Skip to main content
Erschienen in: Current Colorectal Cancer Reports 6/2018

11.10.2018 | Basic Science Foundations in Colorectal Cancer (DA Dixon and KE Hamilton, Section Editors)

Microbiome and Colorectal Cancer

verfasst von: Ishfaq Ahmed, Shahid Umar

Erschienen in: Current Colorectal Cancer Reports | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

The trillions of microbes collectively referred to as the human microbiota inhabit the human body and establish a beneficial relationship with the host. It is clear however that dysbiosis impacting microbial diversity in the gut may lead to the development of inflammatory and malignant gastrointestinal diseases including colorectal cancer (CRC). We provide a literature review of the recent influx of information related to the alterations in gut microbiota composition that influences CRC incidence and progression.

Recent Findings

A growing body of evidence implicates altered gut microbiota in the development of CRC. Profiles of CRC-associated microbiota have been shown to differ from those in healthy subjects and bacterial phylotypes vary depending on the primary tumor location. The compositional variation in the microbial profile is not restricted to cancerous tissue however and is different between cancers of the proximal and distal colons, respectively. More recently, studies have shed light on the “driver-passenger” model for CRC wherein, driver bacteria cause inflammation, increased cell proliferation and production of genotoxic substances to contribute towards mutational acquisition associated with adenoma-carcinoma sequence. These changes facilitate gradual replacement of driver bacteria by passengers that either promote or suppress tumor progression. Significant advances have also been made in associating individual bacterial species to consensus molecular subtypes (CMS) of CRC and this remarkable development is expected to galvanize scientific community into advancing therapeutic strategies for CRC.

