Skip to main content
Erschienen in: Cancer and Metastasis Reviews 4/2014

01.12.2014

Metastatic tumor antigen in hepatocellular carcinoma: golden roads toward personalized medicine

verfasst von: Soo Hyung Ryu, Myoung Kuk Jang, Woo Jean Kim, Danbi Lee, Young-Hwa Chung

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 4/2014

Einloggen, um Zugang zu erhalten

Abstract

Hepatocellular carcinoma (HCC), a prototype of hypervascular tumors, is one of the most common malignancies in the world, especially hyperendemic in the Far East where chronic hepatitis B virus (HBV) infection is highly prevalent. It is characterized by the clinical feature of a poor prognosis or a high mortality due to its already far advanced stages at diagnosis. It is so multifactorial that hepatocarcinogenesis cannot be explained by a single molecular mechanism. To date, a number of pathways have been known to contribute to the development, growth, angiogenesis, and even metastasis of HCC. Among the various factors, metastatic tumor antigens (MTAs) or metastasis-associated proteins have been vigorously investigated as an intriguing target in the field of hepatocarcinogenesis. According to recent studies including ours, MTAs are not only involved in the HCC development and growth (molecular carcinogenesis), but also closely associated with the post-operative recurrence and a poor prognosis or a worse response to post-operative anti-cancer therapy (clinical significance). Herein, we review MTAs in light of their essential structure, functions, and molecular mechanism in hepatocarcinogenesis. We will also focus in detail on the interaction between hepatitis B x protein (HBx) of HBV and MTA in order to clarify the HBV-associated HCC development. Finally, we will discuss the prognostic significance and clinical application of MTA in HCC. We believe that this review will help clinicians to understand the meaning and use of the detection of MTA in order to more effectively manage their HCC patients.
Literatur
1.
Zurück zum Zitat Bosch, F. X., Ribes, J., Diaz, M., & Cleries, R. (2004). Primary liver cancer: worldwide incidence and trends. Gastroenterology, 127(5 Suppl 1), S5–S16.PubMed Bosch, F. X., Ribes, J., Diaz, M., & Cleries, R. (2004). Primary liver cancer: worldwide incidence and trends. Gastroenterology, 127(5 Suppl 1), S5–S16.PubMed
2.
Zurück zum Zitat Kiyosawa, K., Umemura, T., Ichijo, T., Matsumoto, A., Yoshizawa, K., Gad, A., et al. (2004). Hepatocellular carcinoma: recent trends in Japan. Gastroenterology, 127(5 Suppl 1), S17–S26.PubMed Kiyosawa, K., Umemura, T., Ichijo, T., Matsumoto, A., Yoshizawa, K., Gad, A., et al. (2004). Hepatocellular carcinoma: recent trends in Japan. Gastroenterology, 127(5 Suppl 1), S17–S26.PubMed
3.
Zurück zum Zitat El-serag, H. B. (2004). Hepatocellular carcinoma: recent trends in the United States. Gastroenterology, 127(5 Suppl 1), S27–S34.PubMed El-serag, H. B. (2004). Hepatocellular carcinoma: recent trends in the United States. Gastroenterology, 127(5 Suppl 1), S27–S34.PubMed
4.
Zurück zum Zitat Chen, M. F., Hwang, T. L., Jeng, L. B., Jan, Y. Y., Wang, C. S., & Chou, F. F. (1989). Hepatic resection in 120 patients with hepatocellular carcinoma. Archives of Surgery, 124(9), 1025–1028.PubMed Chen, M. F., Hwang, T. L., Jeng, L. B., Jan, Y. Y., Wang, C. S., & Chou, F. F. (1989). Hepatic resection in 120 patients with hepatocellular carcinoma. Archives of Surgery, 124(9), 1025–1028.PubMed
5.
Zurück zum Zitat Tsuzuki, T., Sugioka, A., Ueda, M., Iida, S., Kanai, T., Yoshii, H., et al. (1990). Hepatic resection for hepatocellular carcinoma. Surgery, 107(5), 511–520.PubMed Tsuzuki, T., Sugioka, A., Ueda, M., Iida, S., Kanai, T., Yoshii, H., et al. (1990). Hepatic resection for hepatocellular carcinoma. Surgery, 107(5), 511–520.PubMed
6.
Zurück zum Zitat Nagorney, D. M., van Heerden, J. A., Ilstrup, D. M., & Adson, M. A. (1989). Primary hepatic malignancy: surgical management and determinants of survival. Surgery, 106(4), 740–748.PubMed Nagorney, D. M., van Heerden, J. A., Ilstrup, D. M., & Adson, M. A. (1989). Primary hepatic malignancy: surgical management and determinants of survival. Surgery, 106(4), 740–748.PubMed
7.
Zurück zum Zitat Llovet, J. M., Fuster, J., & Bruix, J. (1999). Intention-to treat analysis of surgical treatment for early hepatocellular carcinoma: resection versus transplantation. Hepatology, 30(6), 1434–1440.PubMed Llovet, J. M., Fuster, J., & Bruix, J. (1999). Intention-to treat analysis of surgical treatment for early hepatocellular carcinoma: resection versus transplantation. Hepatology, 30(6), 1434–1440.PubMed
8.
Zurück zum Zitat Okada, S., Shimada, K., Yamamoto, J., Takayama, T., Kosuge, T., Yamasaki, S., et al. (1994). Predictive factors for postoperative recurrence of hepatocellular carcinoma. Gastroenterology, 106(6), 1618–1624.PubMed Okada, S., Shimada, K., Yamamoto, J., Takayama, T., Kosuge, T., Yamasaki, S., et al. (1994). Predictive factors for postoperative recurrence of hepatocellular carcinoma. Gastroenterology, 106(6), 1618–1624.PubMed
9.
Zurück zum Zitat Adachi, E., Maeda, T., Matsumata, T., Shirabe, K., Kinukawa, N., Sugimachi, K., et al. (1995). Risk factors for intrahepatic recurrence in human small hepatocellular carcinoma. Gastroenterology, 108(3), 768–775.PubMed Adachi, E., Maeda, T., Matsumata, T., Shirabe, K., Kinukawa, N., Sugimachi, K., et al. (1995). Risk factors for intrahepatic recurrence in human small hepatocellular carcinoma. Gastroenterology, 108(3), 768–775.PubMed
10.
Zurück zum Zitat Kumada, T., Nakano, S., Takeda, I., Sugiyama, K., Osada, T., Kiriyama, S., et al. (1997). Patterns of recurrence after initial treatment in patients with small hepatocellular carcinoma. Hepatology, 25(1), 87–92.PubMed Kumada, T., Nakano, S., Takeda, I., Sugiyama, K., Osada, T., Kiriyama, S., et al. (1997). Patterns of recurrence after initial treatment in patients with small hepatocellular carcinoma. Hepatology, 25(1), 87–92.PubMed
11.
Zurück zum Zitat Mahoney, M. G., Simpson, A., Jost, M., Noe, M., Kari, C., Pepe, D., et al. (2002). Metastasis-associated protein (MTA) 1 enhances migration, invasion, and anchorage-independent survival of immortalized human keratinocytes. Oncogene, 21(14), 2161–2170.PubMed Mahoney, M. G., Simpson, A., Jost, M., Noe, M., Kari, C., Pepe, D., et al. (2002). Metastasis-associated protein (MTA) 1 enhances migration, invasion, and anchorage-independent survival of immortalized human keratinocytes. Oncogene, 21(14), 2161–2170.PubMed
12.
Zurück zum Zitat Hofer, M. D., Menke, A., Genze, F., Gierschik, P., & Giehl, K. (2004). Expression of MTA1 promotes motility and invasiveness of PNAC-1 pancreatic carcinoma cells. British Journal of Cancer, 90(2), 455–462.PubMedCentralPubMed Hofer, M. D., Menke, A., Genze, F., Gierschik, P., & Giehl, K. (2004). Expression of MTA1 promotes motility and invasiveness of PNAC-1 pancreatic carcinoma cells. British Journal of Cancer, 90(2), 455–462.PubMedCentralPubMed
13.
Zurück zum Zitat Nicolson, G. L., Nawa, A., Toh, Y., Taniguchi, S., Nishimori, K., & Moustafa, A. (2003). Tumor metastasis-associated human MTA1 gene and its MTA1 protein product: role in epithelial cancer invasion, proliferation and nuclear regulation. Clinical and Experimental Metastasis, 20(1), 19–24.PubMed Nicolson, G. L., Nawa, A., Toh, Y., Taniguchi, S., Nishimori, K., & Moustafa, A. (2003). Tumor metastasis-associated human MTA1 gene and its MTA1 protein product: role in epithelial cancer invasion, proliferation and nuclear regulation. Clinical and Experimental Metastasis, 20(1), 19–24.PubMed
14.
Zurück zum Zitat Moon, H. E., Cheon, H., Chun, K. H., Lee, S. K., Kim, Y. S., Jung, B. K., et al. (2006). Metastasis-associated protein 1 enhances angiogenesis by stabilization of HIF-1alpha. Oncology Reports, 16(4), 929–935.PubMed Moon, H. E., Cheon, H., Chun, K. H., Lee, S. K., Kim, Y. S., Jung, B. K., et al. (2006). Metastasis-associated protein 1 enhances angiogenesis by stabilization of HIF-1alpha. Oncology Reports, 16(4), 929–935.PubMed
15.
Zurück zum Zitat Yoo, Y. G., Kong, G., & Lee, M. O. (2006). Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruiting histone deacetylase 1. EMBO Journal, 25(6), 1231–1241.PubMedCentralPubMed Yoo, Y. G., Kong, G., & Lee, M. O. (2006). Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruiting histone deacetylase 1. EMBO Journal, 25(6), 1231–1241.PubMedCentralPubMed
16.
