Skip to main content
Erschienen in: Cellular Oncology 6/2018

07.08.2018 | Original Paper

Metformin inhibits human breast cancer cell growth by promoting apoptosis via a ROS-independent pathway involving mitochondrial dysfunction: pivotal role of superoxide dismutase (SOD)

verfasst von: Prateek Sharma, Sanjeev Kumar

Erschienen in: Cellular Oncology | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Despite a growing body of evidence indicating a potential efficacy of the anti-diabetic metformin as anti-cancer agent, the exact mechanism underlying this efficacy has remained largely unknown. Here, we aimed at assessing putative mechanisms associated with the ability of metformin to reduce the proliferation and migration of breast cancer cells.

Methods

A battery of in vitro assays including MTT, colony formation, NBT and scratch wound healing assays were performed to assess the viability, proliferation, anti-oxidative potential and migration of breast cancer-derived MCF-7, MDA-MB-231 and T47D cells, respectively. Reactive oxygen species (ROS) assays along with fluorescence microscopy were used to assess apoptotic parameters. Quantification of SOD, Bcl-2, Bax, MMPs, miR-21 and miR-155 expression was performed using qRT-PCR.

Results

We found that metformin inhibited the growth, proliferation and clonogenic potential of the breast cancer-derived cells tested. ROS levels were found to be significantly reduced by metformin and, concomitantly, superoxide dismutase (SOD) isoforms were found to be upregulated. Mitochondrial dysfunction was observed in metformin treated cells, indicating apoptosis. In metastatic MDA-MB-231 cells, migration was found to be suppressed by metformin through deregulation of the matrix metalloproteinases MMP-2 and MMP-9. The oncogenic microRNAs miR-21 and miR-155 were found to be downregulated by metformin, which may be correlated with the suppression of cell proliferation and/or migration.