Summary

Increasing evidence suggests a link between the intestinal microbiota and CRC development although the mechanisms through which the bacterial constituents of the microbiome contribute towards CRC are complex and yet to be fully fathomed. Thus, more exhaustive and mechanistic studies are needed to identify key interactions amongst diet, microbial community, and metabolites that help facilitate the adenoma-carcinoma sequence evolution in CRC. It is expected that development of therapeutics based on microbial association with CMS will likely facilitate the translation of molecular subtypes into the clinic for CRCs and potentially other malignancies.
Literatur
1.
Zurück zum Zitat Cancer Genome Atlas Network, Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7. Cancer Genome Atlas Network, Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.
2.
3.
Zurück zum Zitat Sinicrope FA, Shi Q, Smyrk TC, Thibodeau SN, Dienstmann R, Guinney J, et al. Molecular markers identify subtypes of stage iii colon cancer associated with patient outcomes. Gastroenterology. 2015;148:88–99.PubMedCrossRef Sinicrope FA, Shi Q, Smyrk TC, Thibodeau SN, Dienstmann R, Guinney J, et al. Molecular markers identify subtypes of stage iii colon cancer associated with patient outcomes. Gastroenterology. 2015;148:88–99.PubMedCrossRef
4.
Zurück zum Zitat Lee DW, Han SW, Cha Y. Association between mutations of critical pathway genes and survival outcomes according to the tumor location in colorectal cancer. Cancer. 2017;123:3513–23.PubMedCrossRef Lee DW, Han SW, Cha Y. Association between mutations of critical pathway genes and survival outcomes according to the tumor location in colorectal cancer. Cancer. 2017;123:3513–23.PubMedCrossRef
5.
Zurück zum Zitat Ansa BE, Coughlin SS, Alema-Mensah E. Evaluation of colorectal cancer incidence trends in the United States (2000-2014). J Clin Med. 2018;7(2). Ansa BE, Coughlin SS, Alema-Mensah E. Evaluation of colorectal cancer incidence trends in the United States (2000-2014). J Clin Med. 2018;7(2).
6.
Zurück zum Zitat Janz T, Lu K, Povlow MR, Urso B. A review of colorectal cancer detection modalities, stool DNA, and fecal immunochemistry testing in adults over the age of 50. Cureus. 2016;8:e931.PubMedPubMedCentral Janz T, Lu K, Povlow MR, Urso B. A review of colorectal cancer detection modalities, stool DNA, and fecal immunochemistry testing in adults over the age of 50. Cureus. 2016;8:e931.PubMedPubMedCentral
7.
Zurück zum Zitat West L, Vidwans SJ, Campbell NP, Shrager J, Simon GR, Bueno R, et al. A novel classification of lung cancer into molecular subtypes. PLoS One. 2012;7:e31906.PubMedPubMedCentralCrossRef West L, Vidwans SJ, Campbell NP, Shrager J, Simon GR, Bueno R, et al. A novel classification of lung cancer into molecular subtypes. PLoS One. 2012;7:e31906.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6.PubMedPubMedCentralCrossRef Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Okita A, Takahashi S, Ouchi K, Inoue M, Watanabe M, Endo M, et al. Consensus molecular subtypes classification of colorectal cancer as a predictive factor for chemotherapeutic efficacy against metastatic colorectal cancer. Oncotarget. 2018;9:18698–711.PubMedPubMedCentralCrossRef Okita A, Takahashi S, Ouchi K, Inoue M, Watanabe M, Endo M, et al. Consensus molecular subtypes classification of colorectal cancer as a predictive factor for chemotherapeutic efficacy against metastatic colorectal cancer. Oncotarget. 2018;9:18698–711.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 2008;135:1079–99.PubMedCrossRef Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 2008;135:1079–99.PubMedCrossRef
14.
Zurück zum Zitat Irrazabal T, Belcheva A, Girardin SE, Martin A, Philpott DJ. The multifaceted role of the intestinal microbiota in colon cancer. Mol Cell. 2014;54:309–20.CrossRefPubMed Irrazabal T, Belcheva A, Girardin SE, Martin A, Philpott DJ. The multifaceted role of the intestinal microbiota in colon cancer. Mol Cell. 2014;54:309–20.CrossRefPubMed
15.
Zurück zum Zitat Tlaskalova-Hogenova H, Vannucci L, Klimesova K, Stepankova R, Krizan J, Kverka M. Microbiome and colorectal carcinoma: insights from germ-free and conventional animal models. Cancer J. 2014;20:217–24.PubMedCrossRef Tlaskalova-Hogenova H, Vannucci L, Klimesova K, Stepankova R, Krizan J, Kverka M. Microbiome and colorectal carcinoma: insights from germ-free and conventional animal models. Cancer J. 2014;20:217–24.PubMedCrossRef
16.
Zurück zum Zitat Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, et al. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65:330–9.PubMedCrossRef Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, et al. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65:330–9.PubMedCrossRef
17.
Zurück zum Zitat Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. bioRxiv. 2016;14(8):e1002533. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. bioRxiv. 2016;14(8):e1002533.
18.
Zurück zum Zitat Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–48.PubMedCrossRef Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–48.PubMedCrossRef
19.
Zurück zum Zitat Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.PubMedPubMedCentralCrossRef Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol. 2011;9:356–68.PubMedCrossRef Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol. 2011;9:356–68.PubMedCrossRef
22.
Zurück zum Zitat Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. The long-term stability of the human gut microbiota. Science. 2013;341:1237439.PubMedPubMedCentralCrossRef Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. The long-term stability of the human gut microbiota. Science. 2013;341:1237439.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Gomez A, Petrzelkova K, Yeoman CJ, Vlckova K, Mrazek J, Koppova I, et al. Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (gorilla gorilla gorilla) reflect host ecology. Mol Ecol. 2015;24:2551–65.PubMedCrossRef Gomez A, Petrzelkova K, Yeoman CJ, Vlckova K, Mrazek J, Koppova I, et al. Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (gorilla gorilla gorilla) reflect host ecology. Mol Ecol. 2015;24:2551–65.PubMedCrossRef
24.
25.
Zurück zum Zitat Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol. 2017;15:630–8.PubMedCrossRef Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol. 2017;15:630–8.PubMedCrossRef
26.