Zurück zum Zitat Kim, S. H., Jeong, J. W., Park, J. A., Lee, J. W., Seo, J. H., Jung, B. K., et al. (2007). Regulation of the HIF-1alpha stability by histone deacetylases. Oncology Reports, 17(3), 647–651.PubMed Kim, S. H., Jeong, J. W., Park, J. A., Lee, J. W., Seo, J. H., Jung, B. K., et al. (2007). Regulation of the HIF-1alpha stability by histone deacetylases. Oncology Reports, 17(3), 647–651.PubMed
17.
Zurück zum Zitat Jang, K. S., Paik, S. S., Chung, H. K., Oh, Y. H., & Kong, G. (2006). MTA1 overexpression correlates significantly with tumor grade and angiogenesis in human breast cancer. Cancer Science, 97(5), 374–379.PubMed Jang, K. S., Paik, S. S., Chung, H. K., Oh, Y. H., & Kong, G. (2006). MTA1 overexpression correlates significantly with tumor grade and angiogenesis in human breast cancer. Cancer Science, 97(5), 374–379.PubMed
18.
Zurück zum Zitat Martin, M. D., Hilsenbeck, S. G., Mohsin, S. K., Hopp, T. A., Clark, G. M., Osborne, C. K., et al. (2006). Breast tumors that overexpress nuclear metastasis-associated 1 (MTA1) protein have high recurrence risks but enhanced responses to systemic therapies. Breast Cancer Research and Treatment, 95(1), 7–12.PubMed Martin, M. D., Hilsenbeck, S. G., Mohsin, S. K., Hopp, T. A., Clark, G. M., Osborne, C. K., et al. (2006). Breast tumors that overexpress nuclear metastasis-associated 1 (MTA1) protein have high recurrence risks but enhanced responses to systemic therapies. Breast Cancer Research and Treatment, 95(1), 7–12.PubMed
19.
Zurück zum Zitat Hofer, M. D., Kuefer, R., Varambally, S., Li, H., Ma, J., Shapiro, G. I., et al. (2004). The role of metastasis-associated protein 1 in prostate cancer progression. Cancer Research, 64(3), 825–829.PubMed Hofer, M. D., Kuefer, R., Varambally, S., Li, H., Ma, J., Shapiro, G. I., et al. (2004). The role of metastasis-associated protein 1 in prostate cancer progression. Cancer Research, 64(3), 825–829.PubMed
20.
Zurück zum Zitat Toh, Y., Ohga, T., Endo, K., Adachi, E., Kusumoto, H., Haraguchi, M., et al. (2004). Expression of the metastasis-associated MTA1 protein and its relationship to deacetylation of the histone H4 in esophageal squamous cell carcinomas. International Journal of Cancer, 110(3), 362–367. Toh, Y., Ohga, T., Endo, K., Adachi, E., Kusumoto, H., Haraguchi, M., et al. (2004). Expression of the metastasis-associated MTA1 protein and its relationship to deacetylation of the histone H4 in esophageal squamous cell carcinomas. International Journal of Cancer, 110(3), 362–367.
21.
Zurück zum Zitat Balasenthil, S., Broaddus, R. R., & Kumar, R. (2006). Expression of metastasis-associated protein 1 (MTA1) in benign endometrium and endometrial adenocarcinomas. Human Pathology, 37(6), 656–661.PubMed Balasenthil, S., Broaddus, R. R., & Kumar, R. (2006). Expression of metastasis-associated protein 1 (MTA1) in benign endometrium and endometrial adenocarcinomas. Human Pathology, 37(6), 656–661.PubMed
22.
Zurück zum Zitat Toh, Y., Oki, E., Oda, S., Tokunaga, E., Ohno, S., Maehara, Y., et al. (1997). Overexpression of the MTA1 gene in gastrointestinal carcinomas: correlation with invasion and metastasis. International Journal of Cancer, 74(4), 459–463. Toh, Y., Oki, E., Oda, S., Tokunaga, E., Ohno, S., Maehara, Y., et al. (1997). Overexpression of the MTA1 gene in gastrointestinal carcinomas: correlation with invasion and metastasis. International Journal of Cancer, 74(4), 459–463.
23.
Zurück zum Zitat Sasaki, H., Moriyama, S., Nakashima, Y., Kobayashi, Y., Yukiue, H., Kaji, M., et al. (2002). Expression of the MTA1 mRNA in advanced lung cancer. Lung Cancer, 35(2), 149–154.PubMed Sasaki, H., Moriyama, S., Nakashima, Y., Kobayashi, Y., Yukiue, H., Kaji, M., et al. (2002). Expression of the MTA1 mRNA in advanced lung cancer. Lung Cancer, 35(2), 149–154.PubMed
24.
Zurück zum Zitat Kumar, R., Wang, R. A., & Bagheri-Yarmand, R. (2003). Emerging roles of MTA family members in human cancers. Seminars in Oncology, 30(5 suppl 16), 30–37.PubMed Kumar, R., Wang, R. A., & Bagheri-Yarmand, R. (2003). Emerging roles of MTA family members in human cancers. Seminars in Oncology, 30(5 suppl 16), 30–37.PubMed
25.
Zurück zum Zitat Moon, W. S., Chang, K., & Tarnawski, A. S. (2004). Overexpression of metastatic tumor antigen 1 in hepatocellular carcinoma: relationship to vascular invasion and estrogen receptor-α. Human Pathology, 35(4), 424–429.PubMed Moon, W. S., Chang, K., & Tarnawski, A. S. (2004). Overexpression of metastatic tumor antigen 1 in hepatocellular carcinoma: relationship to vascular invasion and estrogen receptor-α. Human Pathology, 35(4), 424–429.PubMed
26.
Zurück zum Zitat Hamatsu, T., Rikimaru, T., Yamashita, Y., Aishima, S., Tanaka, S., Shirabe, K., et al. (2003). The role of MTA1 gene expression in human hepatocellular carcinoma. Oncology Reports, 10(3), 599–604.PubMed Hamatsu, T., Rikimaru, T., Yamashita, Y., Aishima, S., Tanaka, S., Shirabe, K., et al. (2003). The role of MTA1 gene expression in human hepatocellular carcinoma. Oncology Reports, 10(3), 599–604.PubMed
27.
Zurück zum Zitat Ryu, S. H., Chung, Y. H., Lee, H., Kim, J. A., Shin, H. D., Min, H. J., et al. (2008). Metastatic tumor antigen 1 is closely associated with frequent post-operative recurrence and poor survival in patients with hepatocellular carcinoma. Hepatology, 47(3), 929–936.PubMed Ryu, S. H., Chung, Y. H., Lee, H., Kim, J. A., Shin, H. D., Min, H. J., et al. (2008). Metastatic tumor antigen 1 is closely associated with frequent post-operative recurrence and poor survival in patients with hepatocellular carcinoma. Hepatology, 47(3), 929–936.PubMed
28.
Zurück zum Zitat Lee, H., Ryu, S. H., Hong, S. S., Seo, D. D., Min, H. J., Jang, M. K., et al. (2009). Overexpression of metastasis-associated protein 2 is associated with hepatocellular carcinoma size and differentiation. Journal of Gastroenterology and Hepatology, 24(8), 1445–1450.PubMed Lee, H., Ryu, S. H., Hong, S. S., Seo, D. D., Min, H. J., Jang, M. K., et al. (2009). Overexpression of metastasis-associated protein 2 is associated with hepatocellular carcinoma size and differentiation. Journal of Gastroenterology and Hepatology, 24(8), 1445–1450.PubMed
29.
Zurück zum Zitat Lee, S. H., Chung, Y. H., Kim, J. A., Lee, D., Jin, Y. J., Shim, J. H., et al. (2011). Single nucleotide polymorphisms associated with metastatic tumor antigen 1 overexpression in patients with hepatocellular carcinoma. Liver International, 32(3), 457–466.PubMed Lee, S. H., Chung, Y. H., Kim, J. A., Lee, D., Jin, Y. J., Shim, J. H., et al. (2011). Single nucleotide polymorphisms associated with metastatic tumor antigen 1 overexpression in patients with hepatocellular carcinoma. Liver International, 32(3), 457–466.PubMed
30.
Zurück zum Zitat Jin, Y. J., Chung, Y. H., Kim, J. A., Park, W. H., Lee, D., Seo, D. D., et al. (2012). Factors predisposing metastatic tumor antigen 1 overexpression in hepatitis B virus associated hepatocellular carcinoma. Digestive Diseases and Sciences, 57(11), 2917–2923.PubMed Jin, Y. J., Chung, Y. H., Kim, J. A., Park, W. H., Lee, D., Seo, D. D., et al. (2012). Factors predisposing metastatic tumor antigen 1 overexpression in hepatitis B virus associated hepatocellular carcinoma. Digestive Diseases and Sciences, 57(11), 2917–2923.PubMed
31.
Zurück zum Zitat Lee, D., Chung, Y. H., Kim, J. A., Park, W. H., Jin, Y. J., Shim, J. H., et al. (2013). Safety and efficacy of adjuvant pegylated interferon therapy for metastatic tumor antigen 1-positive hepatocellular carcinoma. Cancer, 119(12), 2239–2246.PubMed Lee, D., Chung, Y. H., Kim, J. A., Park, W. H., Jin, Y. J., Shim, J. H., et al. (2013). Safety and efficacy of adjuvant pegylated interferon therapy for metastatic tumor antigen 1-positive hepatocellular carcinoma. Cancer, 119(12), 2239–2246.PubMed
32.