Conclusions

Our data indicate that metformin may play a pivotal role in modulating the anti-oxidant system, including the SOD machinery, in breast cancer-derived cells. Our observations were validated by in silico analyses, indicating a close interaction between SOD and metformin. We also found that metformin may inhibit breast cancer-derived cell proliferation through apoptosis induction via the mitochondrial pathway. Finally, we found that metformin may modulate the pro-apoptotic Bax, anti-apoptotic Bcl-2, MMP-2, MMP-9, miR-21 and miR-155 expression levels. These findings may be instrumental for the clinical management and/or (targeted) treatment of breast cancer.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics 2016. CA Cancer J. Clin. 66, 7–30 (2016)CrossRef R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics 2016. CA Cancer J. Clin. 66, 7–30 (2016)CrossRef
2.
Zurück zum Zitat R. Sharma, R. Sharma, T.P. Khaket, C. Dutta, B. Chakraborty, T.K. Mukherjee, Breast cancer metastasis: Putative therapeutic role of vascular cell adhesion molecule-1. Cell. Oncol. 40, 199–208 (2017)CrossRef R. Sharma, R. Sharma, T.P. Khaket, C. Dutta, B. Chakraborty, T.K. Mukherjee, Breast cancer metastasis: Putative therapeutic role of vascular cell adhesion molecule-1. Cell. Oncol. 40, 199–208 (2017)CrossRef
3.
Zurück zum Zitat L. Vona-Davis, D.P. Rose, Type 2 diabetes and obesity metabolic interactions: Common factors for breast cancer risk and novel approaches to prevention and therapy. Curr. Diabetes Rev. 8, 116–130 (2012)CrossRef L. Vona-Davis, D.P. Rose, Type 2 diabetes and obesity metabolic interactions: Common factors for breast cancer risk and novel approaches to prevention and therapy. Curr. Diabetes Rev. 8, 116–130 (2012)CrossRef
4.
Zurück zum Zitat P. Ferroni, S. Riondino, O. Buonomo, R. Palmirotta, F. Guadagni, Roselli, Type 2 Diabetes and breast cancer: The interplay between impaired glucose metabolism and oxidant stress. Oxidative Med. Cell. Longev. 2015, 183928 (2015)CrossRef P. Ferroni, S. Riondino, O. Buonomo, R. Palmirotta, F. Guadagni, Roselli, Type 2 Diabetes and breast cancer: The interplay between impaired glucose metabolism and oxidant stress. Oxidative Med. Cell. Longev. 2015, 183928 (2015)CrossRef
5.
Zurück zum Zitat L.A. Flores-López, M.G. Martínez-Hernández, R. Viedma-Rodríguez, M. Díaz-Flores, L.A. Baiza-Gutman, High glucose and insulin enhance uPA expression, ROS formation and invasiveness in breast cancer-derived cells. Cell. Oncol. 39, 365–378 (2016)CrossRef L.A. Flores-López, M.G. Martínez-Hernández, R. Viedma-Rodríguez, M. Díaz-Flores, L.A. Baiza-Gutman, High glucose and insulin enhance uPA expression, ROS formation and invasiveness in breast cancer-derived cells. Cell. Oncol. 39, 365–378 (2016)CrossRef
6.
Zurück zum Zitat S. Suh, K.W. Kim, Diabetes and cancer: Is diabetes causally related to cancer? Diabetes Metab. J. 35, 193–198 (2011)CrossRef S. Suh, K.W. Kim, Diabetes and cancer: Is diabetes causally related to cancer? Diabetes Metab. J. 35, 193–198 (2011)CrossRef
7.
Zurück zum Zitat I. Ben Sahra, Y. Le Marchand-Brustel, J.F. Tanti, F. Bost, Metformin in cancer therapy: a new perspective for an old antidiabetic drug? Mol. Cancer Ther. 9, 1092–1099 (2010)CrossRef I. Ben Sahra, Y. Le Marchand-Brustel, J.F. Tanti, F. Bost, Metformin in cancer therapy: a new perspective for an old antidiabetic drug? Mol. Cancer Ther. 9, 1092–1099 (2010)CrossRef
8.