Zurück zum Zitat Schulz MD, Atay C, Heringer J, Romrig FK, Schwitalla S, Aydin B, et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature. 2014;514:508–12.PubMedPubMedCentralCrossRef Schulz MD, Atay C, Heringer J, Romrig FK, Schwitalla S, Aydin B, et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature. 2014;514:508–12.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Nakatsu G, Li X, Zhou H, Sheng J, Wong SH. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun. 2015;6:8727.PubMedCrossRef Nakatsu G, Li X, Zhou H, Sheng J, Wong SH. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun. 2015;6:8727.PubMedCrossRef
28.
Zurück zum Zitat Wu N, Yang X, Zhang R, Li J, Xiao X, Hu Y, et al. Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb Ecol. 2013;66:462–70.PubMedCrossRef Wu N, Yang X, Zhang R, Li J, Xiao X, Hu Y, et al. Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb Ecol. 2013;66:462–70.PubMedCrossRef
30.
Zurück zum Zitat Holmes E, Li JV, Marchesi JR, Nicholson JK. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab. 2012;16:559–64.PubMedCrossRef Holmes E, Li JV, Marchesi JR, Nicholson JK. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab. 2012;16:559–64.PubMedCrossRef
31.
Zurück zum Zitat Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK. Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol. 2011;19:349–59.PubMedCrossRef Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK. Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol. 2011;19:349–59.PubMedCrossRef
32.
Zurück zum Zitat Wang X, Wang J, Rao B, Deng L. Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individuals. Exp Ther Med. 2017;13:2848–54. Wang X, Wang J, Rao B, Deng L. Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individuals. Exp Ther Med. 2017;13:2848–54.
33.
Zurück zum Zitat Tsilimigras MC, Fodor A, Jobin C. Carcinogenesis and therapeutics: the microbiota perspective. Nat Microbiol. 2017;2:17008. Tsilimigras MC, Fodor A, Jobin C. Carcinogenesis and therapeutics: the microbiota perspective. Nat Microbiol. 2017;2:17008.
34.
Zurück zum Zitat Cani PD, Plovier H, Van Hul M, Geurts L, Delzenne NM, Druart C, et al. Endocannabinoids--at the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol. 2016;12:133–43.PubMedCrossRef Cani PD, Plovier H, Van Hul M, Geurts L, Delzenne NM, Druart C, et al. Endocannabinoids--at the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol. 2016;12:133–43.PubMedCrossRef
35.
Zurück zum Zitat Villeger R, Lopes A, Veziant J, Gagniere J, Barnich N, Billard E, et al. Microbial markers in colorectal cancer detection and/or prognosis. World J Gastroenterol. 2018;24:2327–47.PubMedPubMedCentralCrossRef Villeger R, Lopes A, Veziant J, Gagniere J, Barnich N, Billard E, et al. Microbial markers in colorectal cancer detection and/or prognosis. World J Gastroenterol. 2018;24:2327–47.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Dai Z, Coker OO, Nakatsu G, Wu WKK, Zhao L, Chen Z, et al. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome. 2018;6:70.PubMedPubMedCentralCrossRef Dai Z, Coker OO, Nakatsu G, Wu WKK, Zhao L, Chen Z, et al. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome. 2018;6:70.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Drewes JL, White JR, Dejea CM, Fathi P, Iyadorai T, Vadivelu J, Roslani AC. High-resolution bacterial 16s rrna gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes. 2017;3:34. Drewes JL, White JR, Dejea CM, Fathi P, Iyadorai T, Vadivelu J, Roslani AC. High-resolution bacterial 16s rrna gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes. 2017;3:34.
38.
Zurück zum Zitat Buchta Rosean CM, Rutkowski MR. The influence of the commensal microbiota on distal tumor-promoting inflammation. Semin Immunol. 2017;32:62–73.PubMedCrossRef Buchta Rosean CM, Rutkowski MR. The influence of the commensal microbiota on distal tumor-promoting inflammation. Semin Immunol. 2017;32:62–73.PubMedCrossRef
39.
Zurück zum Zitat Gordon H, Trier Moller F, Andersen V, Harbord M. Heritability in inflammatory bowel disease: from the first twin study to genome-wide association studies. Inflamm Bowel Dis. 2015;21:1428–34.PubMed Gordon H, Trier Moller F, Andersen V, Harbord M. Heritability in inflammatory bowel disease: from the first twin study to genome-wide association studies. Inflamm Bowel Dis. 2015;21:1428–34.PubMed
40.
Zurück zum Zitat Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT, et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 2015;16:191.PubMedPubMedCentralCrossRef Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT, et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 2015;16:191.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat • O'Keefe SJ, Li JV, Lahti LF et al. Fibre and cancer risk in African Americans and rural Africans. Nat Commun. 2015;6:6342. A nice overview of risk factors associated with colon cancer propensity in African-American population . • O'Keefe SJ, Li JV, Lahti LF et al. Fibre and cancer risk in African Americans and rural Africans. Nat Commun. 2015;6:6342. A nice overview of risk factors associated with colon cancer propensity in African-American population .
42.
Zurück zum Zitat Dore J, Blottiere H. The influence of diet on the gut microbiota and its consequences for health. Curr Opin Biotechnol. 2015;32:195–9. Dore J, Blottiere H. The influence of diet on the gut microbiota and its consequences for health. Curr Opin Biotechnol. 2015;32:195–9.
43.
Zurück zum Zitat den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325–40.CrossRef den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325–40.CrossRef
44.
Zurück zum Zitat Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499:97–101.PubMedCrossRef Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499:97–101.PubMedCrossRef
45.
Zurück zum Zitat Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6.CrossRefPubMed Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6.CrossRefPubMed
46.
Zurück zum Zitat Mehta RS, Song M, Nishihara R, Drew DA, Wu K, Qian ZR, et al. Dietary patterns and risk of colorectal cancer: analysis by tumor location and molecular subtypes. Gastroenterology. 2017;152:1944–1953.e1941.PubMedCrossRef Mehta RS, Song M, Nishihara R, Drew DA, Wu K, Qian ZR, et al. Dietary patterns and risk of colorectal cancer: analysis by tumor location and molecular subtypes. Gastroenterology. 2017;152:1944–1953.e1941.PubMedCrossRef
47.