Zurück zum Zitat Yao, Y. L., & Yang, W. M. (2003). The metastasis-associated proteins 1 and 2 form distinct protein complexes with histone deacetylase activity. Journal of Biological Chemistry, 278(43), 42560–42568.PubMed Yao, Y. L., & Yang, W. M. (2003). The metastasis-associated proteins 1 and 2 form distinct protein complexes with histone deacetylase activity. Journal of Biological Chemistry, 278(43), 42560–42568.PubMed
33.
Zurück zum Zitat Toh, Y., Pencil, S. D., & Nicolson, G. L. (1995). Analysis of the complete sequence of the novel metastasis-associated candidate gene, mta1, differentially expressed in mammary adenocarcinoma and breast cancer cell lines. Gene, 159(1), 97–104.PubMed Toh, Y., Pencil, S. D., & Nicolson, G. L. (1995). Analysis of the complete sequence of the novel metastasis-associated candidate gene, mta1, differentially expressed in mammary adenocarcinoma and breast cancer cell lines. Gene, 159(1), 97–104.PubMed
34.
Zurück zum Zitat Pencil, S. D., Toh, Y., & Nicolson, G. L. (1993). Candidate metastasis-associated genes of the rat 13762NF mammary adenocarcinoma. Breast Cancer Research and Treatment, 25(2), 165–174.PubMed Pencil, S. D., Toh, Y., & Nicolson, G. L. (1993). Candidate metastasis-associated genes of the rat 13762NF mammary adenocarcinoma. Breast Cancer Research and Treatment, 25(2), 165–174.PubMed
35.
Zurück zum Zitat Toh, Y., & Nicolson, G. L. (2009). The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. Clinical and Experimental Metastasis, 26(3), 215–227.PubMed Toh, Y., & Nicolson, G. L. (2009). The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. Clinical and Experimental Metastasis, 26(3), 215–227.PubMed
36.
Zurück zum Zitat Manavathi, B., & Kumar, R. (2007). Metastasis tumor antigens, an emerging family of multifaceted master coregulators. Journal of Biological Chemistry, 282(3), 1529–1533.PubMed Manavathi, B., & Kumar, R. (2007). Metastasis tumor antigens, an emerging family of multifaceted master coregulators. Journal of Biological Chemistry, 282(3), 1529–1533.PubMed
37.
Zurück zum Zitat Nawa, A., Nishimori, K., Lin, P., Maki, Y., Moue, K., Sawada, H., et al. (2000). Tumor metastasis-associated human MTA1 gene: its deduced protein sequence, localization, and association with breast cancer cell proliferation using antisense phosphorothioate oligonucleotides. Journal of Cellular Biochemistry, 79(2), 202–212.PubMed Nawa, A., Nishimori, K., Lin, P., Maki, Y., Moue, K., Sawada, H., et al. (2000). Tumor metastasis-associated human MTA1 gene: its deduced protein sequence, localization, and association with breast cancer cell proliferation using antisense phosphorothioate oligonucleotides. Journal of Cellular Biochemistry, 79(2), 202–212.PubMed
38.
Zurück zum Zitat Singh, R. R., & Kumar, R. (2007). MTA family of transcriptional metaregulators in mammary gland morphogenesis and breast cancer. Journal of Mammary Gland Biology and Neoplasia, 12(2–3), 115–125.PubMed Singh, R. R., & Kumar, R. (2007). MTA family of transcriptional metaregulators in mammary gland morphogenesis and breast cancer. Journal of Mammary Gland Biology and Neoplasia, 12(2–3), 115–125.PubMed
39.
Zurück zum Zitat Pawson, T., & Schlessingert, J. (1993). SH2 and SH3 domains. Current Biology, 3(7), 434–442.PubMed Pawson, T., & Schlessingert, J. (1993). SH2 and SH3 domains. Current Biology, 3(7), 434–442.PubMed
40.
Zurück zum Zitat Bar-Sagi, D., Rotin, D., Batzer, A., Mandiyan, V., & Schlessinger, J. (1993). SH3 domains direct cellular localization of signaling molecules. Cell, 74(1), 83–91.PubMed Bar-Sagi, D., Rotin, D., Batzer, A., Mandiyan, V., & Schlessinger, J. (1993). SH3 domains direct cellular localization of signaling molecules. Cell, 74(1), 83–91.PubMed
41.
Zurück zum Zitat Weng, Z., Taylor, J. A., Turner, C. E., Brugge, J. S., & Seidel-Dugan, C. (1993). Detection of Src homology 3-binding proteins, including paxillin, in normal and v-Src-transformed Balb/c 3T3 cells. Journal of Biological Chemistry, 268(20), 14956–14963.PubMed Weng, Z., Taylor, J. A., Turner, C. E., Brugge, J. S., & Seidel-Dugan, C. (1993). Detection of Src homology 3-binding proteins, including paxillin, in normal and v-Src-transformed Balb/c 3T3 cells. Journal of Biological Chemistry, 268(20), 14956–14963.PubMed
42.
Zurück zum Zitat Toh, Y., Pencil, S. D., & Nicolson, G. L. (1994). A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. Journal of Biological Chemistry, 269(37), 22958–22963.PubMed Toh, Y., Pencil, S. D., & Nicolson, G. L. (1994). A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. Journal of Biological Chemistry, 269(37), 22958–22963.PubMed
43.
Zurück zum Zitat Kumar, R., Wang, R. A., Mazumdar, A., Talukder, A. H., Mandal, M., Yang, Z., et al. (2002). A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm. Nature, 418(6898), 654–657.PubMed Kumar, R., Wang, R. A., Mazumdar, A., Talukder, A. H., Mandal, M., Yang, Z., et al. (2002). A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm. Nature, 418(6898), 654–657.PubMed
44.
Zurück zum Zitat Li, W., Ma, L., Zhao, J., Liu, X., Li, Z., & Zhang, Y. (2009). Expression profile of MTA1 in adult mouse tissues. Tissue and Cell, 41(6), 390–399.PubMed Li, W., Ma, L., Zhao, J., Liu, X., Li, Z., & Zhang, Y. (2009). Expression profile of MTA1 in adult mouse tissues. Tissue and Cell, 41(6), 390–399.PubMed
45.
Zurück zum Zitat Liu, J., Xu, D., Wang, H., Zhang, Y., Chang, Y., Zhang, J., et al. (2014). The subcellular distribution and function of MTA1 in cancer differentiation. Oncotarget, 5(13), 5153–5164.PubMedCentralPubMed Liu, J., Xu, D., Wang, H., Zhang, Y., Chang, Y., Zhang, J., et al. (2014). The subcellular distribution and function of MTA1 in cancer differentiation. Oncotarget, 5(13), 5153–5164.PubMedCentralPubMed
46.
Zurück zum Zitat Nagaraj S. R., Shilpa P., Rachaiah K., Salimath B.P. (2013). Crosstalk between VEGF and MTA1 signaling pathways contribute to aggressiveness of breast carcinoma. Molecular Carcinogenesis, 2013 Nov 22. doi: 10.1002/mc.22104 Nagaraj S. R., Shilpa P., Rachaiah K., Salimath B.P. (2013). Crosstalk between VEGF and MTA1 signaling pathways contribute to aggressiveness of breast carcinoma. Molecular Carcinogenesis, 2013 Nov 22. doi: 10.​1002/​mc.​22104
47.
Zurück zum Zitat Neuveut, C., Wei, Y., & Buendia, M. A. (2010). Mechanisms of HBV-related hepatocarcinogenesis. Journal of Hepatology, 52(4), 594–604.PubMed Neuveut, C., Wei, Y., & Buendia, M. A. (2010). Mechanisms of HBV-related hepatocarcinogenesis. Journal of Hepatology, 52(4), 594–604.PubMed
48.
Zurück zum Zitat Murakami, S. (2001). Hepatitis B virus X protein: a multifunctional viral regulator. Journal of Gastroenterology, 36(10), 651–660.PubMed Murakami, S. (2001). Hepatitis B virus X protein: a multifunctional viral regulator. Journal of Gastroenterology, 36(10), 651–660.PubMed
49.
Zurück zum Zitat Zhang, X., Zhang, H., & Ye, L. (2006). Effects of hepatitis B virus X protein on the development of liver cancer. Journal of Laboratory and Clinical Medicine, 147(2), 58–66.PubMed Zhang, X., Zhang, H., & Ye, L. (2006). Effects of hepatitis B virus X protein on the development of liver cancer. Journal of Laboratory and Clinical Medicine, 147(2), 58–66.PubMed
50.
Zurück zum Zitat Yun, C., Um, H. R., Jin, Y. H., Wang, J. H., Lee, M. O., Park, S., et al. (2002). NF-kappaB activation by hepatitis B virus X (HBx) protein shifts the cellular fate toward survival. Cancer Letters, 184(1), 97–104.PubMed Yun, C., Um, H. R., Jin, Y. H., Wang, J. H., Lee, M. O., Park, S., et al. (2002). NF-kappaB activation by hepatitis B virus X (HBx) protein shifts the cellular fate toward survival. Cancer Letters, 184(1), 97–104.PubMed
51.
Zurück zum Zitat Chan, D. W., & Ng, I. O. (2006). Knock-down of hepatitis B virus X protein reduces the tumorigenicity of hepatocellular carcinoma cells. Journal of Pathology, 208(3), 372–380.PubMed Chan, D. W., & Ng, I. O. (2006). Knock-down of hepatitis B virus X protein reduces the tumorigenicity of hepatocellular carcinoma cells. Journal of Pathology, 208(3), 372–380.PubMed
52.