Zurück zum Zitat A. Malki, A. Youssef, Antidiabetic drug metformin induces apoptosis in human MCF breast cancer via targeting ERK signaling. Oncol. Res. 19, 275–285 (2011)CrossRef A. Malki, A. Youssef, Antidiabetic drug metformin induces apoptosis in human MCF breast cancer via targeting ERK signaling. Oncol. Res. 19, 275–285 (2011)CrossRef
9.
Zurück zum Zitat K.H. Stopsack, D.R. Ziehr, J.R. Rider, E.L. Giovannucci, Metformin and prostate cancer mortality: A meta-analysis. Cancer Causes Control 27, 105–113 (2016)CrossRef K.H. Stopsack, D.R. Ziehr, J.R. Rider, E.L. Giovannucci, Metformin and prostate cancer mortality: A meta-analysis. Cancer Causes Control 27, 105–113 (2016)CrossRef
10.
Zurück zum Zitat B. Viollet, B. Guigas, N. Sanz Garcia, J. Leclerc, M. Foretz, F. Andreelli, Cellular and molecular mechanisms of metformin: an overview. Clin. Sci. 122, 253–270 (2012)CrossRef B. Viollet, B. Guigas, N. Sanz Garcia, J. Leclerc, M. Foretz, F. Andreelli, Cellular and molecular mechanisms of metformin: an overview. Clin. Sci. 122, 253–270 (2012)CrossRef
11.
Zurück zum Zitat K.Y. Hur, M.S. Lee, New mechanisms of metformin action: Focusing on mitochondria and the gut. J. Diabetes Investig. 6 600–609 (2015)CrossRef K.Y. Hur, M.S. Lee, New mechanisms of metformin action: Focusing on mitochondria and the gut. J. Diabetes Investig. 6 600–609 (2015)CrossRef
12.
Zurück zum Zitat W.W. Wheaton, S.E. Weinberg, R.B. Hamanaka, S. Soberanes, L.B. Sullivan, E. Anso, A. Glasauer, E. Dufour, G.M. Mutlu, G.S. Budigner, N.S. Chandel, Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife 3, e02242 (2014)CrossRef W.W. Wheaton, S.E. Weinberg, R.B. Hamanaka, S. Soberanes, L.B. Sullivan, E. Anso, A. Glasauer, E. Dufour, G.M. Mutlu, G.S. Budigner, N.S. Chandel, Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife 3, e02242 (2014)CrossRef
13.
Zurück zum Zitat S.E. Weinberg, N.S. Chandel, Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol. 11, 9–15 (2015)CrossRef S.E. Weinberg, N.S. Chandel, Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol. 11, 9–15 (2015)CrossRef
14.
Zurück zum Zitat I. Pernicova, M. Korbonits, Metformin: Mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 10, 143–156 (2014)CrossRef I. Pernicova, M. Korbonits, Metformin: Mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 10, 143–156 (2014)CrossRef
15.
Zurück zum Zitat E. Birben, U.M. Sahiner, C. Sackesen, S. Erzurum, O. Kalayci, Oxidative Stress and Antioxidant Defense. World Allergy Organ J. 5 9–19 (2012)CrossRef E. Birben, U.M. Sahiner, C. Sackesen, S. Erzurum, O. Kalayci, Oxidative Stress and Antioxidant Defense. World Allergy Organ J. 5 9–19 (2012)CrossRef
16.
Zurück zum Zitat G. Barrera, Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol. 2012, 137289 (2012)PubMedPubMedCentral G. Barrera, Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol. 2012, 137289 (2012)PubMedPubMedCentral
17.
Zurück zum Zitat B. Singh, M. Rani, J. Singh, L. Moudgil, P. Sharma, S. Kumar, G.S.S. Saini, S.K. Tripathi, G. Singh, A. Kaura, Identifying the preferred interaction mode of naringin with gold nanoparticles through experimental, DFT and TDDFT techniques: insights into their sensing and biological applications. RSC Adv. 6, 79470–79484 (2016)CrossRef B. Singh, M. Rani, J. Singh, L. Moudgil, P. Sharma, S. Kumar, G.S.S. Saini, S.K. Tripathi, G. Singh, A. Kaura, Identifying the preferred interaction mode of naringin with gold nanoparticles through experimental, DFT and TDDFT techniques: insights into their sensing and biological applications. RSC Adv. 6, 79470–79484 (2016)CrossRef
18.