Zurück zum Zitat Bishehsari F, Mahdavinia M, Vacca M, Malekzadeh R, Mariani-Costantini R. Epidemiological transition of colorectal cancer in developing countries: environmental factors, molecular pathways, and opportunities for prevention. World J Gastroenterol. 2014;20:6055–72.PubMedPubMedCentralCrossRef Bishehsari F, Mahdavinia M, Vacca M, Malekzadeh R, Mariani-Costantini R. Epidemiological transition of colorectal cancer in developing countries: environmental factors, molecular pathways, and opportunities for prevention. World J Gastroenterol. 2014;20:6055–72.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Stigliano V, Sanchez-Mete L, Martayan A, Anti M. Early-onset colorectal cancer: a sporadic or inherited disease? World J Gastroenterol. 2014;20:12420–30.PubMedPubMedCentralCrossRef Stigliano V, Sanchez-Mete L, Martayan A, Anti M. Early-onset colorectal cancer: a sporadic or inherited disease? World J Gastroenterol. 2014;20:12420–30.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Zhao Z, Feng Q, Yin Z, Shuang J, Bai B, Yu P, et al. Red and processed meat consumption and colorectal cancer risk: a systematic review and meta-analysis. Oncotarget. 2017;8:83306–14.PubMedPubMedCentralCrossRef Zhao Z, Feng Q, Yin Z, Shuang J, Bai B, Yu P, et al. Red and processed meat consumption and colorectal cancer risk: a systematic review and meta-analysis. Oncotarget. 2017;8:83306–14.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Cascella M, Bimonte S. Dissecting the mechanisms and molecules underlying the potential carcinogenicity of red and processed meat in colorectal cancer (CRC): an overview on the current state of knowledge. Infect Agent Cancer. 2018;13:3. https://doi.org/10.1186/s13027-018-0174-9. Cascella M, Bimonte S. Dissecting the mechanisms and molecules underlying the potential carcinogenicity of red and processed meat in colorectal cancer (CRC): an overview on the current state of knowledge. Infect Agent Cancer. 2018;13:3. https://​doi.​org/​10.​1186/​s13027-018-0174-9.
51.
Zurück zum Zitat Diallo A, Deschasaux M, Latino-Martel P, Hercberg S, Galan P, Fassier P, et al. Red and processed meat intake and cancer risk: results from the prospective Nutrinet-Sante cohort study. Int J Cancer. 2018;142:230–7.PubMedCrossRef Diallo A, Deschasaux M, Latino-Martel P, Hercberg S, Galan P, Fassier P, et al. Red and processed meat intake and cancer risk: results from the prospective Nutrinet-Sante cohort study. Int J Cancer. 2018;142:230–7.PubMedCrossRef
53.
Zurück zum Zitat Peterson CT, Sharma V, Elmen L, Peterson SN. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin Exp Immunol. 2015;179:363–77.PubMedPubMedCentralCrossRef Peterson CT, Sharma V, Elmen L, Peterson SN. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin Exp Immunol. 2015;179:363–77.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat • Reese AT, Cho EH, Klitzman B, Nichols SP, Wisniewski NA, Villa MM, Durand HK. Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut. Elife. 2018;7. https://doi.org/10.7554/eLife.35987. This article describes gut redox potential changes with antibiotics. • Reese AT, Cho EH, Klitzman B, Nichols SP, Wisniewski NA, Villa MM, Durand HK. Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut. Elife. 2018;7. https://​doi.​org/​10.​7554/​eLife.​35987. This article describes gut redox potential changes with antibiotics.
55.
Zurück zum Zitat Van Itallie CM, Anderson JM. Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol 2014, 36, 157–165. Van Itallie CM, Anderson JM. Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol 2014, 36, 157–165.
56.
Zurück zum Zitat Hansson GC. Role of mucus layers in gut infection and inflammation. Curr Opin Microbiol. 2012;15(1):57–62. Hansson GC. Role of mucus layers in gut infection and inflammation. Curr Opin Microbiol. 2012;15(1):57–62.
58.
Zurück zum Zitat •• Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, et al. Adenoma-linked barrier defects and microbial products drive il-23/il-17-mediated tumour growth. Nature. 2012;491:254–8 This article elegantly describes how defective epithelial barrier allows adenoma development by microbial products.PubMedPubMedCentralCrossRef •• Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, et al. Adenoma-linked barrier defects and microbial products drive il-23/il-17-mediated tumour growth. Nature. 2012;491:254–8 This article elegantly describes how defective epithelial barrier allows adenoma development by microbial products.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Salcedo R, Worschech A, Cardone M, Jones Y, Gyulai Z, Dai RM, et al. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med. 2010;207:1625–36.PubMedPubMedCentralCrossRef Salcedo R, Worschech A, Cardone M, Jones Y, Gyulai Z, Dai RM, et al. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med. 2010;207:1625–36.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Hinoi T, Akyol A, Theisen BK, Ferguson DO, Greenson JK, Williams BO, et al. Mouse model of colonic adenoma-carcinoma progression based on somatic apc inactivation. Cancer Res. 2007;67:9721–30.PubMedCrossRef Hinoi T, Akyol A, Theisen BK, Ferguson DO, Greenson JK, Williams BO, et al. Mouse model of colonic adenoma-carcinoma progression based on somatic apc inactivation. Cancer Res. 2007;67:9721–30.PubMedCrossRef
61.
Zurück zum Zitat Rakoff-Nahoum S, Medzhitov R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science. 2007;317:124–7.PubMedCrossRef Rakoff-Nahoum S, Medzhitov R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science. 2007;317:124–7.PubMedCrossRef
62.
Zurück zum Zitat Tanaka T, Kohno H, Suzuki R, Hata K, Sugie S, Niho N, et al. Dextran sodium sulfate strongly promotes colorectal carcinogenesis in apc(min/+) mice: inflammatory stimuli by dextran sodium sulfate results in development of multiple colonic neoplasms. Int J Cancer. 2006;118:25–34.PubMedCrossRef Tanaka T, Kohno H, Suzuki R, Hata K, Sugie S, Niho N, et al. Dextran sodium sulfate strongly promotes colorectal carcinogenesis in apc(min/+) mice: inflammatory stimuli by dextran sodium sulfate results in development of multiple colonic neoplasms. Int J Cancer. 2006;118:25–34.PubMedCrossRef
63.
Zurück zum Zitat Tanaka Y, Ito S, Isobe K. Vancomycin-sensitive bacteria trigger development of colitis-associated colon cancer by attracting neutrophils. Sci Rep. 2016;6:23920.PubMedPubMedCentralCrossRef Tanaka Y, Ito S, Isobe K. Vancomycin-sensitive bacteria trigger development of colitis-associated colon cancer by attracting neutrophils. Sci Rep. 2016;6:23920.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Okamoto R, Watanabe M. Role of epithelial cells in the pathogenesis and treatment of inflammatory bowel disease. J Gastroenterol. 2016;51:11–21.PubMedCrossRef Okamoto R, Watanabe M. Role of epithelial cells in the pathogenesis and treatment of inflammatory bowel disease. J Gastroenterol. 2016;51:11–21.PubMedCrossRef