Zurück zum Zitat Yoo, Y. G., Na, T. Y., Seo, H. W., Seong, J. K., Park, C. K., Shin, Y. K., et al. (2008). Hepatitis B virus X protein induces the expression of MTA1 and HDAC1, which enhances hypoxia signaling in hepatocellular carcinoma cells. Oncogene, 27(24), 3405–3413.PubMed Yoo, Y. G., Na, T. Y., Seo, H. W., Seong, J. K., Park, C. K., Shin, Y. K., et al. (2008). Hepatitis B virus X protein induces the expression of MTA1 and HDAC1, which enhances hypoxia signaling in hepatocellular carcinoma cells. Oncogene, 27(24), 3405–3413.PubMed
53.
Zurück zum Zitat Feitelson, M. A., & Lee, J. (2007). Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis. Cancer Letters, 252(2), 157–170.PubMed Feitelson, M. A., & Lee, J. (2007). Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis. Cancer Letters, 252(2), 157–170.PubMed
54.
Zurück zum Zitat Liu, B., Wen, X., Huang, C., & Wei, Y. (2013). Unraveling the complexity of hepatitis B virus: from molecular understanding to therapeutic strategy in 50 years. International Journal of Biochemistry and Cell Biology, 45(9), 1987–1996.PubMed Liu, B., Wen, X., Huang, C., & Wei, Y. (2013). Unraveling the complexity of hepatitis B virus: from molecular understanding to therapeutic strategy in 50 years. International Journal of Biochemistry and Cell Biology, 45(9), 1987–1996.PubMed
55.
Zurück zum Zitat Wang, F., Zhou, H., Yang, Y., Xia, X., Sun, Q., Luo, J., et al. (2012). Hepatitis B virus X protein promotes the growth of hepatocellular carcinoma by modulation of the Notch signaling pathway. Oncology Reports, 27(4), 1170–1176.PubMedCentralPubMed Wang, F., Zhou, H., Yang, Y., Xia, X., Sun, Q., Luo, J., et al. (2012). Hepatitis B virus X protein promotes the growth of hepatocellular carcinoma by modulation of the Notch signaling pathway. Oncology Reports, 27(4), 1170–1176.PubMedCentralPubMed
56.
Zurück zum Zitat Lara-Pezzi, E., Roche, S., Andrisani, O. M., Sánchez-Madrid, F., & López-Cabrera, M. (2001). The hepatitis B virus HBx protein induces adherens junction disruption in a src-dependent manner. Oncogene, 20(26), 3323–3331.PubMed Lara-Pezzi, E., Roche, S., Andrisani, O. M., Sánchez-Madrid, F., & López-Cabrera, M. (2001). The hepatitis B virus HBx protein induces adherens junction disruption in a src-dependent manner. Oncogene, 20(26), 3323–3331.PubMed
57.
Zurück zum Zitat Lara-Pezzi, E., Majano, P. L., Yáñez-Mó, M., Gómez-Gonzalo, M., Carretero, M., Moreno-Otero, R., et al. (2001). Effect of the hepatitis B virus HBx protein on integrin-mediated adhesion to and migration on extracellular matrix. Journal of Hepatology, 34(3), 409–415.PubMed Lara-Pezzi, E., Majano, P. L., Yáñez-Mó, M., Gómez-Gonzalo, M., Carretero, M., Moreno-Otero, R., et al. (2001). Effect of the hepatitis B virus HBx protein on integrin-mediated adhesion to and migration on extracellular matrix. Journal of Hepatology, 34(3), 409–415.PubMed
58.
Zurück zum Zitat Lara-Pezzi, E., Gómez-Gaviro, M. V., Gálvez, B. G., Mira, E., Iñiguez, M. A., Fresno, M., et al. (2002). The hepatitis B virus X protein promotes tumor cell invasion by inducing membrane-type matrix metalloproteinase-1 and cyclooxygenase-2 expression. Journal of Clinical Investigation, 110(12), 1831–1838.PubMedCentralPubMed Lara-Pezzi, E., Gómez-Gaviro, M. V., Gálvez, B. G., Mira, E., Iñiguez, M. A., Fresno, M., et al. (2002). The hepatitis B virus X protein promotes tumor cell invasion by inducing membrane-type matrix metalloproteinase-1 and cyclooxygenase-2 expression. Journal of Clinical Investigation, 110(12), 1831–1838.PubMedCentralPubMed
59.
Zurück zum Zitat Chung, T. W., Lee, Y. C., & Kim, C. H. (2004). Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways: involvement of invasive potential. FASEB Journal, 18(10), 1123–1125.PubMed Chung, T. W., Lee, Y. C., & Kim, C. H. (2004). Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways: involvement of invasive potential. FASEB Journal, 18(10), 1123–1125.PubMed
60.
Zurück zum Zitat Yu, F. L., Liu, H. J., Lee, J. W., Liao, M. H., & Shih, W. L. (2005). Hepatitis B virus X protein promotes cell migration by inducing matrix metalloproteinase-3. Journal of Hepatology, 42(4), 520–527.PubMed Yu, F. L., Liu, H. J., Lee, J. W., Liao, M. H., & Shih, W. L. (2005). Hepatitis B virus X protein promotes cell migration by inducing matrix metalloproteinase-3. Journal of Hepatology, 42(4), 520–527.PubMed
61.
Zurück zum Zitat Ou, D. P., Tao, Y. M., Chang, Z. G., Tang, F. Q., & Yang, L. Y. (2006). Hepatocellular carcinoma cells containing hepatitis B virus X protein have enhanced invasive potential conditionally. Digestive and Liver Disease, 38(4), 262–267.PubMed Ou, D. P., Tao, Y. M., Chang, Z. G., Tang, F. Q., & Yang, L. Y. (2006). Hepatocellular carcinoma cells containing hepatitis B virus X protein have enhanced invasive potential conditionally. Digestive and Liver Disease, 38(4), 262–267.PubMed
62.
Zurück zum Zitat Ou, D. P., Tao, Y. M., Tang, F. Q., & Yang, L. Y. (2007). The hepatitis B virus X protein promotes hepatocellular carcinoma metastasis by upregulation of matrix metalloproteinases. International Journal of Cancer, 120(6), 1208–1214. Ou, D. P., Tao, Y. M., Tang, F. Q., & Yang, L. Y. (2007). The hepatitis B virus X protein promotes hepatocellular carcinoma metastasis by upregulation of matrix metalloproteinases. International Journal of Cancer, 120(6), 1208–1214.
63.
Zurück zum Zitat Zhang, X., Liu, S., Hu, T., Liu, S., He, Y., & Sun, S. (2009). Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology, 50(2), 490–499.PubMed Zhang, X., Liu, S., Hu, T., Liu, S., He, Y., & Sun, S. (2009). Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology, 50(2), 490–499.PubMed
64.
Zurück zum Zitat Manavathi, B., Singh, K., & Kumar, R. (2007). MTA family of coregulators in nuclear receptor biology and pathology. Nuclear Receptor Signaling, 5, e010.PubMedCentralPubMed Manavathi, B., Singh, K., & Kumar, R. (2007). MTA family of coregulators in nuclear receptor biology and pathology. Nuclear Receptor Signaling, 5, e010.PubMedCentralPubMed
65.
Zurück zum Zitat Bui-Nguyen, T. M., Pakala, S. B., Sirigiri, R. D., Xia, W., Hung, M. C., Sarin, S. K., et al. (2010). NF-kappaB signaling mediates the induction of MTA1 by hepatitis B virus transactivator protein HBx. Oncogene, 29(8), 1179–1189.PubMedCentralPubMed Bui-Nguyen, T. M., Pakala, S. B., Sirigiri, R. D., Xia, W., Hung, M. C., Sarin, S. K., et al. (2010). NF-kappaB signaling mediates the induction of MTA1 by hepatitis B virus transactivator protein HBx. Oncogene, 29(8), 1179–1189.PubMedCentralPubMed
66.
Zurück zum Zitat Jung, J. K., Park, S. H., & Jang, K. L. (2010). Hepatitis B virus X protein overcomes the growth-inhibitory potential of retinoic acid by downregulating retinoic acid receptor-beta2 expression via DNA methylation. Journal of General Virology, 91(Pt 2), 493–500.PubMed Jung, J. K., Park, S. H., & Jang, K. L. (2010). Hepatitis B virus X protein overcomes the growth-inhibitory potential of retinoic acid by downregulating retinoic acid receptor-beta2 expression via DNA methylation. Journal of General Virology, 91(Pt 2), 493–500.PubMed
67.
Zurück zum Zitat Park, I. Y., Sohn, B. H., Yu, E., Suh, D. J., Chung, Y. H., Lee, J. H., et al. (2007). Aberrant epigenetic modifications in hepatocarcinogenesis induced by hepatitis B virus X protein. Gastroenterology, 132(4), 1476–1494.PubMed Park, I. Y., Sohn, B. H., Yu, E., Suh, D. J., Chung, Y. H., Lee, J. H., et al. (2007). Aberrant epigenetic modifications in hepatocarcinogenesis induced by hepatitis B virus X protein. Gastroenterology, 132(4), 1476–1494.PubMed
68.
Zurück zum Zitat Lee, M. H., Na, H., Na, T. Y., Shin, Y. K., Seong, J. K., & Lee, M. O. (2012). Epigenetic control of metastasis-associated protein 1 gene expression by hepatitis B virus X protein during hepatocarcinogenesis. Oncogenesis, 1, e25.PubMedCentralPubMed Lee, M. H., Na, H., Na, T. Y., Shin, Y. K., Seong, J. K., & Lee, M. O. (2012). Epigenetic control of metastasis-associated protein 1 gene expression by hepatitis B virus X protein during hepatocarcinogenesis. Oncogenesis, 1, e25.PubMedCentralPubMed
69.