Zurück zum Zitat N.A. Franken, H.M. Rodermond, J. Stap, J. Haveman, C. van Bree, Clonogenic assay of cells in vitro. Nat. Protoc. 1, 2315–2319 (2006)CrossRef N.A. Franken, H.M. Rodermond, J. Stap, J. Haveman, C. van Bree, Clonogenic assay of cells in vitro. Nat. Protoc. 1, 2315–2319 (2006)CrossRef
19.
Zurück zum Zitat J. Zielonka, B. Kalyanaraman, Hydroethidine- and Mito-SOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: Another inconvenient truth. Free Radic. Biol. Med. 48, 983–1001 (2010)CrossRef J. Zielonka, B. Kalyanaraman, Hydroethidine- and Mito-SOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: Another inconvenient truth. Free Radic. Biol. Med. 48, 983–1001 (2010)CrossRef
20.
Zurück zum Zitat B.S. Gill, P. Sharma, K.S. Navgeet, Chemical composition and antiproliferative, antioxidant, and proapoptotic effects of fruiting body extracts of the Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes), from India. Int. J. Med. Mushrooms 18, 599–607 (2016)CrossRef B.S. Gill, P. Sharma, K.S. Navgeet, Chemical composition and antiproliferative, antioxidant, and proapoptotic effects of fruiting body extracts of the Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes), from India. Int. J. Med. Mushrooms 18, 599–607 (2016)CrossRef
21.
Zurück zum Zitat N. Jambunathan, Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. Methods Mol. Biol. 639, 292–298 (2010) N. Jambunathan, Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. Methods Mol. Biol. 639, 292–298 (2010)
22.
Zurück zum Zitat B. Chazotte, Labeling nuclear DNA using DAPI. CSH Protoc. 2011, 5556 (2011) B. Chazotte, Labeling nuclear DNA using DAPI. CSH Protoc. 2011, 5556 (2011)
23.
Zurück zum Zitat S. Kasibhatla, G.P. Amarante-Mendes, D. Finucane, T. Brunner, E. Bossy-Wetzel, D.R. Green, Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. CSH Protoc. 2006, pii (2006) S. Kasibhatla, G.P. Amarante-Mendes, D. Finucane, T. Brunner, E. Bossy-Wetzel, D.R. Green, Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. CSH Protoc. 2006, pii (2006)
24.
Zurück zum Zitat A. Cossarizza, M. Baccaranicontri, G. Kalashnikova, C. Franceschi, A new method for the cytofluorometric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine Iodide (JC-1). Biochem. Biophys. Res. Commun. 197, 40–45 (1993)CrossRef A. Cossarizza, M. Baccaranicontri, G. Kalashnikova, C. Franceschi, A new method for the cytofluorometric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine Iodide (JC-1). Biochem. Biophys. Res. Commun. 197, 40–45 (1993)CrossRef
25.
Zurück zum Zitat C.C. Liang, A.Y. Park, J.L. Guan, In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2, 329–333 (2007)CrossRef C.C. Liang, A.Y. Park, J.L. Guan, In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2, 329–333 (2007)CrossRef
26.
Zurück zum Zitat K.E. Hevener, W. Zhao, D.M. Ball, K. Babaoglu, J. Qi, S.W. White, R.E. Lee, Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J. Chem. Inf. Model. 49, 444–460 (2009)CrossRef K.E. Hevener, W. Zhao, D.M. Ball, K. Babaoglu, J. Qi, S.W. White, R.E. Lee, Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J. Chem. Inf. Model. 49, 444–460 (2009)CrossRef
27.
Zurück zum Zitat R.W. Strange, S. Antonyuk, M.A. Hough, P.A. Doucette, J.A. Rodriguez, P.J. Hart, L.J. Hayward, J.S. Valentine, S.S. Hasnain, The structure of holo and metal-deficient wild-type human Cu, Zn superoxide dismutase and its relevance to familial amyotrophic lateral sclerosis. J. Mol. Biol. 328, 877–891 (2003)CrossRef R.W. Strange, S. Antonyuk, M.A. Hough, P.A. Doucette, J.A. Rodriguez, P.J. Hart, L.J. Hayward, J.S. Valentine, S.S. Hasnain, The structure of holo and metal-deficient wild-type human Cu, Zn superoxide dismutase and its relevance to familial amyotrophic lateral sclerosis. J. Mol. Biol. 328, 877–891 (2003)CrossRef
