Skip to main content
Erschienen in: Tumor Biology 12/2014

01.12.2014 | Research Article

MicroRNA-100 regulates pancreatic cancer cells growth and sensitivity to chemotherapy through targeting FGFR3

verfasst von: Zhipeng Li, Xu Li, Chao Yu, Min Wang, Feng Peng, Jie Xiao, Rui Tian, Jianxin Jiang, Chengyi Sun

Erschienen in: Tumor Biology | Ausgabe 12/2014

Einloggen, um Zugang zu erhalten

Abstract

We intended to investigate the role of microRNA 100 (miR-100) in regulating pancreatic cancer cells’ growth in vitro and tumor development in vivo. QTR-PCR was used to examine the expression of miR-100 in pancreatic cancer cell lines and tumor cells from human patients. Lentivirual vector containing miR-100 mimics (lv-miR-100) was used to overexpress miR-100 in MIA PaCa-2 and FCPAC-1 cells. The effects of overexpressing miR-100 on pancreatic cancer cell proliferation and chemosensitivity to cisplatin were examined by cell proliferation essay in vitro. MIA PaCa-2 cells with endogenously overexpressed miR-100 were transplanted into null mice to examine tumor growth in vivo. The predicted target of miR-100, fibroblast growth factor receptor 3 (FGFR3), was downregulated by siRNA to examine its effect on pancreatic cancer cells. We found miR-100 was markedly underexpressed in both pancreatic cancer cell lines and tumor cells from patients. In cancer cells, transfection of lv-miR-100 was able to upregulate endogenous expression of miR-100, inhibited cancer cell proliferation, and increased sensitivities to cisplatin. Overexpressing miR-100 led to significant inhibition on tumor formation in vivo. Luciferase essay showed FGFR3 was direct target of miR-100. FGFR3 was significantly downregulated by overexpressing miR-100 in pancreatic cancer cells and knocking down FGFR3 by siRNA exerted similar effect as miR-100. Our study demonstrated that miR-100 played an important role in pancreatic cancer development, possibly through targeting FGFR3. It may become a new therapeutic target for gene therapy in patients suffered from pancreatic cancer.
Literatur
1.
Zurück zum Zitat Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA: Cancer J Clin. 2010;60:277–300. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA: Cancer J Clin. 2010;60:277–300.
2.
Zurück zum Zitat Chen W, Zheng R, Zhang S, Zhao P, Li G, et al. Report of incidence and mortality in China cancer registries, 2009. Chin J Cancer Res = Chung-kuo yen cheng yen chiu. 2013;25:10–21.PubMed Chen W, Zheng R, Zhang S, Zhao P, Li G, et al. Report of incidence and mortality in China cancer registries, 2009. Chin J Cancer Res = Chung-kuo yen cheng yen chiu. 2013;25:10–21.PubMed
3.
Zurück zum Zitat Hirata K, Egawa S, Kimura Y, Nobuoka T, Oshima H, et al. Current status of surgery for pancreatic cancer. Dig Surg. 2007;24:137–47.CrossRef Hirata K, Egawa S, Kimura Y, Nobuoka T, Oshima H, et al. Current status of surgery for pancreatic cancer. Dig Surg. 2007;24:137–47.CrossRef
4.
Zurück zum Zitat Gillen S, Schuster T, Meyer Zum Buschenfelde C, Friess H, Kleeff J. Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med. 2010;7:e1000267.CrossRef Gillen S, Schuster T, Meyer Zum Buschenfelde C, Friess H, Kleeff J. Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med. 2010;7:e1000267.CrossRef
5.
Zurück zum Zitat Pillai RS. MicroRNA function: multiple mechanisms for a tiny RNA? RNA. 2005;11:1753–61.CrossRef Pillai RS. MicroRNA function: multiple mechanisms for a tiny RNA? RNA. 2005;11:1753–61.CrossRef
6.
Zurück zum Zitat Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.CrossRef Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.CrossRef
7.
Zurück zum Zitat Feng W, Feng Y. MicroRNAs in neural cell development and brain diseases. Sci Chin Life Sci. 2011;54:1103–12.CrossRef Feng W, Feng Y. MicroRNAs in neural cell development and brain diseases. Sci Chin Life Sci. 2011;54:1103–12.CrossRef