Zurück zum Zitat Reddy, S. D., Pakala, S. B., Ohshiro, K., Rayala, S. K., & Kumar, R. (2009). MicroRNA-661, a c/EBPalpha target, inhibits metastatic tumor antigen 1 and regulates its functions. Cancer Research, 69(14), 5639–5642.PubMedCentralPubMed Reddy, S. D., Pakala, S. B., Ohshiro, K., Rayala, S. K., & Kumar, R. (2009). MicroRNA-661, a c/EBPalpha target, inhibits metastatic tumor antigen 1 and regulates its functions. Cancer Research, 69(14), 5639–5642.PubMedCentralPubMed
70.
Zurück zum Zitat Bui-Nguyen, T. M., Pakala, S. B., Sirigiri, D. R., Martin, E., Murad, F., & Kumar, R. (2010). Stimulation of inducible nitric oxide by hepatitis B virus transactivator protein HBx requires MTA1 coregulator. Journal of Biological Chemistry, 285(10), 6980–6986.PubMedCentralPubMed Bui-Nguyen, T. M., Pakala, S. B., Sirigiri, D. R., Martin, E., Murad, F., & Kumar, R. (2010). Stimulation of inducible nitric oxide by hepatitis B virus transactivator protein HBx requires MTA1 coregulator. Journal of Biological Chemistry, 285(10), 6980–6986.PubMedCentralPubMed
71.
Zurück zum Zitat Aboobaker, A. A., Tomancak, P., Patel, N., Rubin, G. M., & Lai, E. C. (2005). Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 102(50), 18017–18022.PubMedCentralPubMed Aboobaker, A. A., Tomancak, P., Patel, N., Rubin, G. M., & Lai, E. C. (2005). Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 102(50), 18017–18022.PubMedCentralPubMed
72.
Zurück zum Zitat Iorio, M. V., Ferracin, M., Liu, C. G., Veronese, A., Spizzo, R., Sabbioni, S., et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Research, 65(16), 7065–7070.PubMed Iorio, M. V., Ferracin, M., Liu, C. G., Veronese, A., Spizzo, R., Sabbioni, S., et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Research, 65(16), 7065–7070.PubMed
73.
Zurück zum Zitat Makeyev, E. V., & Maniatis, T. (2008). Multilevel regulation of gene expression by microRNAs. Science, 319(5871), 1789–1790.PubMedCentralPubMed Makeyev, E. V., & Maniatis, T. (2008). Multilevel regulation of gene expression by microRNAs. Science, 319(5871), 1789–1790.PubMedCentralPubMed
74.
Zurück zum Zitat Behm-Ansmant, I., Rehwinkel, J., & Izaurralde, E. (2006). MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay. Cold Spring Harbor Symposia on Quantitative Biology, 71, 523–530.PubMed Behm-Ansmant, I., Rehwinkel, J., & Izaurralde, E. (2006). MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay. Cold Spring Harbor Symposia on Quantitative Biology, 71, 523–530.PubMed
75.
Zurück zum Zitat Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682–688.PubMed Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682–688.PubMed
76.
Zurück zum Zitat Reddy, S. D., Ohshiro, K., Rayala, S. K., & Kumar, R. (2008). MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Research, 68(20), 8195–8200.PubMedCentralPubMed Reddy, S. D., Ohshiro, K., Rayala, S. K., & Kumar, R. (2008). MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Research, 68(20), 8195–8200.PubMedCentralPubMed
77.
Zurück zum Zitat Kefas, B., Godlewski, J., Comeau, L., Li, Y., Abounader, R., Hawkinson, M., et al. (2008). microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Research, 68(10), 3566–3572.PubMed Kefas, B., Godlewski, J., Comeau, L., Li, Y., Abounader, R., Hawkinson, M., et al. (2008). microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Research, 68(10), 3566–3572.PubMed
78.
Zurück zum Zitat Li, S., Tian, H., Yue, W., Li, L., Gao, C., Si, L., et al. (2013). Down-regulation of MTA1 protein leads to the inhibition of migration, invasion, and angiogenesis of non-small-cell lung cancer cell line. Acta Biochimica et Biophysica Sinica, 45(2), 115–122.PubMed Li, S., Tian, H., Yue, W., Li, L., Gao, C., Si, L., et al. (2013). Down-regulation of MTA1 protein leads to the inhibition of migration, invasion, and angiogenesis of non-small-cell lung cancer cell line. Acta Biochimica et Biophysica Sinica, 45(2), 115–122.PubMed
79.
Zurück zum Zitat Mazure, N. M., Brahimi-Horn, M. C., Berta, M. A., Benizri, E., Bilton, R. L., Dayan, F., et al. (2004). HIF-1: master and commander of the hypoxic world. A pharmacological approach to its regulation by siRNAs. Biochemical Pharmacology, 68(6), 971–980.PubMed Mazure, N. M., Brahimi-Horn, M. C., Berta, M. A., Benizri, E., Bilton, R. L., Dayan, F., et al. (2004). HIF-1: master and commander of the hypoxic world. A pharmacological approach to its regulation by siRNAs. Biochemical Pharmacology, 68(6), 971–980.PubMed
80.
Zurück zum Zitat Bruick, R. K., & McKnight, S. L. (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science, 294(5545), 1337–1340.PubMed Bruick, R. K., & McKnight, S. L. (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science, 294(5545), 1337–1340.PubMed
81.
Zurück zum Zitat Epstein, A. C., Gleadle, J. M., McNeill, L. A., Hewitson, K. S., O’Rourke, J., Mole, D. R., et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 107(1), 43–54.PubMed Epstein, A. C., Gleadle, J. M., McNeill, L. A., Hewitson, K. S., O’Rourke, J., Mole, D. R., et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 107(1), 43–54.PubMed
82.
Zurück zum Zitat Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews Cancer, 3(10), 721–732.PubMed Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews Cancer, 3(10), 721–732.PubMed
83.
Zurück zum Zitat Jeong, J. W., Bae, M. K., Ahn, M. Y., Kim, S. H., Sohn, T. K., Bae, M. H., et al. (2002). Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell, 111(5), 709–720.PubMed Jeong, J. W., Bae, M. K., Ahn, M. Y., Kim, S. H., Sohn, T. K., Bae, M. H., et al. (2002). Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell, 111(5), 709–720.PubMed
84.
Zurück zum Zitat Côté, J., Quinn, J., Workman, J. L., & Peterson, C. L. (1994). Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science, 265(5168), 53–60.PubMed Côté, J., Quinn, J., Workman, J. L., & Peterson, C. L. (1994). Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science, 265(5168), 53–60.PubMed
85.
Zurück zum Zitat Kwon, H., Imbalzano, A. N., Khavari, P. A., Kingston, R. E., & Green, M. R. (1994). Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature, 370(6489), 477–481.PubMed Kwon, H., Imbalzano, A. N., Khavari, P. A., Kingston, R. E., & Green, M. R. (1994). Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature, 370(6489), 477–481.PubMed
86.
Zurück zum Zitat Tsukiyama, T., & Wu, C. (1995). Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell, 83(6), 1011–1020.PubMed Tsukiyama, T., & Wu, C. (1995). Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell, 83(6), 1011–1020.PubMed
87.
Zurück zum Zitat Cairns, B. R., Lorch, Y., Li, Y., Zhang, M., Lacomis, L., Erdjument-Bromage, H., et al. (1996). RSC, an essential, abundant chromatin-remodeling complex. Cell, 87(7), 1249–1260.PubMed Cairns, B. R., Lorch, Y., Li, Y., Zhang, M., Lacomis, L., Erdjument-Bromage, H., et al. (1996). RSC, an essential, abundant chromatin-remodeling complex. Cell, 87(7), 1249–1260.PubMed
88.
Zurück zum Zitat Wang, W., Chi, T., Xue, Y., Zhou, S., Kuo, A., & Crabtree, G. R. (1998). Architectural DNA binding by a high-mobility-group/kinesin-like subunit in mammalian SWI/SNF-related complexes. Proceedings of the National Academy of Sciences of the United States of America, 95(2), 492–498.PubMedCentralPubMed Wang, W., Chi, T., Xue, Y., Zhou, S., Kuo, A., & Crabtree, G. R. (1998). Architectural DNA binding by a high-mobility-group/kinesin-like subunit in mammalian SWI/SNF-related complexes. Proceedings of the National Academy of Sciences of the United States of America, 95(2), 492–498.PubMedCentralPubMed
89.
Zurück zum Zitat Varga-Weisz, P. D., Wilm, M., Bonte, E., Dumas, K., Mann, M., & Becker, P. B. (1997). Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature, 388(6642), 598–602.PubMed Varga-Weisz, P. D., Wilm, M., Bonte, E., Dumas, K., Mann, M., & Becker, P. B. (1997). Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature, 388(6642), 598–602.PubMed
90.
Zurück zum Zitat Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Côté, J., & Wang, W. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2(6), 851–861.PubMed Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Côté, J., & Wang, W. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2(6), 851–861.PubMed
91.
Zurück zum Zitat Nair, S. S., Bommana, A., Bethony, J. M., Lyon, A. J., Ohshiro, K., Pakala, S. B., et al. (2011). The metastasis-associated protein-1 gene encodes a host permissive factor for schistosomiasis, a leading global cause of inflammation and cancer. Hepatology, 54(1), 285–295.PubMedCentralPubMed Nair, S. S., Bommana, A., Bethony, J. M., Lyon, A. J., Ohshiro, K., Pakala, S. B., et al. (2011). The metastasis-associated protein-1 gene encodes a host permissive factor for schistosomiasis, a leading global cause of inflammation and cancer. Hepatology, 54(1), 285–295.PubMedCentralPubMed
92.