28.
Zurück zum Zitat A.S. Hearn, L. Fan, J.R. Lepock, J.P. Luba, W.B. Greenleaf, D.E. Cabelli, J.A. Tainer, H.S. Nick, D.N. Silverman, Amino acid substitution at the dimeric interface of human manganese superoxide dismutase. J. Biol. Chem. 279, 5861–5866 (2004)CrossRef A.S. Hearn, L. Fan, J.R. Lepock, J.P. Luba, W.B. Greenleaf, D.E. Cabelli, J.A. Tainer, H.S. Nick, D.N. Silverman, Amino acid substitution at the dimeric interface of human manganese superoxide dismutase. J. Biol. Chem. 279, 5861–5866 (2004)CrossRef
29.
Zurück zum Zitat Y. Huang, Q. Jin, M. Su, F. Ji, N. Wang, C. Zhong, Y. Jiang, Y. Liu, Z. Zhang, J. Yang, L. Wei, T. Chen, B. Li, Leptin promotes the migration and invasion of breast cancer cells by upregulating ACAT2. Cell. Oncol. 40, 537–547 (2017)CrossRef Y. Huang, Q. Jin, M. Su, F. Ji, N. Wang, C. Zhong, Y. Jiang, Y. Liu, Z. Zhang, J. Yang, L. Wei, T. Chen, B. Li, Leptin promotes the migration and invasion of breast cancer cells by upregulating ACAT2. Cell. Oncol. 40, 537–547 (2017)CrossRef
30.
Zurück zum Zitat P.J. Wysocki, B. Wierusz-Wysocka, Obesity, hyperinsulinemia and breast cancer: novel targets and a novel role for metformin. Expert. Rev. Mol. Diagn. 10, 509–519 (2010)CrossRef P.J. Wysocki, B. Wierusz-Wysocka, Obesity, hyperinsulinemia and breast cancer: novel targets and a novel role for metformin. Expert. Rev. Mol. Diagn. 10, 509–519 (2010)CrossRef
31.
Zurück zum Zitat G.W. Landman, N. Kleefstra, K.J. van Hateren, K.H. Groenier, R.O. Gans, H.J. Bilo, Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care 33, 322–326 (2010)CrossRef G.W. Landman, N. Kleefstra, K.J. van Hateren, K.H. Groenier, R.O. Gans, H.J. Bilo, Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care 33, 322–326 (2010)CrossRef
32.
Zurück zum Zitat K. Kato, J. Gong, H. Iwama, A. Kitanaka, J. Tani, H. Miyoshi, K. Nomura, S. Mimura, M. Kobayashi, Y. Aritomo, H. Kobara, H. Mori, T. Himoto, K. Okano, Y. Suzuki, K. Murao, T. Masaki, The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo. Mol. Cancer Ther. 11, 549–560 (2012)CrossRef K. Kato, J. Gong, H. Iwama, A. Kitanaka, J. Tani, H. Miyoshi, K. Nomura, S. Mimura, M. Kobayashi, Y. Aritomo, H. Kobara, H. Mori, T. Himoto, K. Okano, Y. Suzuki, K. Murao, T. Masaki, The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo. Mol. Cancer Ther. 11, 549–560 (2012)CrossRef
33.
Zurück zum Zitat T. Zhang, P. Guo, Y. Zhang, H. Xiong, X. Yu, S. Xu, X. Wang, D. He, X. Jin, The antidiabetic drug metformin inhibits the proliferation of bladder cancer cells in vitro and in vivo. Int. J. Mol. Sci. 14, 24603–24618 (2013)CrossRef T. Zhang, P. Guo, Y. Zhang, H. Xiong, X. Yu, S. Xu, X. Wang, D. He, X. Jin, The antidiabetic drug metformin inhibits the proliferation of bladder cancer cells in vitro and in vivo. Int. J. Mol. Sci. 14, 24603–24618 (2013)CrossRef
34.
Zurück zum Zitat V. Nair, S. Sreevalsan, R. Basha, M. Abdelrahim, A. Abudayyeh, A. Rodrigues Hoffman, S. Safe, Mechanism of metformin-dependent inhibition of mammalian target of rapamycin (mTOR) and Ras activity in pancreatic cancer: role of specificity protein (Sp) transcription factors. J. Biol. Chem. 289, 27692–27701 (2014)CrossRef V. Nair, S. Sreevalsan, R. Basha, M. Abdelrahim, A. Abudayyeh, A. Rodrigues Hoffman, S. Safe, Mechanism of metformin-dependent inhibition of mammalian target of rapamycin (mTOR) and Ras activity in pancreatic cancer: role of specificity protein (Sp) transcription factors. J. Biol. Chem. 289, 27692–27701 (2014)CrossRef
