dependent diabetes mellitus. J Clin Invest 101:2036–2041PubMedCrossRef
7.
Zurück zum Zitat Kunt T, Schneider S, Pfutzner A et al (1999) The effect of human proinsulin C-peptide on erythrocyte deformability in patients with type I diabetes mellitus. Diabetologia 42:465–471PubMedCrossRef Kunt T, Schneider S, Pfutzner A et al (1999) The effect of human proinsulin C-peptide on erythrocyte deformability in patients with type I diabetes mellitus. Diabetologia 42:465–471PubMedCrossRef
8.
Zurück zum Zitat Wallerath T, Kunt T, Forst T et al (2003) Stimulation of endothelial nitric oxide synthase by proinsulin C-peptide. Nitric Oxide 9:95–102PubMedCrossRef Wallerath T, Kunt T, Forst T et al (2003) Stimulation of endothelial nitric oxide synthase by proinsulin C-peptide. Nitric Oxide 9:95–102PubMedCrossRef
9.
Zurück zum Zitat Sprague RS, Stephenson, Alan H et al (1995) Effect of l-NAME on pressure-flow relationships in isolated rabbit lungs: role of red blood cells. Am J Physiol Heart Circ Physiol 269:H1941–H1948 Sprague RS, Stephenson, Alan H et al (1995) Effect of l-NAME on pressure-flow relationships in isolated rabbit lungs: role of red blood cells. Am J Physiol Heart Circ Physiol 269:H1941–H1948
10.
Zurück zum Zitat Sprague RS, Ellsworth, Mary L et al (1996) ATP: the red blood cell link to NO and local control of the pulmonary circulation. Am J Physiol Heart Circ Physiol 271:H2717–H2722 Sprague RS, Ellsworth, Mary L et al (1996) ATP: the red blood cell link to NO and local control of the pulmonary circulation. Am J Physiol Heart Circ Physiol 271:H2717–H2722
11.
Zurück zum Zitat Sprague RS, Ellsworth ML, Stephenson AH, Kleinhenz ME, Lonigro AJ (1998) Deformation-induced ATP release from red blood cells requires cystic fibrosis transmembrane conductance regulator activity. Am J Physiol 275:H1726–H1732PubMed Sprague RS, Ellsworth ML, Stephenson AH, Kleinhenz ME, Lonigro AJ (1998) Deformation-induced ATP release from red blood cells requires cystic fibrosis transmembrane conductance regulator activity. Am J Physiol 275:H1726–H1732PubMed
12.
Zurück zum Zitat Sprague RS, Olearczyk JJ, Spence DM, Stephenson AH, Sprung RW, Lonigro AJ (2003) Extracellular ATP signaling in the rabbit lung: erythrocytes as determinants of vascular resistance. Am J Physiol 285:H693–H700 Sprague RS, Olearczyk JJ, Spence DM, Stephenson AH, Sprung RW, Lonigro AJ (2003) Extracellular ATP signaling in the rabbit lung: erythrocytes as determinants of vascular resistance. Am J Physiol 285:H693–H700
13.
Zurück zum Zitat Sprague RS, Stephenson AH, Bowles EA, Stumpf MS, Lonigro AJ (2006) Reduced expression of Gi in erythrocytes of humans with type 2 diabetes is associated with impairment of both cAMP generation and ATP release. Diabetes 55:3588–3593PubMedCrossRef Sprague RS, Stephenson AH, Bowles EA, Stumpf MS, Lonigro AJ (2006) Reduced expression of Gi in erythrocytes of humans with type 2 diabetes is associated with impairment of both cAMP generation and ATP release. Diabetes 55:3588–3593PubMedCrossRef
14.
Zurück zum Zitat Carroll JS, Subasinghe W, Raththagala M et al (2006) An altered erythrocyte pentose phosphate pathway affects the ability of red cells to release ATP, a nitric oxide stimulus. Mol Biosys 2:305–311CrossRef Carroll JS, Subasinghe W, Raththagala M et al (2006) An altered erythrocyte pentose phosphate pathway affects the ability of red cells to release ATP, a nitric oxide stimulus. Mol Biosys 2:305–311CrossRef
15.
Zurück zum Zitat Sprung RJ, Sprague RS, Spence DM (2002) Determination of ATP release from erythrocytes using microbore tubing as a model of resistance vessels in vivo. Anal Chem 74:2274–2278PubMedCrossRef Sprung RJ, Sprague RS, Spence DM (2002) Determination of ATP release from erythrocytes using microbore tubing as a model of resistance vessels in vivo. Anal Chem 74:2274–2278PubMedCrossRef
16.