Zurück zum Zitat Ghanta, K. S., Pakala, S. B., Reddy, S. D., Li, D. Q., Nair, S. S., & Kumar, R. (2011). MTA1 coregulation of transglutaminase 2 expression and function during inflammatory response. Journal of Biological Chemistry, 286(9), 7132–7138.PubMedCentralPubMed Ghanta, K. S., Pakala, S. B., Reddy, S. D., Li, D. Q., Nair, S. S., & Kumar, R. (2011). MTA1 coregulation of transglutaminase 2 expression and function during inflammatory response. Journal of Biological Chemistry, 286(9), 7132–7138.PubMedCentralPubMed
93.
Zurück zum Zitat Pakala, S. B., Bui-Nguyen, T. M., Reddy, S. D., Li, D. Q., Peng, S., Rayala, S. K., et al. (2010). Regulation of NF-kappaB circuitry by a component of the nucleosome remodeling and deacetylase complex controls inflammatory response homeostasis. Journal of Biological Chemistry, 285(31), 23590–23597.PubMedCentralPubMed Pakala, S. B., Bui-Nguyen, T. M., Reddy, S. D., Li, D. Q., Peng, S., Rayala, S. K., et al. (2010). Regulation of NF-kappaB circuitry by a component of the nucleosome remodeling and deacetylase complex controls inflammatory response homeostasis. Journal of Biological Chemistry, 285(31), 23590–23597.PubMedCentralPubMed
94.
Zurück zum Zitat Pakala, S. B., Reddy, S. D., Bui-Nguyen, T. M., Rangparia, S. S., Bommana, A., & Kumar, R. (2010). MTA1 coregulator regulates LPS response via MyD88-dependent signaling. Journal of Biological Chemistry, 285(43), 32787–32792.PubMedCentralPubMed Pakala, S. B., Reddy, S. D., Bui-Nguyen, T. M., Rangparia, S. S., Bommana, A., & Kumar, R. (2010). MTA1 coregulator regulates LPS response via MyD88-dependent signaling. Journal of Biological Chemistry, 285(43), 32787–32792.PubMedCentralPubMed
95.
Zurück zum Zitat Li, D. Q., Pakala, S. B., Reddy, S. D., Ohshiro, K., Peng, S. H., Lian, Y., et al. (2010). Revelation of p53-independent function of MTA1 in DNA damage response via modulation of the p21 WAF1-proliferating cell nuclear antigen pathway. Journal of Biological Chemistry, 285(13), 10044–10052.PubMedCentralPubMed Li, D. Q., Pakala, S. B., Reddy, S. D., Ohshiro, K., Peng, S. H., Lian, Y., et al. (2010). Revelation of p53-independent function of MTA1 in DNA damage response via modulation of the p21 WAF1-proliferating cell nuclear antigen pathway. Journal of Biological Chemistry, 285(13), 10044–10052.PubMedCentralPubMed
96.
Zurück zum Zitat Van Rechem, C., Boulay, G., Pinte, S., Stankovic-Valentin, N., Guérardel, C., & Leprince, D. (2010). Differential regulation of HIC1 target genes by CtBP and NuRD, via an acetylation/SUMOylation switch, in quiescent versus proliferating cells. Molecular and Cellular Biology, 30(16), 4045–4059.PubMedCentralPubMed Van Rechem, C., Boulay, G., Pinte, S., Stankovic-Valentin, N., Guérardel, C., & Leprince, D. (2010). Differential regulation of HIC1 target genes by CtBP and NuRD, via an acetylation/SUMOylation switch, in quiescent versus proliferating cells. Molecular and Cellular Biology, 30(16), 4045–4059.PubMedCentralPubMed
97.
Zurück zum Zitat Wales, M. M., Biel, M. A., el Deiry, W., Nelkin, B. D., Issa, J. P., Cavenee, W. K., et al. (1995). p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nature Medicine, 1(6), 570–577.PubMed Wales, M. M., Biel, M. A., el Deiry, W., Nelkin, B. D., Issa, J. P., Cavenee, W. K., et al. (1995). p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nature Medicine, 1(6), 570–577.PubMed
98.
Zurück zum Zitat El-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., et al. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell, 75(4), 817–825.PubMed El-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., et al. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell, 75(4), 817–825.PubMed
99.
Zurück zum Zitat Vitari, A. C., Leong, K. G., Newton, K., Yee, C., O’Rourke, K., Liu, J., et al. (2011). COP1 is a tumour suppressor that causes degradation of ETS transcription factors. Nature, 474(7351), 403–406.PubMed Vitari, A. C., Leong, K. G., Newton, K., Yee, C., O’Rourke, K., Liu, J., et al. (2011). COP1 is a tumour suppressor that causes degradation of ETS transcription factors. Nature, 474(7351), 403–406.PubMed
100.
Zurück zum Zitat Migliorini, D., Bogaerts, S., Defever, D., Vyas, R., Denecker, G., Radaelli, E., et al. (2011). Cop1 constitutively regulates c-Jun protein stability and functions as a tumor suppressor in mice. Journal of Clinical Investigation, 121(4), 1329–1343.PubMedCentralPubMed Migliorini, D., Bogaerts, S., Defever, D., Vyas, R., Denecker, G., Radaelli, E., et al. (2011). Cop1 constitutively regulates c-Jun protein stability and functions as a tumor suppressor in mice. Journal of Clinical Investigation, 121(4), 1329–1343.PubMedCentralPubMed
101.
Zurück zum Zitat Li, D. Q., Ohshiro, K., Reddy, S. D., Pakala, S. B., Lee, M. H., Zhang, Y., et al. (2009). E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17493–17498.PubMedCentralPubMed Li, D. Q., Ohshiro, K., Reddy, S. D., Pakala, S. B., Lee, M. H., Zhang, Y., et al. (2009). E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17493–17498.PubMedCentralPubMed
102.
Zurück zum Zitat Luo, J., Su, F., Chen, D., Shiloh, A., & Gu, W. (2000). Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature, 408(6810), 377–381.PubMed Luo, J., Su, F., Chen, D., Shiloh, A., & Gu, W. (2000). Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature, 408(6810), 377–381.PubMed
103.
Zurück zum Zitat Ohshiro, K., Rayala, S. K., Wigerup, C., Pakala, S. B., Natha, R. S., Gururaj, A. E., et al. (2010). Acetylation-dependent oncogenic activity of metastasis-associated protein 1 co-regulator. EMBO Reports, 11(9), 691–697.PubMedCentralPubMed Ohshiro, K., Rayala, S. K., Wigerup, C., Pakala, S. B., Natha, R. S., Gururaj, A. E., et al. (2010). Acetylation-dependent oncogenic activity of metastasis-associated protein 1 co-regulator. EMBO Reports, 11(9), 691–697.PubMedCentralPubMed
104.
Zurück zum Zitat Denslow, S. A., & Wade, P. A. (2007). The human Mi-2/NuRD complex and gene regulation. Oncogene, 26(37), 5433–5438.PubMed Denslow, S. A., & Wade, P. A. (2007). The human Mi-2/NuRD complex and gene regulation. Oncogene, 26(37), 5433–5438.PubMed
105.
Zurück zum Zitat Mazumdar, A., Wang, R. A., Mishra, S. K., Adam, L., Bagheri-Yarmand, R., Mandal, M., et al. (2001). Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nature Cell Biology, 3(1), 30–37.PubMed Mazumdar, A., Wang, R. A., Mishra, S. K., Adam, L., Bagheri-Yarmand, R., Mandal, M., et al. (2001). Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nature Cell Biology, 3(1), 30–37.PubMed
106.
Zurück zum Zitat Hay, E. D. (1995). An overview of epithelio-mesenchymal transformation. Acta Anatomica, 154(1), 8–20.PubMed Hay, E. D. (1995). An overview of epithelio-mesenchymal transformation. Acta Anatomica, 154(1), 8–20.PubMed
107.
Zurück zum Zitat Lamouille, S., Xu, J., & Derynck, R. (2014). Molecular mechanisms of epithelial-mesenchymal transition. Nature Reviews Molecular Cell Biology, 15(3), 178–196.PubMedCentralPubMed Lamouille, S., Xu, J., & Derynck, R. (2014). Molecular mechanisms of epithelial-mesenchymal transition. Nature Reviews Molecular Cell Biology, 15(3), 178–196.PubMedCentralPubMed
108.
Zurück zum Zitat Medici, D., & Kalluri, R. (2012). Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype. Seminars in Cancer Biology, 22(5–6), 379–384.PubMedCentralPubMed Medici, D., & Kalluri, R. (2012). Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype. Seminars in Cancer Biology, 22(5–6), 379–384.PubMedCentralPubMed
109.
Zurück zum Zitat van Meeteren, L. A., & ten Dijke, P. (2012). Regulation of endothelial cell plasticity by TGF-β. Cell and Tissue Research, 347(1), 177–186.PubMedCentralPubMed van Meeteren, L. A., & ten Dijke, P. (2012). Regulation of endothelial cell plasticity by TGF-β. Cell and Tissue Research, 347(1), 177–186.PubMedCentralPubMed
110.
Zurück zum Zitat Zeisberg, E. M., Potenta, S., Xie, L., Zeisberg, M., & Kalluri, R. (2007). Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Research, 67(21), 10123–10128.PubMed Zeisberg, E. M., Potenta, S., Xie, L., Zeisberg, M., & Kalluri, R. (2007). Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Research, 67(21), 10123–10128.PubMed
111.