35.
Zurück zum Zitat I.N. Alimova, B. Liu, Z. Fan, S.M. Edgerton, T. Dillon, S.E. Lind, A.D. Thor, Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle 8, 909–915 (2009)CrossRef I.N. Alimova, B. Liu, Z. Fan, S.M. Edgerton, T. Dillon, S.E. Lind, A.D. Thor, Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle 8, 909–915 (2009)CrossRef
36.
Zurück zum Zitat D. Zhou, L. Shao, D.R. Spitz, Reactive oxygen species in normal and tumor stem cells. Adv. Cancer Res. 122, 1–67 (2014)CrossRef D. Zhou, L. Shao, D.R. Spitz, Reactive oxygen species in normal and tumor stem cells. Adv. Cancer Res. 122, 1–67 (2014)CrossRef
37.
Zurück zum Zitat W. Droge, Oxidative aging and insulin receptor signaling. J. Gerontol. A Biol. Sci. Med. Sci. 60, 1378–1385 (2005)CrossRef W. Droge, Oxidative aging and insulin receptor signaling. J. Gerontol. A Biol. Sci. Med. Sci. 60, 1378–1385 (2005)CrossRef
38.
Zurück zum Zitat I. Afanas’ev, Reactive oxygen species signaling in cancer: comparison with aging. Aging Dis. 2, 219–230 (2011)PubMed I. Afanas’ev, Reactive oxygen species signaling in cancer: comparison with aging. Aging Dis. 2, 219–230 (2011)PubMed
39.
Zurück zum Zitat Y. Son, Y.K. Cheong, N.H. Kim, H.T. Chung, D.G. Kang, H.O. Pae, Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways? J. Signal Transduct. 2011, 792639 (2011)PubMedPubMedCentral Y. Son, Y.K. Cheong, N.H. Kim, H.T. Chung, D.G. Kang, H.O. Pae, Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways? J. Signal Transduct. 2011, 792639 (2011)PubMedPubMedCentral
40.
Zurück zum Zitat A. Jezierska-Drutel, S.A. Rosenzweig, C.A. Neumann, Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv. Cancer Res. 119, 107–125 (2013)CrossRef A. Jezierska-Drutel, S.A. Rosenzweig, C.A. Neumann, Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv. Cancer Res. 119, 107–125 (2013)CrossRef
41.
Zurück zum Zitat P.K.S. Mahalingaiah, K.P. Singh, Chronic oxidative stress increases growth and tumorigenic potential of MCF-7 breast cancer cells. PLoS One 9, e87371 (2014)CrossRef P.K.S. Mahalingaiah, K.P. Singh, Chronic oxidative stress increases growth and tumorigenic potential of MCF-7 breast cancer cells. PLoS One 9, e87371 (2014)CrossRef
42.
Zurück zum Zitat B. Poljsak, D. Suput, I. Milisav, Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxidative Med. Cell. Longev. 2013, 956792 (2013)CrossRef B. Poljsak, D. Suput, I. Milisav, Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxidative Med. Cell. Longev. 2013, 956792 (2013)CrossRef
43.
Zurück zum Zitat T. Fukai, M. Ushio-Fukai, Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal. 15, 1583–1606 (2011)CrossRef T. Fukai, M. Ushio-Fukai, Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal. 15, 1583–1606 (2011)CrossRef
44.
Zurück zum Zitat G. Cheng, S. Lanza-Jacoby, Metformin decreases growth of pancreatic cancer cells by decreasing reactive oxygen species: Role of NOX4. Biochem. Biophys. Res. Commun. 465, 41–46 (2015)CrossRef G. Cheng, S. Lanza-Jacoby, Metformin decreases growth of pancreatic cancer cells by decreasing reactive oxygen species: Role of NOX4. Biochem. Biophys. Res. Commun. 465, 41–46 (2015)CrossRef
45.
Zurück zum Zitat N. Li, K. Ragheb, G. Lawler, J. Sturgis, B. Rajwa, J.A. Melendez, J.P. Robinson, Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem. 278, 8516–8525 (2003)CrossRef N. Li, K. Ragheb, G. Lawler, J. Sturgis, B. Rajwa, J.A. Melendez, J.P. Robinson, Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem. 278, 8516–8525 (2003)CrossRef
46.