65.
Zurück zum Zitat De Arcangelis A, Hamade H, Alpy F, Normand S, Bruyere E, Lefebvre O, et al. Hemidesmosome integrity protects the colon against colitis and colorectal cancer. Gut. 2017;66:1748–60.PubMedCrossRef De Arcangelis A, Hamade H, Alpy F, Normand S, Bruyere E, Lefebvre O, et al. Hemidesmosome integrity protects the colon against colitis and colorectal cancer. Gut. 2017;66:1748–60.PubMedCrossRef
66.
Zurück zum Zitat Hammer AM, Morris NL, Earley ZM, Choudhry MA. The first line of defense: the effects of alcohol on post-burn intestinal barrier, immune cells, and microbiome. Alcohol Res. 2015;37:209–22. Hammer AM, Morris NL, Earley ZM, Choudhry MA. The first line of defense: the effects of alcohol on post-burn intestinal barrier, immune cells, and microbiome. Alcohol Res. 2015;37:209–22.
67.
Zurück zum Zitat Wenzel UA, Magnusson MK, Rydstrom A, Jonstrand C, Hengst J, Johansson ME, et al. Spontaneous colitis in muc2-deficient mice reflects clinical and cellular features of active ulcerative colitis. PLoS One. 2014;9:e100217.PubMedPubMedCentralCrossRef Wenzel UA, Magnusson MK, Rydstrom A, Jonstrand C, Hengst J, Johansson ME, et al. Spontaneous colitis in muc2-deficient mice reflects clinical and cellular features of active ulcerative colitis. PLoS One. 2014;9:e100217.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Bergstrom K, Liu X, Zhao Y, Gao N, Wu Q, Song K, et al. Defective intestinal mucin-type o-glycosylation causes spontaneous colitis-associated cancer in mice. Gastroenterology. 2016;151:152–164.e111.PubMedCrossRef Bergstrom K, Liu X, Zhao Y, Gao N, Wu Q, Song K, et al. Defective intestinal mucin-type o-glycosylation causes spontaneous colitis-associated cancer in mice. Gastroenterology. 2016;151:152–164.e111.PubMedCrossRef
69.
Zurück zum Zitat Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167:1339–1353.e1321.PubMedPubMedCentralCrossRef Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167:1339–1353.e1321.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Morampudi V, Dalwadi U, Bhinder G, Sham HP, Gill SK, Chan J, et al. The goblet cell-derived mediator RELM-beta drives spontaneous colitis in muc2-deficient mice by promoting commensal microbial dysbiosis. Mucosal Immunol. 2016;9:1218–33.PubMedCrossRef Morampudi V, Dalwadi U, Bhinder G, Sham HP, Gill SK, Chan J, et al. The goblet cell-derived mediator RELM-beta drives spontaneous colitis in muc2-deficient mice by promoting commensal microbial dysbiosis. Mucosal Immunol. 2016;9:1218–33.PubMedCrossRef
71.
Zurück zum Zitat Das S, Rachagani S, Sheinin Y, Smith LM, Gurumurthy CB, Roy HK, et al. Mice deficient in muc4 are resistant to experimental colitis and colitis-associated colorectal cancer. Oncogene. 2016;35:2645–54.PubMedCrossRef Das S, Rachagani S, Sheinin Y, Smith LM, Gurumurthy CB, Roy HK, et al. Mice deficient in muc4 are resistant to experimental colitis and colitis-associated colorectal cancer. Oncogene. 2016;35:2645–54.PubMedCrossRef
72.
Zurück zum Zitat Fre S, Bardin A, Robine S, Louvard D. Notch signaling in intestinal homeostasis across species: the cases of drosophila, zebrafish and the mouse. Exp Cell Res. 2011;317:2740–7.PubMedCrossRef Fre S, Bardin A, Robine S, Louvard D. Notch signaling in intestinal homeostasis across species: the cases of drosophila, zebrafish and the mouse. Exp Cell Res. 2011;317:2740–7.PubMedCrossRef
73.
Zurück zum Zitat Crosnier C, Vargesson N, Gschmeissner S, Ariza-McNaughton L, Morrison A, Lewis J. Delta-notch signalling controls commitment to a secretory fate in the zebrafish intestine. Development. 2005;132:1093–104.PubMedCrossRef Crosnier C, Vargesson N, Gschmeissner S, Ariza-McNaughton L, Morrison A, Lewis J. Delta-notch signalling controls commitment to a secretory fate in the zebrafish intestine. Development. 2005;132:1093–104.PubMedCrossRef
74.
Zurück zum Zitat Yuan X, Wu H, Xu H, Xiong H, Chu Q, Yu S, et al. Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett. 2015;369:20–7.PubMedCrossRef Yuan X, Wu H, Xu H, Xiong H, Chu Q, Yu S, et al. Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett. 2015;369:20–7.PubMedCrossRef
75.
Zurück zum Zitat Shang Y, Smith S, Hu X. Role of notch signaling in regulating innate immunity and inflammation in health and disease. Protein Cell. 2016;7:159–74. Shang Y, Smith S, Hu X. Role of notch signaling in regulating innate immunity and inflammation in health and disease. Protein Cell. 2016;7:159–74.
76.
Zurück zum Zitat Cheesman SE, Neal JT, Mittge E, Seredick BM, Guillemin K. Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via MyD88. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4570–7.PubMedCrossRef Cheesman SE, Neal JT, Mittge E, Seredick BM, Guillemin K. Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via MyD88. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4570–7.PubMedCrossRef
78.
Zurück zum Zitat Wang Y, Huang D, Chen KY, Cui M, Wang W, Huang X, et al. Fucosylation deficiency in mice leads to colitis and adenocarcinoma. Gastroenterology. 2017;152:193–205.e110.PubMedCrossRef Wang Y, Huang D, Chen KY, Cui M, Wang W, Huang X, et al. Fucosylation deficiency in mice leads to colitis and adenocarcinoma. Gastroenterology. 2017;152:193–205.e110.PubMedCrossRef
79.
Zurück zum Zitat Coulombe G, Langlois A, De Palma G, Langlois MJ, McCarville JL, Gagne-Sanfacon J, et al. Shp-2 phosphatase prevents colonic inflammation by controlling secretory cell differentiation and maintaining host-microbiota homeostasis. J Cell Physiol. 2016;231:2529–40.PubMedPubMedCentralCrossRef Coulombe G, Langlois A, De Palma G, Langlois MJ, McCarville JL, Gagne-Sanfacon J, et al. Shp-2 phosphatase prevents colonic inflammation by controlling secretory cell differentiation and maintaining host-microbiota homeostasis. J Cell Physiol. 2016;231:2529–40.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012;149:1578–93.PubMedPubMedCentralCrossRef Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012;149:1578–93.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Kelly D, Mulder IE. Microbiome and immunological interactions. Nutr Rev. 2012;70(Suppl 1):S18–30.PubMedCrossRef Kelly D, Mulder IE. Microbiome and immunological interactions. Nutr Rev. 2012;70(Suppl 1):S18–30.PubMedCrossRef