Zurück zum Zitat Lee, S. W., Won, J. Y., Kim, W. J., Lee, J., Kim, K. H., Youn, S. W., et al. (2013). Snail as a potential target molecule in cardiac fibrosis: paracrine action of endothelial cells on fibroblasts through snail and CTGF axis. Molecular Therapy, 21(9), 1767–1777.PubMedCentralPubMed Lee, S. W., Won, J. Y., Kim, W. J., Lee, J., Kim, K. H., Youn, S. W., et al. (2013). Snail as a potential target molecule in cardiac fibrosis: paracrine action of endothelial cells on fibroblasts through snail and CTGF axis. Molecular Therapy, 21(9), 1767–1777.PubMedCentralPubMed
112.
Zurück zum Zitat Medici, D., Shore, E. M., Lounev, V. Y., Kaplan, F. S., Kalluri, R., & Olsen, B. R. (2010). Conversion of vascular endothelial cells into multipotent stem-like cells. Nature Medicine, 16(12), 1400–1406.PubMedCentralPubMed Medici, D., Shore, E. M., Lounev, V. Y., Kaplan, F. S., Kalluri, R., & Olsen, B. R. (2010). Conversion of vascular endothelial cells into multipotent stem-like cells. Nature Medicine, 16(12), 1400–1406.PubMedCentralPubMed
113.
Zurück zum Zitat Wong, L. L., Chang, C. F., Koay, E. S., & Zhang, D. (2009). Tyrosine phosphorylation of PP2A is regulated by HER-2 signalling and correlates with breast cancer progression. International Journal of Oncology, 34(5), 1291–1301.PubMed Wong, L. L., Chang, C. F., Koay, E. S., & Zhang, D. (2009). Tyrosine phosphorylation of PP2A is regulated by HER-2 signalling and correlates with breast cancer progression. International Journal of Oncology, 34(5), 1291–1301.PubMed
114.
Zurück zum Zitat Kim, R., Arihiro, K., Emi, M., Tanabe, K., & Osaki, A. (2006). Potential role of HER-2; in primary breast tumor with bone metastasis. Oncology Reports, 15(6), 1477–1484.PubMed Kim, R., Arihiro, K., Emi, M., Tanabe, K., & Osaki, A. (2006). Potential role of HER-2; in primary breast tumor with bone metastasis. Oncology Reports, 15(6), 1477–1484.PubMed
115.
Zurück zum Zitat Jiang, W. G., Lloyds, D., Puntis, M. C., Nakamura, T., & Hallett, M. B. (1993). Regulation of spreading and growth of colon cancer cells by hepatocyte growth factor. Clinical and Experimental Metastasis, 11(3), 235–242.PubMed Jiang, W. G., Lloyds, D., Puntis, M. C., Nakamura, T., & Hallett, M. B. (1993). Regulation of spreading and growth of colon cancer cells by hepatocyte growth factor. Clinical and Experimental Metastasis, 11(3), 235–242.PubMed
116.
Zurück zum Zitat Jiang, W., Hiscox, S., Matsumoto, K., & Nakamura, T. (1999). Hepatocyte growth factor/scatter factor, its molecular, cellular and clinical implications in cancer. Critical Reviews in Oncology/Hematology, 29(3), 209–248.PubMed Jiang, W., Hiscox, S., Matsumoto, K., & Nakamura, T. (1999). Hepatocyte growth factor/scatter factor, its molecular, cellular and clinical implications in cancer. Critical Reviews in Oncology/Hematology, 29(3), 209–248.PubMed
117.
Zurück zum Zitat Stoker, M., & Perryman, M. (1985). An epithelial scatter factor released by embryo fibroblasts. Journal of Cell Science, 77, 209–223.PubMed Stoker, M., & Perryman, M. (1985). An epithelial scatter factor released by embryo fibroblasts. Journal of Cell Science, 77, 209–223.PubMed
118.
Zurück zum Zitat Savagner, P., Yamada, K. M., & Thiery, J. P. (1997). The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. Journal of Cell Biology, 137(6), 1403–1419.PubMedCentralPubMed Savagner, P., Yamada, K. M., & Thiery, J. P. (1997). The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. Journal of Cell Biology, 137(6), 1403–1419.PubMedCentralPubMed
119.
Zurück zum Zitat Grotegut, S., von Schweinitz, D., Christofori, G., & Lehembre, F. (2006). Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO Journal, 25(15), 3534–3545.PubMedCentralPubMed Grotegut, S., von Schweinitz, D., Christofori, G., & Lehembre, F. (2006). Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO Journal, 25(15), 3534–3545.PubMedCentralPubMed
120.
Zurück zum Zitat Hiscox, S., & Jiang, W. G. (1999). Association of the HGF/SF receptor, c-met, with the cell-surface adhesion molecule, E-cadherin, and catenins in human tumor cells. Biochemical and Biophysical Research Communications, 261(2), 406–411.PubMed Hiscox, S., & Jiang, W. G. (1999). Association of the HGF/SF receptor, c-met, with the cell-surface adhesion molecule, E-cadherin, and catenins in human tumor cells. Biochemical and Biophysical Research Communications, 261(2), 406–411.PubMed
121.
Zurück zum Zitat Pakala, S. B., Singh, K., Reddy, S. D., Ohshiro, K., Li, D. Q., Mishra, L., et al. (2011). TGF-β1 signaling targets metastasis-associated protein 1, a new effector in epithelial cells. Oncogene, 30(19), 2230–2241.PubMedCentralPubMed Pakala, S. B., Singh, K., Reddy, S. D., Ohshiro, K., Li, D. Q., Mishra, L., et al. (2011). TGF-β1 signaling targets metastasis-associated protein 1, a new effector in epithelial cells. Oncogene, 30(19), 2230–2241.PubMedCentralPubMed
122.
Zurück zum Zitat Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature Reviews Cancer, 2(6), 442–454.PubMed Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature Reviews Cancer, 2(6), 442–454.PubMed
123.
Zurück zum Zitat Dannenmann, C., Shabani, N., Friese, K., Jeschke, U., Mylonas, I., & Brüning, A. (2008). The metastasis-associated gene MTA1 is upregulated in advanced ovarian cancer, represses ERbeta, and enhances expression of oncogenic cytokine GRO. Cancer Biology and Therapy, 7(9), 1460–1467.PubMed Dannenmann, C., Shabani, N., Friese, K., Jeschke, U., Mylonas, I., & Brüning, A. (2008). The metastasis-associated gene MTA1 is upregulated in advanced ovarian cancer, represses ERbeta, and enhances expression of oncogenic cytokine GRO. Cancer Biology and Therapy, 7(9), 1460–1467.PubMed
124.
Zurück zum Zitat Batlle, E., Sancho, E., Francí, C., Domínguez, D., Monfar, M., Baulida, J., et al. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biology, 2(2), 84–89.PubMed Batlle, E., Sancho, E., Francí, C., Domínguez, D., Monfar, M., Baulida, J., et al. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biology, 2(2), 84–89.PubMed
125.
Zurück zum Zitat Polyak, K., & Weinberg, R. A. (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Reviews Cancer, 9(4), 265–273.PubMed Polyak, K., & Weinberg, R. A. (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Reviews Cancer, 9(4), 265–273.PubMed
126.
Zurück zum Zitat Moon, E. J., Jeong, C. H., Jeong, J. W., Kim, K. R., Yu, D. Y., Murakami, S., et al. (2004). Hepatitis B virus X protein induces angiogenesis by stabilizing hypoxia-inducible factor-1α. FASEB Journal, 18(2), 382–384.PubMed Moon, E. J., Jeong, C. H., Jeong, J. W., Kim, K. R., Yu, D. Y., Murakami, S., et al. (2004). Hepatitis B virus X protein induces angiogenesis by stabilizing hypoxia-inducible factor-1α. FASEB Journal, 18(2), 382–384.PubMed
127.
Zurück zum Zitat Zhang, X. Y., DeSalle, L. M., Patel, J. H., Capobianco, A. J., Yu, D., Thomas-Tikhonenko, A., et al. (2005). Metastasis-associated protein I (MTA1) is an essential downstream effector of the c-MYC oncoprotein. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13968–13973.PubMedCentralPubMed Zhang, X. Y., DeSalle, L. M., Patel, J. H., Capobianco, A. J., Yu, D., Thomas-Tikhonenko, A., et al. (2005). Metastasis-associated protein I (MTA1) is an essential downstream effector of the c-MYC oncoprotein. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13968–13973.PubMedCentralPubMed
128.
Zurück zum Zitat Terradillos, O., Billet, O., Renard, C. A., Levy, R., Molina, T., Briand, P., et al. (1997). The hepatitis B virus X gene potentiates c-MYC induced liver oncogenesis in transgenic mice. Oncogene, 14(4), 395–404.PubMed Terradillos, O., Billet, O., Renard, C. A., Levy, R., Molina, T., Briand, P., et al. (1997). The hepatitis B virus X gene potentiates c-MYC induced liver oncogenesis in transgenic mice. Oncogene, 14(4), 395–404.PubMed
129.
Zurück zum Zitat Ou, D. P., Tao, Y. M., Tang, F. Q., & Yang, L. Y. (2007). The hepatitis B virus X protein promotes hepatocellular carcinoma metastasis by upregulation of matrix metalloproteinases. International Journal of Cancer, 120(6), 1208–1214. Ou, D. P., Tao, Y. M., Tang, F. Q., & Yang, L. Y. (2007). The hepatitis B virus X protein promotes hepatocellular carcinoma metastasis by upregulation of matrix metalloproteinases. International Journal of Cancer, 120(6), 1208–1214.
130.
Zurück zum Zitat Zhang, Y., Ng, H. H., Erdjument-Bromage, H., Tempst, P., Bird, A., & Reinberg, D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes and Development, 13(15), 1924–1935.PubMedCentralPubMed Zhang, Y., Ng, H. H., Erdjument-Bromage, H., Tempst, P., Bird, A., & Reinberg, D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes and Development, 13(15), 1924–1935.PubMedCentralPubMed
131.
