Skip to main content

01.12.2012 | Research | Ausgabe 1/2012 Open Access

Molecular Cancer 1/2012

MicroRNA-143 Targets MACC1 to Inhibit Cell Invasion and Migration in Colorectal cancer

Molecular Cancer > Ausgabe 1/2012
Yu Zhang, Zhongqiu Wang, Min Chen, Liang Peng, Xinying Wang, Qunying Ma, Fengli Ma, Bo Jiang
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1476-4598-11-23) contains supplementary material, which is available to authorized users.
Yu Zhang, Zhongqiu Wang contributed equally to this work.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

YZ and ZQW designed research and analyzed data. ZQW, MC, LP, XYW, QYM and FLM carried out molecular biology studies. YZ and BJ wrote the paper. All authors read and approved the final manuscript.



MicroRNAs (miRNAs) have been suggested to play a vital role in tumor initiation and progression by negatively regulating oncogenes and tumor suppressors. Quite recently, studies have identified some miRNAs operating to promote or suppress tumor invasion or metastasis via regulating metastasis-related genes, providing potential therapeutic targets on anti-metastasis strategy. Metastasis-associated in colon cancer-1 (MACC1) has been newly identified to express highly in colorectal cancer (CRC) and promote tumor metastasis through transactivating metastasis-inducing HGF/MET signaling pathway. In this study, we investigated whether miRNA 143 is involved in the regulation of MACC1 and thus plays a functional role in CRC.


Using both in silico prediction and western blot assay, we found the previously reported tumor suppressive miR-143 targeted MACC1 in CRC. The direct interaction between them was confirmed by 3' UTR luciferase reporter gene. In concordance with the inhibitory effects induced by siRNA mediated knockdown of MACC1, restoration of miR-143 by mimics in SW620 cells significantly attenuated cell growth, migration and invasion. It is notable that combined treatment of miR-143 mimics and MACC1 siRNA induced synergistic inhibitory effects compared to either miR-143 mimics or MACC1 siRNA treatment alone. Conversely, reduction of miR-143 by inhibitors in SW480 cells apparently stimulated these phenotypes. Furthermore, we observed that miR-143 level was inversely correlated with MACC1 mRNA expression in CRC tissues.


Our findings newly described miR-143/MACC1 link and provided a potential mechanism for MACC1 dysregulation and contribution to CRC cell invasion. It may help to estimate the therapeutic utility of miR-143 in CRC.
Authors’ original file for figure 1
Authors’ original file for figure 2
Authors’ original file for figure 3
Authors’ original file for figure 4
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2012

Molecular Cancer 1/2012 Zur Ausgabe


Neu im Fachgebiet Onkologie

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Onkologie und bleiben Sie gut informiert – ganz bequem per eMail.