82.
Zurück zum Zitat Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13:759–71.CrossRefPubMed Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13:759–71.CrossRefPubMed
85.
Zurück zum Zitat Bonnet M, Buc E, Sauvanet P, Darcha C, Dubois D, Pereira B, et al. Colonization of the human gut by e. coli and colorectal cancer risk. Clin Cancer Res. 2014;20:859–67.PubMedCrossRef Bonnet M, Buc E, Sauvanet P, Darcha C, Dubois D, Pereira B, et al. Colonization of the human gut by e. coli and colorectal cancer risk. Clin Cancer Res. 2014;20:859–67.PubMedCrossRef
86.
Zurück zum Zitat Shen XJ, Rawls JF, Randall T, Burcal L, Mpande CN, Jenkins N, et al. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes. 2010;1:138–47.PubMedPubMedCentralCrossRef Shen XJ, Rawls JF, Randall T, Burcal L, Mpande CN, Jenkins N, et al. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes. 2010;1:138–47.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338:120–3.PubMedPubMedCentralCrossRef Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338:120–3.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Arthur JC, Gharaibeh RZ, Muhlbauer M, Perez-Chanona E, Uronis JM, McCafferty J, et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat Commun. 2014;5:4724.PubMedCrossRef Arthur JC, Gharaibeh RZ, Muhlbauer M, Perez-Chanona E, Uronis JM, McCafferty J, et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat Commun. 2014;5:4724.PubMedCrossRef
89.
Zurück zum Zitat Abreu MT, Peek RM Jr. Gastrointestinal malignancy and the microbiome. Gastroenterology. 2014;146:1534–1546.e1533.PubMedCrossRef Abreu MT, Peek RM Jr. Gastrointestinal malignancy and the microbiome. Gastroenterology. 2014;146:1534–1546.e1533.PubMedCrossRef
90.
Zurück zum Zitat DiDonato JA, Mercurio F, Karin M. Nf-kappab and the link between inflammation and cancer. Immunol Rev. 2012;246:379–400.PubMedCrossRef DiDonato JA, Mercurio F, Karin M. Nf-kappab and the link between inflammation and cancer. Immunol Rev. 2012;246:379–400.PubMedCrossRef
91.
Zurück zum Zitat Ruiz PA, Shkoda A, Kim SC, Sartor RB, Haller D. Il-10 gene-deficient mice lack tgf-beta/smad-mediated tlr2 degradation and fail to inhibit proinflammatory gene expression in intestinal epithelial cells under conditions of chronic inflammation. Ann N Y Acad Sci. 2006;1072:389–94.PubMedCrossRef Ruiz PA, Shkoda A, Kim SC, Sartor RB, Haller D. Il-10 gene-deficient mice lack tgf-beta/smad-mediated tlr2 degradation and fail to inhibit proinflammatory gene expression in intestinal epithelial cells under conditions of chronic inflammation. Ann N Y Acad Sci. 2006;1072:389–94.PubMedCrossRef
92.
Zurück zum Zitat Haller D, Holt L, Kim SC, Schwabe RF, Sartor RB, Jobin C. Transforming growth factor-beta 1 inhibits non-pathogenic gram negative bacteria-induced NF-kappa b recruitment to the interleukin-6 gene promoter in intestinal epithelial cells through modulation of histone acetylation. J Biol Chem. 2003;278:23851–60.PubMedCrossRef Haller D, Holt L, Kim SC, Schwabe RF, Sartor RB, Jobin C. Transforming growth factor-beta 1 inhibits non-pathogenic gram negative bacteria-induced NF-kappa b recruitment to the interleukin-6 gene promoter in intestinal epithelial cells through modulation of histone acetylation. J Biol Chem. 2003;278:23851–60.PubMedCrossRef
93.
Zurück zum Zitat Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting stat3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14:736–46.PubMedCrossRef Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting stat3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14:736–46.PubMedCrossRef
94.
Zurück zum Zitat •• Dejea CM, Fathi P, Craig JM. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359:592–7. This article emphasizes the role of Bacteroides fragilis in the colon tumorigenesis as a component of the driver bacterium. •• Dejea CM, Fathi P, Craig JM. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359:592–7. This article emphasizes the role of Bacteroides fragilis in the colon tumorigenesis as a component of the driver bacterium.
95.
Zurück zum Zitat •• Chung L, Thiele Orberg E, Geis AL, Chan JL, Fu K, DeStefano Shields CE, et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe. 2018;23:203–214.e205 This article emphasizes the role of Bacteroides fragilis in the colon tumorigenesis as a component of the driver bacterium.PubMedPubMedCentralCrossRef •• Chung L, Thiele Orberg E, Geis AL, Chan JL, Fu K, DeStefano Shields CE, et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe. 2018;23:203–214.e205 This article emphasizes the role of Bacteroides fragilis in the colon tumorigenesis as a component of the driver bacterium.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, et al. The bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis. 2015;60:208–15.PubMedCrossRef Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, et al. The bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis. 2015;60:208–15.PubMedCrossRef
97.
Zurück zum Zitat Thiele Orberg E, Fan H, Tam AJ, Dejea CM, Destefano Shields CE, Wu S, et al. The myeloid immune signature of enterotoxigenic bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol. 2017;10:421–33.PubMedCrossRef Thiele Orberg E, Fan H, Tam AJ, Dejea CM, Destefano Shields CE, Wu S, et al. The myeloid immune signature of enterotoxigenic bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol. 2017;10:421–33.PubMedCrossRef
98.
Zurück zum Zitat Ahmed I, Chandrakesan P, Tawfik O, Xia L, Anant S, Umar S. Critical roles of notch and Wnt/beta-catenin pathways in the regulation of hyperplasia and/or colitis in response to bacterial infection. Infect Immun. 2012;80:3107–21.PubMedPubMedCentralCrossRef Ahmed I, Chandrakesan P, Tawfik O, Xia L, Anant S, Umar S. Critical roles of notch and Wnt/beta-catenin pathways in the regulation of hyperplasia and/or colitis in response to bacterial infection. Infect Immun. 2012;80:3107–21.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Chandrakesan P, Ahmed I, Anwar T, Wang Y, Sarkar S, Singh P, et al. Novel changes in nf-{kappa}b activity during progression and regression phases of hyperplasia: role of mek, erk, and p38. J Biol Chem. 2010;285:33485–98.PubMedPubMedCentralCrossRef Chandrakesan P, Ahmed I, Anwar T, Wang Y, Sarkar S, Singh P, et al. Novel changes in nf-{kappa}b activity during progression and regression phases of hyperplasia: role of mek, erk, and p38. J Biol Chem. 2010;285:33485–98.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Barthold SW, Jonas AM. Morphogenesis of early 1, 2-dimethylhydrazine-induced lesions and latent period reduction of colon carcinogenesis in mice by a variant of citrobacter freundii. Cancer Res. 1977;37:4352–60.PubMed Barthold SW, Jonas AM. Morphogenesis of early 1, 2-dimethylhydrazine-induced lesions and latent period reduction of colon carcinogenesis in mice by a variant of citrobacter freundii. Cancer Res. 1977;37:4352–60.PubMed