Zurück zum Zitat Simpson LO (1985) Intrinsic stiffening of red blood cells as the fundamental cause of diabetic nephropathy and microangiopathy: a new hypothesis. Nephron 39:344–351PubMedCrossRef Simpson LO (1985) Intrinsic stiffening of red blood cells as the fundamental cause of diabetic nephropathy and microangiopathy: a new hypothesis. Nephron 39:344–351PubMedCrossRef
17.
Zurück zum Zitat Schwartz RS, Madsen JW, Rybicki AC, Nagel RL (1991) Oxidation of spectrin and deformability defects in diabetic erythrocytes. Diabetes 40:701–712PubMedCrossRef Schwartz RS, Madsen JW, Rybicki AC, Nagel RL (1991) Oxidation of spectrin and deformability defects in diabetic erythrocytes. Diabetes 40:701–712PubMedCrossRef
18.
Zurück zum Zitat Wahren J, Ekberg K, Jornvall H (2007) C-peptide is a bioactive peptide. Diabetologia 50:503–509PubMedCrossRef Wahren J, Ekberg K, Jornvall H (2007) C-peptide is a bioactive peptide. Diabetologia 50:503–509PubMedCrossRef
19.
Zurück zum Zitat Wahren J, Ekberg K, Samnegard B, Johansson BL (2001) C-peptide: a new potential in the treatment of diabetic nephropathy. Curr Diab Rep 1:261–266PubMedCrossRef Wahren J, Ekberg K, Samnegard B, Johansson BL (2001) C-peptide: a new potential in the treatment of diabetic nephropathy. Curr Diab Rep 1:261–266PubMedCrossRef
20.
Zurück zum Zitat Stevens M, Zhang W, Li F, Sima A (2004) C-peptide corrects endoneurial blood flow but not oxidative stress in type 1 BB/Wor rats. Am J Physiol Endocrinol Metab 287:E497–E505PubMedCrossRef Stevens M, Zhang W, Li F, Sima A (2004) C-peptide corrects endoneurial blood flow but not oxidative stress in type 1 BB/Wor rats. Am J Physiol Endocrinol Metab 287:E497–E505PubMedCrossRef
21.
Zurück zum Zitat Johansson BL, Linde B, Wahren J (1992) Effects of C-peptide on blood flow, capillary diffusion capacity and glucose utilization in the exercising forearm of type I (insulin-dependent) diabetic patients. Diabetologia 35:1151–1158PubMedCrossRef Johansson BL, Linde B, Wahren J (1992) Effects of C-peptide on blood flow, capillary diffusion capacity and glucose utilization in the exercising forearm of type I (insulin-dependent) diabetic patients. Diabetologia 35:1151–1158PubMedCrossRef
22.
Zurück zum Zitat Luzi L, Zerbini G, Caumo A (2007) C-peptide: a redundant relative of insulin? Diabetologia 50:500–502PubMedCrossRef Luzi L, Zerbini G, Caumo A (2007) C-peptide: a redundant relative of insulin? Diabetologia 50:500–502PubMedCrossRef
23.
Zurück zum Zitat Henriksson M, Shafqat J, Liepinsh E et al (2000) Unordered structure of proinsulin C-peptide in aqueous solution and in the presence of lipid vesicles. Cell Mol Life Sci 57:337–342PubMedCrossRef Henriksson M, Shafqat J, Liepinsh E et al (2000) Unordered structure of proinsulin C-peptide in aqueous solution and in the presence of lipid vesicles. Cell Mol Life Sci 57:337–342PubMedCrossRef
24.
Zurück zum Zitat Henriksson M, Nordling E, Melles E et al (2005) Separate functional features of proinsulin C-peptide. Cell Mol Life Sci 62:1772–1778PubMedCrossRef Henriksson M, Nordling E, Melles E et al (2005) Separate functional features of proinsulin C-peptide. Cell Mol Life Sci 62:1772–1778PubMedCrossRef
25.
Zurück zum Zitat Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885PubMedCrossRef Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885PubMedCrossRef
Metadaten
Titel
Metal-activated C-peptide facilitates glucose clearance and the release of a nitric oxide stimulus via the GLUT1 transporter
verfasst von
J. A. Meyer
J. M. Froelich
G. E. Reid
W. K. A. Karunarathne
D. M. Spence
Publikationsdatum
01.01.2008
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 1/2008
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-007-0853-3

Weitere Artikel der Ausgabe 1/2008

Diabetologia 1/2008 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.