8.
Zurück zum Zitat Bian S, Sun T. Functions of noncoding RNAs in neural development and neurological diseases. Mol Neurobiol. 2011;44:359–73.CrossRef Bian S, Sun T. Functions of noncoding RNAs in neural development and neurological diseases. Mol Neurobiol. 2011;44:359–73.CrossRef
9.
Zurück zum Zitat Papagiannakopoulos T, Kosik KS. MicroRNAs: regulators of oncogenesis and stemness. BMC Med. 2008;6:15.CrossRef Papagiannakopoulos T, Kosik KS. MicroRNAs: regulators of oncogenesis and stemness. BMC Med. 2008;6:15.CrossRef
10.
Zurück zum Zitat Blandino G, Fazi F, Donzelli S, Kedmi M, Sas-Chen A, et al. Tumor suppressor microRNAs: a novel non-coding alliance against cancer. FEBS Lett. 2014;32:74–81. Blandino G, Fazi F, Donzelli S, Kedmi M, Sas-Chen A, et al. Tumor suppressor microRNAs: a novel non-coding alliance against cancer. FEBS Lett. 2014;32:74–81.
11.
Zurück zum Zitat Palanichamy JK, Rao DS. miRNA dysregulation in cancer: towards a mechanistic understanding. Front Gen. 2014;5:54. Palanichamy JK, Rao DS. miRNA dysregulation in cancer: towards a mechanistic understanding. Front Gen. 2014;5:54.
12.
Zurück zum Zitat Leite KR, Sousa-Canavez JM, Reis ST, Tomiyama AH, Camara-Lopes LH, et al. Change in expression of miR-let7c, miR-100, and miR-218 from high grade localized prostate cancer to metastasis. Urol Oncol. 2011;29:265–9.CrossRef Leite KR, Sousa-Canavez JM, Reis ST, Tomiyama AH, Camara-Lopes LH, et al. Change in expression of miR-let7c, miR-100, and miR-218 from high grade localized prostate cancer to metastasis. Urol Oncol. 2011;29:265–9.CrossRef
13.
Zurück zum Zitat Reis ST, Timoszczuk LS, Pontes-Junior J, Viana N, Silva IA, et al. The role of micro RNAs let7c, 100 and 218 expression and their target RAS, C-MYC, BUB1, RB, SMARCA5, LAMB3 and Ki-67 in prostate cancer. Clinics. 2013;68:652–7.CrossRef Reis ST, Timoszczuk LS, Pontes-Junior J, Viana N, Silva IA, et al. The role of micro RNAs let7c, 100 and 218 expression and their target RAS, C-MYC, BUB1, RB, SMARCA5, LAMB3 and Ki-67 in prostate cancer. Clinics. 2013;68:652–7.CrossRef
14.
Zurück zum Zitat Gebeshuber CA, Martinez J. miR-100 suppresses IGF2 and inhibits breast tumorigenesis by interfering with proliferation and survival signaling. Oncogene. 2013;32:3306–10.CrossRef Gebeshuber CA, Martinez J. miR-100 suppresses IGF2 and inhibits breast tumorigenesis by interfering with proliferation and survival signaling. Oncogene. 2013;32:3306–10.CrossRef
15.
Zurück zum Zitat Chen D, Sun Y, Yuan Y, Han Z, Zhang P, Chen D, et al. PLoS Genet. 2014;10:e1004177.CrossRef Chen D, Sun Y, Yuan Y, Han Z, Zhang P, Chen D, et al. PLoS Genet. 2014;10:e1004177.CrossRef
16.
Zurück zum Zitat Nagaraja AK, Creighton CJ, Yu Z, Zhu H, Gunaratne PH, et al. A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol. 2010;24:447–63.CrossRef Nagaraja AK, Creighton CJ, Yu Z, Zhu H, Gunaratne PH, et al. A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol. 2010;24:447–63.CrossRef
17.
Zurück zum Zitat Peng DX, Luo M, Qiu LW, He YL, Wang XF. Prognostic implications of microRNA-100 and its functional roles in human epithelial ovarian cancer. Oncol Rep. 2012;27:1238–44.CrossRef Peng DX, Luo M, Qiu LW, He YL, Wang XF. Prognostic implications of microRNA-100 and its functional roles in human epithelial ovarian cancer. Oncol Rep. 2012;27:1238–44.CrossRef
18.
Zurück zum Zitat Radulovich N, Qian JY, Tsao MS. Human pancreatic duct epithelial cell model for KRAS transformation. Methods Enzymol. 2008;439:1–13.CrossRef Radulovich N, Qian JY, Tsao MS. Human pancreatic duct epithelial cell model for KRAS transformation. Methods Enzymol. 2008;439:1–13.CrossRef
19.
