Skip to main content
Erschienen in: Inflammation Research 3/2021

23.01.2021 | Original Research Paper

microRNA-155-3p attenuates intervertebral disc degeneration via inhibition of KDM3A and HIF1α

verfasst von: Xianwei Zhou, Jitian Li, Junyan Teng, Yufeng Liu, Di Zhang, Linyun Liu, Wenming Zhang

Erschienen in: Inflammation Research | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten

Abstract

Objective

Intervertebral disc degeneration (IDD) is a key element resulting in low back pain, but the mechanisms underlying IDD remain largely unknown. The purpose of the study was to investigate the influence of microRNA-155-3p (miR-155-3p) on proliferation and autophagy of nucleus pulposus (NP) cells in IDD with the involvement of hypoxia-inducible factor 1 α (HIF1α)/histone lysine demethylase 3A (KDM3A) axis.

Methods

IDD NP tissues of patients with lumbar disc herniation and traumatic intervertebral disc NP tissues from patients with traumatic lumbar fracture were collected. Apoptosis in NP tissues was observed, and autophagy marker proteins in NP tissues were detected. NP cells in IDD were transfected with miR-155-3p mimic or KDM3A-siRNA to explore their roles in cell proliferation, autophagy and apoptosis. MiR-155-3p, KDM3A and HIF1α expression in NP tissues and cells were detected.

Results

Decreased miR-155-3p, and elevated HIF1α and KDM3A were presented in NP tissues and cells of IDD. Elevated miR-155-3p or silenced KDM3A promoted the proliferation and autophagy, and inhibited the apoptosis of NP cells of IDD. Moreover, elevated miR-155-3p decreased KDM3A and HIF1α expression, while silenced KDM3A decreased HIF1α expression in NP cells with IDD.