Zurück zum Zitat Park, N. H., Song, I. H., & Chung, Y. H. (2006). Chronic hepatitis B in hepatocarcinogenesis. Postgraduate Medical Journal, 82(970), 507–51.PubMedCentralPubMed Park, N. H., Song, I. H., & Chung, Y. H. (2006). Chronic hepatitis B in hepatocarcinogenesis. Postgraduate Medical Journal, 82(970), 507–51.PubMedCentralPubMed
132.
Zurück zum Zitat Yamaguchi, R., Yano, H., Iemura, A., Ogasawara, S., Haramaki, M., & Kojiro, M. (1998). Expression of vascular endothelial growth factor in human hepatocellular carcinoma. Hepatology, 28(1), 68–77.PubMed Yamaguchi, R., Yano, H., Iemura, A., Ogasawara, S., Haramaki, M., & Kojiro, M. (1998). Expression of vascular endothelial growth factor in human hepatocellular carcinoma. Hepatology, 28(1), 68–77.PubMed
133.
Zurück zum Zitat Pang, R., & Poon, R. T. (2006). Angiogenesis and antiangiogenic therapy in hepatocellular carcinoma. Cancer Letters, 242(2), 151–167.PubMed Pang, R., & Poon, R. T. (2006). Angiogenesis and antiangiogenic therapy in hepatocellular carcinoma. Cancer Letters, 242(2), 151–167.PubMed
134.
Zurück zum Zitat Song, B. C., Chung, Y. H., Kim, J. A., Lee, H. C., Yoon, H. K., Sung, K. B., et al. (2001). Association between insulin-like growth factor-2 and metastases after transcatheter arterial chemoembolization in patients with hepatocellular carcinoma: a prospective study. Cancer, 91(12), 2386–2393.PubMed Song, B. C., Chung, Y. H., Kim, J. A., Lee, H. C., Yoon, H. K., Sung, K. B., et al. (2001). Association between insulin-like growth factor-2 and metastases after transcatheter arterial chemoembolization in patients with hepatocellular carcinoma: a prospective study. Cancer, 91(12), 2386–2393.PubMed
135.
Zurück zum Zitat Li, H., Sun, L., Xu, Y., Li, Z., Luo, W., Tang, Z., et al. (2013). Overexpression of MTA3 correlates with tumor progression in non-small cell lung cancer. Plos One, 8(6), 1–8. Li, H., Sun, L., Xu, Y., Li, Z., Luo, W., Tang, Z., et al. (2013). Overexpression of MTA3 correlates with tumor progression in non-small cell lung cancer. Plos One, 8(6), 1–8.
136.
Zurück zum Zitat Zhang, H., Stephens, L. C., & Kumar, R. (2006). Metastasis tumor antigen family proteins during breast cancer progression and metastasis in a reliable mouse model for human breast cancer. Clinical Cancer Research, 12(5), 1479–1486.PubMed Zhang, H., Stephens, L. C., & Kumar, R. (2006). Metastasis tumor antigen family proteins during breast cancer progression and metastasis in a reliable mouse model for human breast cancer. Clinical Cancer Research, 12(5), 1479–1486.PubMed
137.
Zurück zum Zitat Dong, H., Guo, H., Xie, L., Wang, G., Zhong, X., Khoury, T., et al. (2013). The metastasis-associated gene MTA3, a component of the Mi-2/NuRD transcriptional repression complex, predicts prognosis of gastroesophageal junction adenocarcinoma. PloS One, 8(5), e62986.PubMedCentralPubMed Dong, H., Guo, H., Xie, L., Wang, G., Zhong, X., Khoury, T., et al. (2013). The metastasis-associated gene MTA3, a component of the Mi-2/NuRD transcriptional repression complex, predicts prognosis of gastroesophageal junction adenocarcinoma. PloS One, 8(5), e62986.PubMedCentralPubMed
138.
Zurück zum Zitat Chu, H., Chen, X., Wang, H., Du, Y., Wang, Y., Zang, W., et al. (2014). MiR-495 regulates proliferation and migration in NSCLC by targeting MTA3. Tumour Biology, 35(4), 3487–3494.PubMed Chu, H., Chen, X., Wang, H., Du, Y., Wang, Y., Zang, W., et al. (2014). MiR-495 regulates proliferation and migration in NSCLC by targeting MTA3. Tumour Biology, 35(4), 3487–3494.PubMed
139.
Zurück zum Zitat Zhong, J. H., Ma, L., & Li, L. Q. (2014). Postoperative therapy options for hepatocellular carcinoma. Scandivian Journal of Gastroenterology, 49(6), 649–661. Zhong, J. H., Ma, L., & Li, L. Q. (2014). Postoperative therapy options for hepatocellular carcinoma. Scandivian Journal of Gastroenterology, 49(6), 649–661.
140.
Zurück zum Zitat Shin, J. W., & Chung, Y. H. (2013). Molecular targeted therapy for hepatocellular carcinoma: current and future. World Journal of Gastroenterology, 19(37), 6144–6155.PubMedCentralPubMed Shin, J. W., & Chung, Y. H. (2013). Molecular targeted therapy for hepatocellular carcinoma: current and future. World Journal of Gastroenterology, 19(37), 6144–6155.PubMedCentralPubMed
141.
Zurück zum Zitat Ikeda, K., Saitoh, S., Suzuki, Y., Kobayashi, M., Tsubota, A., Fukuda, M., et al. (1998). Interferon decreases hepatocellular carcinogenesis in patients with cirrhosis caused by the hepatitis B virus: a pilot study. Cancer, 82(5), 827–835.PubMed Ikeda, K., Saitoh, S., Suzuki, Y., Kobayashi, M., Tsubota, A., Fukuda, M., et al. (1998). Interferon decreases hepatocellular carcinogenesis in patients with cirrhosis caused by the hepatitis B virus: a pilot study. Cancer, 82(5), 827–835.PubMed
142.
Zurück zum Zitat Yoshida, H., Shiratori, Y., Moriyama, M., Arakawa, Y., Ide, T., Sata, M., et al. (1999). Interferon therapy reduces the risk for hepatocellular carcinoma: national surveillance program of cirrhotic and noncirrhotic patients with chronic hepatitis C in Japan. IHIT Study Group Inhibition of Hepatocarcinogenesis by Interferon Therapy. Annals of Internal Medicine, 131(3), 174–181.PubMed Yoshida, H., Shiratori, Y., Moriyama, M., Arakawa, Y., Ide, T., Sata, M., et al. (1999). Interferon therapy reduces the risk for hepatocellular carcinoma: national surveillance program of cirrhotic and noncirrhotic patients with chronic hepatitis C in Japan. IHIT Study Group Inhibition of Hepatocarcinogenesis by Interferon Therapy. Annals of Internal Medicine, 131(3), 174–181.PubMed
143.
Zurück zum Zitat Sun, H. C., Tang, Z. Y., Wang, L., Qin, L. X., Ma, Z. C., Ye, Q. H., et al. (2006). Postoperative interferon alpha treatment postponed recurrence and improved overall survival in patients after curative resection of HBV-related hepatocellular carcinoma: a randomized clinical trial. Journal of Cancer Research and Clinical Oncology, 132(7), 458–465.PubMed Sun, H. C., Tang, Z. Y., Wang, L., Qin, L. X., Ma, Z. C., Ye, Q. H., et al. (2006). Postoperative interferon alpha treatment postponed recurrence and improved overall survival in patients after curative resection of HBV-related hepatocellular carcinoma: a randomized clinical trial. Journal of Cancer Research and Clinical Oncology, 132(7), 458–465.PubMed
144.
Zurück zum Zitat Kudo, M. (2008). Impact of interferon therapy after curative treatment of hepatocellular carcinoma. Oncology, 75(suppl 1), 30–41.PubMed Kudo, M. (2008). Impact of interferon therapy after curative treatment of hepatocellular carcinoma. Oncology, 75(suppl 1), 30–41.PubMed
145.
Zurück zum Zitat Zeisberg, M., Yang, C., Martino, M., Duncan, M. B., Rieder, F., Tanjore, H., et al. (2007). Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. Journal of Biological Chemistry, 282(32), 23337–23347.PubMed Zeisberg, M., Yang, C., Martino, M., Duncan, M. B., Rieder, F., Tanjore, H., et al. (2007). Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. Journal of Biological Chemistry, 282(32), 23337–23347.PubMed
146.
Zurück zum Zitat Kim, K. H., Lee, W. R., Kang, Y. N., Chang, Y. C., & Park, K. K. (2014). Inhibitory effect of nuclear factor-κB decoy oligodeoxynucleotide on liver fibrosis through regulation of the epithelial-mesenchymal transition. Human Gene Therapy, 25(8), 721–729.PubMed Kim, K. H., Lee, W. R., Kang, Y. N., Chang, Y. C., & Park, K. K. (2014). Inhibitory effect of nuclear factor-κB decoy oligodeoxynucleotide on liver fibrosis through regulation of the epithelial-mesenchymal transition. Human Gene Therapy, 25(8), 721–729.PubMed
Metadaten
Titel
Metastatic tumor antigen in hepatocellular carcinoma: golden roads toward personalized medicine
verfasst von
Soo Hyung Ryu
Myoung Kuk Jang
Woo Jean Kim
Danbi Lee
Young-Hwa Chung
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 4/2014
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-014-9522-4

Weitere Artikel der Ausgabe 4/2014

Cancer and Metastasis Reviews 4/2014 Zur Ausgabe

EditorialNotes

Preface

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.