Zurück zum Zitat Zhang L, Mizumoto K, Sato N, Ogawa T, Kusumoto M, et al. Quantitative determination of apoptotic death in cultured human pancreatic cancer cells by propidium iodide and digitonin. Cancer Lett. 1999;142:129–37.CrossRef Zhang L, Mizumoto K, Sato N, Ogawa T, Kusumoto M, et al. Quantitative determination of apoptotic death in cultured human pancreatic cancer cells by propidium iodide and digitonin. Cancer Lett. 1999;142:129–37.CrossRef
20.
Zurück zum Zitat Jung DE, Wen J, Oh T, Song SY. Differentially expressed microRNAs in pancreatic cancer stem cells. Pancreas. 2011;40:1180–7.CrossRef Jung DE, Wen J, Oh T, Song SY. Differentially expressed microRNAs in pancreatic cancer stem cells. Pancreas. 2011;40:1180–7.CrossRef
21.
Zurück zum Zitat LaConti JJ, Shivapurkar N, Preet A, Deslattes Mays A, Peran I, et al. Tissue and serum microRNAs in the Kras(G12D) transgenic animal model and in patients with pancreatic cancer. PLoS One. 2011;6:e20687.CrossRef LaConti JJ, Shivapurkar N, Preet A, Deslattes Mays A, Peran I, et al. Tissue and serum microRNAs in the Kras(G12D) transgenic animal model and in patients with pancreatic cancer. PLoS One. 2011;6:e20687.CrossRef
22.
Zurück zum Zitat Panarelli NC, Chen YT, Zhou XK, Kitabayashi N, Yantiss RK. MicroRNA expression aids the preoperative diagnosis of pancreatic ductal adenocarcinoma. Pancreas. 2012;41:685–90.CrossRef Panarelli NC, Chen YT, Zhou XK, Kitabayashi N, Yantiss RK. MicroRNA expression aids the preoperative diagnosis of pancreatic ductal adenocarcinoma. Pancreas. 2012;41:685–90.CrossRef
23.
Zurück zum Zitat Giroux V, Dagorn JC, Iovanna JL. A review of kinases implicated in pancreatic cancer. Pancreatol: Off J Int Assoc Pancreatol. 2009;9:738–54.CrossRef Giroux V, Dagorn JC, Iovanna JL. A review of kinases implicated in pancreatic cancer. Pancreatol: Off J Int Assoc Pancreatol. 2009;9:738–54.CrossRef
24.
Zurück zum Zitat Yamanaka Y, Friess H, Buchler M, Beger HG, Uchida E, et al. Overexpression of acidic and basic fibroblast growth factors in human pancreatic cancer correlates with advanced tumor stage. Cancer Res. 1993;53:5289–96.PubMed Yamanaka Y, Friess H, Buchler M, Beger HG, Uchida E, et al. Overexpression of acidic and basic fibroblast growth factors in human pancreatic cancer correlates with advanced tumor stage. Cancer Res. 1993;53:5289–96.PubMed
25.
Zurück zum Zitat Kuwahara K, Sasaki T, Kuwada Y, Murakami M, Yamasaki S, et al. Expressions of angiogenic factors in pancreatic ductal carcinoma: a correlative study with clinicopathologic parameters and patient survival. Pancreas. 2003;26:344–9.CrossRef Kuwahara K, Sasaki T, Kuwada Y, Murakami M, Yamasaki S, et al. Expressions of angiogenic factors in pancreatic ductal carcinoma: a correlative study with clinicopathologic parameters and patient survival. Pancreas. 2003;26:344–9.CrossRef
26.
Zurück zum Zitat Hammel P, Mornex F, Deplanque G, Mitry E, Levy P, et al. Oral tyrosine kinase inhibitor masitinib in combination with gemcitabine in patients with advanced pancreatic cancer: a multicenter phase II study. J Clin Oncol. 2009;27:4617.CrossRef Hammel P, Mornex F, Deplanque G, Mitry E, Levy P, et al. Oral tyrosine kinase inhibitor masitinib in combination with gemcitabine in patients with advanced pancreatic cancer: a multicenter phase II study. J Clin Oncol. 2009;27:4617.CrossRef
Metadaten
Titel
MicroRNA-100 regulates pancreatic cancer cells growth and sensitivity to chemotherapy through targeting FGFR3
verfasst von
Zhipeng Li
Xu Li
Chao Yu
Min Wang
Feng Peng
Jie Xiao
Rui Tian
Jianxin Jiang
Chengyi Sun
Publikationsdatum
01.12.2014
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 12/2014
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-2271-8

Weitere Artikel der Ausgabe 12/2014

Tumor Biology 12/2014 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.