101.
Zurück zum Zitat Newman JV, Kosaka T, Sheppard BJ, Fox JG, Schauer DB. Bacterial infection promotes colon tumorigenesis in apc(min/+) mice. J Infect Dis. 2001;184:227–30.PubMedCrossRef Newman JV, Kosaka T, Sheppard BJ, Fox JG, Schauer DB. Bacterial infection promotes colon tumorigenesis in apc(min/+) mice. J Infect Dis. 2001;184:227–30.PubMedCrossRef
102.
Zurück zum Zitat Liu Z, Man SM, Zhu Q, Vogel P, Frase S, Fukui Y, et al. Dock2 confers immunity and intestinal colonization resistance to citrobacter rodentium infection. Sci Rep. 2016;6:27814.PubMedPubMedCentralCrossRef Liu Z, Man SM, Zhu Q, Vogel P, Frase S, Fukui Y, et al. Dock2 confers immunity and intestinal colonization resistance to citrobacter rodentium infection. Sci Rep. 2016;6:27814.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Kasai C, Sugimoto K, Moritani I, Tanaka J, Oya Y, Inoue H, et al. Comparison of human gut microbiota in control subjects and patients with colorectal carcinoma in adenoma: terminal restriction fragment length polymorphism and next-generation sequencing analyses. Oncol Rep. 2016;35:325–33.PubMedCrossRef Kasai C, Sugimoto K, Moritani I, Tanaka J, Oya Y, Inoue H, et al. Comparison of human gut microbiota in control subjects and patients with colorectal carcinoma in adenoma: terminal restriction fragment length polymorphism and next-generation sequencing analyses. Oncol Rep. 2016;35:325–33.PubMedCrossRef
104.
Zurück zum Zitat Yu J, Chen Y, Fu X, Zhou X, Peng Y, Shi L, et al. Invasive fusobacterium nucleatum may play a role in the carcinogenesis of proximal colon cancer through the serrated neoplasia pathway. Int J Cancer. 2016;139:1318–26.PubMedCrossRef Yu J, Chen Y, Fu X, Zhou X, Peng Y, Shi L, et al. Invasive fusobacterium nucleatum may play a role in the carcinogenesis of proximal colon cancer through the serrated neoplasia pathway. Int J Cancer. 2016;139:1318–26.PubMedCrossRef
105.
Zurück zum Zitat Li YY, Ge QX, Cao J, Zhou YJ, Du YL, Shen B, et al. Association of fusobacterium nucleatum infection with colorectal cancer in Chinese patients. World J Gastroenterol. 2016;22:3227–33.PubMedPubMedCentralCrossRef Li YY, Ge QX, Cao J, Zhou YJ, Du YL, Shen B, et al. Association of fusobacterium nucleatum infection with colorectal cancer in Chinese patients. World J Gastroenterol. 2016;22:3227–33.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Wei Z, Cao S, Liu S, Yao Z, Sun T, Li Y, et al. Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients' survival? A pilot study on relevant mechanism. Oncotarget. 2016;7:46158–72.PubMedPubMedCentralCrossRef Wei Z, Cao S, Liu S, Yao Z, Sun T, Li Y, et al. Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients' survival? A pilot study on relevant mechanism. Oncotarget. 2016;7:46158–72.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y, Nowak JA, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 2016;65:1973–80.PubMedCrossRef Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y, Nowak JA, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 2016;65:1973–80.PubMedCrossRef
108.
Zurück zum Zitat Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14:207–15.PubMedPubMedCentralCrossRef Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14:207–15.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Yang Y, Weng W, Peng J, Hong L, Yang L, Toiyama Y, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-kappab, and up-regulating expression of microrna-21. Gastroenterology. 2017;152:851–866.e824.PubMedCrossRef Yang Y, Weng W, Peng J, Hong L, Yang L, Toiyama Y, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-kappab, and up-regulating expression of microrna-21. Gastroenterology. 2017;152:851–866.e824.PubMedCrossRef
110.
Zurück zum Zitat Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating e-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14:195–206.PubMedPubMedCentralCrossRef Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating e-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14:195–206.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, et al. Binding of the fap2 protein of fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42:344–55.PubMedPubMedCentralCrossRef Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, et al. Binding of the fap2 protein of fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42:344–55.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Tjalsma H, Boleij A, Marchesi JR, Dutilh BE. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol. 2012;10:575–82.PubMedCrossRef Tjalsma H, Boleij A, Marchesi JR, Dutilh BE. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol. 2012;10:575–82.PubMedCrossRef
113.
Zurück zum Zitat Gao Z, Guo B, Gao R, Zhu Q, Qin H. Microbiota disbiosis is associated with colorectal cancer. Front Microbiol. 2015;6:20.PubMedPubMedCentral Gao Z, Guo B, Gao R, Zhu Q, Qin H. Microbiota disbiosis is associated with colorectal cancer. Front Microbiol. 2015;6:20.PubMedPubMedCentral
115.
Zurück zum Zitat Geng J, Song Q, Tang X, Liang X, Fan H, Peng H, et al. Co-occurrence of driver and passenger bacteria in human colorectal cancer. Gut Pathog. 2014;6:26. Geng J, Song Q, Tang X, Liang X, Fan H, Peng H, et al. Co-occurrence of driver and passenger bacteria in human colorectal cancer. Gut Pathog. 2014;6:26.
116.
117.
Zurück zum Zitat Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, et al. Genomic analysis identifies association of fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–8.PubMedPubMedCentralCrossRef Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, et al. Genomic analysis identifies association of fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–8.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Liu, S.; da Cunha, A.P.; Rezende, R.M.; Cialic, R.; Wei, Z.; Bry, L.; Comstock, L.E.; Gandhi, R.; Weiner, H.L. The host shapes the gut microbiota via fecal microrna. Cell Host Microbe 2016, 19, 32–43. Liu, S.; da Cunha, A.P.; Rezende, R.M.; Cialic, R.; Wei, Z.; Bry, L.; Comstock, L.E.; Gandhi, R.; Weiner, H.L. The host shapes the gut microbiota via fecal microrna. Cell Host Microbe 2016, 19, 32–43.