Zurück zum Zitat M. Hassan, H. Watari, A. AbuAlmaaty, Y. Ohba, N. Sakuragi, Apoptosis and molecular targeting therapy in cancer. Biomed. Res. Int. 2014, 150845 (2014)PubMedPubMedCentral M. Hassan, H. Watari, A. AbuAlmaaty, Y. Ohba, N. Sakuragi, Apoptosis and molecular targeting therapy in cancer. Biomed. Res. Int. 2014, 150845 (2014)PubMedPubMedCentral
47.
Zurück zum Zitat K. Zibara, Z. Awada, L. Dib, J. El-Saghir, S. Al-Ghadban, A. Ibrik, E.N. Zein, E.M. Sabban, Anti-angiogenesis therapy and gap junction inhibition reduce MDA-MB-231 breast cancer cell invasion and metastasis in vitro and in vivo. Sci. Rep. 5, (12598) (2015) K. Zibara, Z. Awada, L. Dib, J. El-Saghir, S. Al-Ghadban, A. Ibrik, E.N. Zein, E.M. Sabban, Anti-angiogenesis therapy and gap junction inhibition reduce MDA-MB-231 breast cancer cell invasion and metastasis in vitro and in vivo. Sci. Rep. 5, (12598) (2015)
48.
Zurück zum Zitat K. Kessenbrock, V. Plaks, Z. Werb, Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 141, 52–67 (2010)CrossRef K. Kessenbrock, V. Plaks, Z. Werb, Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 141, 52–67 (2010)CrossRef
49.
Zurück zum Zitat W. Wang, Y. Luo, MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential. J. Zhejiang Univ. Sci. B 16, 18–31 (2015)CrossRef W. Wang, Y. Luo, MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential. J. Zhejiang Univ. Sci. B 16, 18–31 (2015)CrossRef
50.
Zurück zum Zitat G.S. Markopoulos, E. Roupakia, M. Tokamani, E. Chavdoula, M. Hatziapostolou, C. Polytarchou, K.B. Marcu, A.G. Papavassiliou, R. Sandaltzopoulos, E. Kolettas, A step-by-step microRNA guide to cancer development and metastasis. Cell. Oncol. 40, 303–339 (2017)CrossRef G.S. Markopoulos, E. Roupakia, M. Tokamani, E. Chavdoula, M. Hatziapostolou, C. Polytarchou, K.B. Marcu, A.G. Papavassiliou, R. Sandaltzopoulos, E. Kolettas, A step-by-step microRNA guide to cancer development and metastasis. Cell. Oncol. 40, 303–339 (2017)CrossRef
51.
Zurück zum Zitat G.C. Guo, J.X. Wang, M.L. Han, L.P. Zhang, L. Li, microRNA-761 induces aggressive phenotypes in triple-negative breast cancer cells by repressing TRIM29 expression. Cell. Oncol. 40, 157–166 (2017)CrossRef G.C. Guo, J.X. Wang, M.L. Han, L.P. Zhang, L. Li, microRNA-761 induces aggressive phenotypes in triple-negative breast cancer cells by repressing TRIM29 expression. Cell. Oncol. 40, 157–166 (2017)CrossRef
52.
Zurück zum Zitat S. Jiang, H.W. Zhang, M.H. Lu, X.H. He, Y. Li, MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 70, 3119–3127 (2010)CrossRef S. Jiang, H.W. Zhang, M.H. Lu, X.H. He, Y. Li, MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 70, 3119–3127 (2010)CrossRef
53.
Zurück zum Zitat S. Mattiske, R.J. Suetani, P.M. Neilsen, D.F. Callen, The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol. Biomark. Prev. 21, 1236–1243 (2012)CrossRef S. Mattiske, R.J. Suetani, P.M. Neilsen, D.F. Callen, The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol. Biomark. Prev. 21, 1236–1243 (2012)CrossRef
Metadaten
Titel
Metformin inhibits human breast cancer cell growth by promoting apoptosis via a ROS-independent pathway involving mitochondrial dysfunction: pivotal role of superoxide dismutase (SOD)
verfasst von
Prateek Sharma
Sanjeev Kumar
Publikationsdatum
07.08.2018
Verlag
Springer Netherlands
Erschienen in
Cellular Oncology / Ausgabe 6/2018
Print ISSN: 2211-3428
Elektronische ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-018-0398-0

Weitere Artikel der Ausgabe 6/2018

Cellular Oncology 6/2018 Zur Ausgabe

Neu im Fachgebiet Pathologie