120.
Zurück zum Zitat •• Yuan C, Burns MB, Subramanian S, Blekhman R. Interaction between Host MicroRNAs and the Gut Microbiota in Colorectal Cancer. mSystems. 2018;3(3). https://doi.org/10.1128/mSystems.00205-17. The is the first study to demonstrate that the interaction between microRNA and the gut microbiome may play a role in colorectal cancer. •• Yuan C, Burns MB, Subramanian S, Blekhman R. Interaction between Host MicroRNAs and the Gut Microbiota in Colorectal Cancer. mSystems. 2018;3(3). https://​doi.​org/​10.​1128/​mSystems.​00205-17. The is the first study to demonstrate that the interaction between microRNA and the gut microbiome may play a role in colorectal cancer.
121.
Zurück zum Zitat Gagniere J, Raisch J, Veziant J, Barnich N, Bonnet R, Buc E, et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol. 2016;22:501–18.PubMedPubMedCentralCrossRef Gagniere J, Raisch J, Veziant J, Barnich N, Bonnet R, Buc E, et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol. 2016;22:501–18.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Graillot V, Dormoy I, Dupuy J, Shay JW, Huc L, Mirey G, et al. Genotoxicity of cytolethal distending toxin (CDT) on isogenic human colorectal cell lines: potential promoting effects for colorectal carcinogenesis. Front Cell Infect Microbiol. 2016;6:34.PubMedPubMedCentralCrossRef Graillot V, Dormoy I, Dupuy J, Shay JW, Huc L, Mirey G, et al. Genotoxicity of cytolethal distending toxin (CDT) on isogenic human colorectal cell lines: potential promoting effects for colorectal carcinogenesis. Front Cell Infect Microbiol. 2016;6:34.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Wang X, Allen TD, May RJ, Lightfoot S, Houchen CW, Huycke MM. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res. 2008;68:9909–17.PubMedPubMedCentralCrossRef Wang X, Allen TD, May RJ, Lightfoot S, Houchen CW, Huycke MM. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res. 2008;68:9909–17.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Elatrech I, Marzaioli V, Boukemara H, Bournier O, Neut C, Darfeuille-Michaud A, et al. Escherichia coli lf82 differentially regulates ros production and mucin expression in intestinal epithelial t84 cells: implication of nox1. Inflamm Bowel Dis. 2015;21:1018–26.PubMedCrossRef Elatrech I, Marzaioli V, Boukemara H, Bournier O, Neut C, Darfeuille-Michaud A, et al. Escherichia coli lf82 differentially regulates ros production and mucin expression in intestinal epithelial t84 cells: implication of nox1. Inflamm Bowel Dis. 2015;21:1018–26.PubMedCrossRef
126.
Zurück zum Zitat Flemer B, Lynch DB, Brown JM, Jeffery IB, Ryan FJ, Claesson MJ, et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut. 2017;66:633–43.PubMedCrossRef Flemer B, Lynch DB, Brown JM, Jeffery IB, Ryan FJ, Claesson MJ, et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut. 2017;66:633–43.PubMedCrossRef
127.
Zurück zum Zitat Liang Q, Chiu J, Chen Y, Huang Y, Higashimori A, Fang J, et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin Cancer Res. 2017;23:2061–70.PubMedCrossRef Liang Q, Chiu J, Chen Y, Huang Y, Higashimori A, Fang J, et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin Cancer Res. 2017;23:2061–70.PubMedCrossRef
128.
Zurück zum Zitat Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, et al. Fecal microbiota, fecal metabolome, and colorectal cancer interrelations. PLoS One. 2016;11:e0152126.PubMedPubMedCentralCrossRef Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, et al. Fecal microbiota, fecal metabolome, and colorectal cancer interrelations. PLoS One. 2016;11:e0152126.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Zhou Y, He H, Xu H, Li Y, Li Z, Du Y, et al. Association of oncogenic bacteria with colorectal cancer in South China. Oncotarget. 2016;7:80794–802.PubMedPubMedCentralCrossRef Zhou Y, He H, Xu H, Li Y, Li Z, Du Y, et al. Association of oncogenic bacteria with colorectal cancer in South China. Oncotarget. 2016;7:80794–802.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Fukugaiti MH, Ignacio A, Fernandes MR, Ribeiro Junior U, Nakano V, Avila-Campos MJ. High occurrence of fusobacterium nucleatum and clostridium difficile in the intestinal microbiota of colorectal carcinoma patients. Braz J Microbiol. 2015;46:1135–40.PubMedPubMedCentralCrossRef Fukugaiti MH, Ignacio A, Fernandes MR, Ribeiro Junior U, Nakano V, Avila-Campos MJ. High occurrence of fusobacterium nucleatum and clostridium difficile in the intestinal microbiota of colorectal carcinoma patients. Braz J Microbiol. 2015;46:1135–40.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Wang EL, Qian ZR, Nakasono M, Tanahashi T, Yoshimoto K, Bando Y, et al. High expression of toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer. 2010;102:908–15.PubMedPubMedCentralCrossRef Wang EL, Qian ZR, Nakasono M, Tanahashi T, Yoshimoto K, Bando Y, et al. High expression of toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer. 2010;102:908–15.PubMedPubMedCentralCrossRef
Metadaten
Titel
Microbiome and Colorectal Cancer
verfasst von
Ishfaq Ahmed
Shahid Umar
Publikationsdatum
11.10.2018
Verlag
Springer US
Erschienen in
Current Colorectal Cancer Reports / Ausgabe 6/2018
Print ISSN: 1556-3790
Elektronische ISSN: 1556-3804
DOI
https://doi.org/10.1007/s11888-018-0416-7

Weitere Artikel der Ausgabe 6/2018

Current Colorectal Cancer Reports 6/2018 Zur Ausgabe

Radiation Therapy and Radiation Therapy Innovations in Colorectal Cancer (JY Wo, Section Editor)

Total Neoadjuvant Therapy (TNT) in Rectal Cancer

Basic Science Foundations in Colorectal Cancer (DA Dixon and KE Hamilton, Section Editors)

Colorectal Cancer and Metabolism

Systemic Therapies in Colorectal Cancer (RD Kim, Section Editor)

Novel Targets in Advanced Colorectal Cancer

Nutrition and Nutritional Interventions in Colorectal Cancer (K Wu, Section Editor)

The Role of Energy Balance on Colorectal Cancer Survival

Basic Science Foundations in Colorectal Cancer (DA Dixon and KE Hamilton, Section Editors)

Demystifying the Differences Between Tumor-Initiating Cells and Cancer Stem Cells in Colon Cancer

Nutrition and Nutritional Interventions in Colorectal Cancer (K Wu, Section Editor)

Insights Into the Relationship Between Gut Microbiota and Colorectal Cancer

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.