Conclusion

The study concludes that up-regulated miR-155-3p or silenced KDM3A promotes the proliferation, autophagy, and restrains the apoptosis of NP cells of IDD via inhibition of HIF1α, which may be a promising approach for the treatment of IDD.
Literatur
1.
Zurück zum Zitat Ruiz-Fernandez C, et al. Molecular relationships among obesity, inflammation and intervertebral disc degeneration: are adipokines the common link? Int J Mol Sci. 2019;20(8):2030.CrossRef Ruiz-Fernandez C, et al. Molecular relationships among obesity, inflammation and intervertebral disc degeneration: are adipokines the common link? Int J Mol Sci. 2019;20(8):2030.CrossRef
2.
Zurück zum Zitat Zhang Y, et al. Overexpression of miR-150 inhibits the NF-kappaB signal pathway in intervertebral disc degeneration through targeting P2X7. Cells Tissues Organs. 2019;207(3–4):165–76.CrossRef Zhang Y, et al. Overexpression of miR-150 inhibits the NF-kappaB signal pathway in intervertebral disc degeneration through targeting P2X7. Cells Tissues Organs. 2019;207(3–4):165–76.CrossRef
3.
Zurück zum Zitat Wang M, et al. Multiparametric MR investigation of proteoglycan diffusivity, T2 relaxation, and concentration in an ex vivo model of intervertebral disc degeneration. J Magn Reson Imaging. 2019;51:1390.CrossRef Wang M, et al. Multiparametric MR investigation of proteoglycan diffusivity, T2 relaxation, and concentration in an ex vivo model of intervertebral disc degeneration. J Magn Reson Imaging. 2019;51:1390.CrossRef
4.
Zurück zum Zitat Zhang B, et al. Moxibustion alleviates intervertebral disc degeneration via activation of the HIF-1alpha/VEGF pathway in a rat model. Am J Transl Res. 2019;11(9):6221–31.PubMedPubMedCentral Zhang B, et al. Moxibustion alleviates intervertebral disc degeneration via activation of the HIF-1alpha/VEGF pathway in a rat model. Am J Transl Res. 2019;11(9):6221–31.PubMedPubMedCentral
5.
Zurück zum Zitat Wu D, et al. The effects of simulated +Gz and microgravity on intervertebral disc degeneration in rabbits. Sci Rep. 2019;9(1):16608.CrossRef Wu D, et al. The effects of simulated +Gz and microgravity on intervertebral disc degeneration in rabbits. Sci Rep. 2019;9(1):16608.CrossRef
6.
Zurück zum Zitat Zhang G, et al. MicroRNA-155-3p promotes breast cancer progression through down-regulating CADM1. Onco Targets Ther. 2019;12:7993–8002.CrossRef Zhang G, et al. MicroRNA-155-3p promotes breast cancer progression through down-regulating CADM1. Onco Targets Ther. 2019;12:7993–8002.CrossRef
7.
Zurück zum Zitat Wu T, et al. miR-155 modulates TNF-alpha-inhibited osteogenic differentiation by targeting SOCS1 expression. Bone. 2012;51(3):498–505.CrossRef Wu T, et al. miR-155 modulates TNF-alpha-inhibited osteogenic differentiation by targeting SOCS1 expression. Bone. 2012;51(3):498–505.CrossRef
8.
Zurück zum Zitat Wang X, et al. MicroRNA-155-3p mediates TNF-alpha-inhibited cementoblast differentiation. J Dent Res. 2017;96(12):1430–7.CrossRef Wang X, et al. MicroRNA-155-3p mediates TNF-alpha-inhibited cementoblast differentiation. J Dent Res. 2017;96(12):1430–7.CrossRef
9.
Zurück zum Zitat Wang HQ, et al. Deregulated miR-155 promotes Fas-mediated apoptosis in human intervertebral disc degeneration by targeting FADD and caspase-3. J Pathol. 2011;225(2):232–42.CrossRef Wang HQ, et al. Deregulated miR-155 promotes Fas-mediated apoptosis in human intervertebral disc degeneration by targeting FADD and caspase-3. J Pathol. 2011;225(2):232–42.CrossRef
10.
Zurück zum Zitat Zhang WL, et al. Role of miR-155 in the regulation of MMP-16 expression in intervertebral disc degeneration. J Orthop Res. 2017;35(6):1323–34.CrossRef Zhang WL, et al. Role of miR-155 in the regulation of MMP-16 expression in intervertebral disc degeneration. J Orthop Res. 2017;35(6):1323–34.CrossRef
11.
Zurück zum Zitat Liu X, et al. KDM3A inhibition modulates macrophage polarization to aggravate post-MI injuries and accelerates adverse ventricular remodeling via an IRF4 signaling pathway. Cell Signal. 2019;64:109415.CrossRef Liu X, et al. KDM3A inhibition modulates macrophage polarization to aggravate post-MI injuries and accelerates adverse ventricular remodeling via an IRF4 signaling pathway. Cell Signal. 2019;64:109415.CrossRef
12.
Zurück zum Zitat Nakatsuka T, et al. Impact of histone demethylase KDM3A-dependent AP-1 transactivity on hepatotumorigenesis induced by PI3K activation. Oncogene. 2017;36(45):6262–71.CrossRef Nakatsuka T, et al. Impact of histone demethylase KDM3A-dependent AP-1 transactivity on hepatotumorigenesis induced by PI3K activation. Oncogene. 2017;36(45):6262–71.CrossRef
13.
Zurück zum Zitat Ramadoss S, Guo G, Wang CY. Lysine demethylase KDM3A regulates breast cancer cell invasion and apoptosis by targeting histone and the non-histone protein p53. Oncogene. 2017;36(1):47–59.CrossRef Ramadoss S, Guo G, Wang CY. Lysine demethylase KDM3A regulates breast cancer cell invasion and apoptosis by targeting histone and the non-histone protein p53. Oncogene. 2017;36(1):47–59.CrossRef
14.
Zurück zum Zitat Ramadoss S, et al. Lysine-specific demethylase KDM3A regulates ovarian cancer stemness and chemoresistance. Oncogene. 2017;36(11):1537–45.CrossRef Ramadoss S, et al. Lysine-specific demethylase KDM3A regulates ovarian cancer stemness and chemoresistance. Oncogene. 2017;36(11):1537–45.CrossRef
15.
Zurück zum Zitat Ikeda S, et al. Hypoxia-inducible KDM3A addiction in multiple myeloma. Blood Adv. 2018;2(4):323–34.CrossRef Ikeda S, et al. Hypoxia-inducible KDM3A addiction in multiple myeloma. Blood Adv. 2018;2(4):323–34.CrossRef
16.
Zurück zum Zitat Mimura I, et al. Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol Cell Biol. 2012;32(15):3018–32.CrossRef Mimura I, et al. Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol Cell Biol. 2012;32(15):3018–32.CrossRef
17.
Zurück zum Zitat Li Y, et al. HIF- and non-HIF-regulated hypoxic responses require the estrogen-related receptor in Drosophila melanogaster. PLoS Genet. 2013;9(1):e1003230.CrossRef Li Y, et al. HIF- and non-HIF-regulated hypoxic responses require the estrogen-related receptor in Drosophila melanogaster. PLoS Genet. 2013;9(1):e1003230.CrossRef
18.
Zurück zum Zitat Yu H, et al. Expression of HIF1alpha in cycling stretchinduced osteogenic differentiation of bone mesenchymal stem cells. Mol Med Rep. 2019;20(5):4489–98.PubMedPubMedCentral Yu H, et al. Expression of HIF1alpha in cycling stretchinduced osteogenic differentiation of bone mesenchymal stem cells. Mol Med Rep. 2019;20(5):4489–98.PubMedPubMedCentral
19.
Zurück zum Zitat Yang D, et al. Role of Mir-155 in controlling HIF-1alpha level and promoting endothelial cell maturation. Sci Rep. 2016;6:35316.CrossRef Yang D, et al. Role of Mir-155 in controlling HIF-1alpha level and promoting endothelial cell maturation. Sci Rep. 2016;6:35316.CrossRef
20.
Zurück zum Zitat Tuo YL, Li XM, Luo J. Long noncoding RNA UCA1 modulates breast cancer cell growth and apoptosis through decreasing tumor suppressive miR-143. Eur Rev Med Pharmacol Sci. 2015;19(18):3403–11.PubMed Tuo YL, Li XM, Luo J. Long noncoding RNA UCA1 modulates breast cancer cell growth and apoptosis through decreasing tumor suppressive miR-143. Eur Rev Med Pharmacol Sci. 2015;19(18):3403–11.PubMed
21.
Zurück zum Zitat Gao ZX, et al. LncRNA SNHG6 can regulate the proliferation and apoptosis of rat degenerate nucleus pulposus cells via regulating the expression of miR-101-3p. Eur Rev Med Pharmacol Sci. 2020;24(16):8251–62.PubMed Gao ZX, et al. LncRNA SNHG6 can regulate the proliferation and apoptosis of rat degenerate nucleus pulposus cells via regulating the expression of miR-101-3p. Eur Rev Med Pharmacol Sci. 2020;24(16):8251–62.PubMed
22.
Zurück zum Zitat Ding H, Xu Y, Jiang N. Upregulation of miR-101a suppresses chronic renal fibrosis by regulating KDM3A via blockade of the YAP-TGF-beta-smad signaling pathway. Mol Ther Nucleic Acids. 2020;19:1276–89.CrossRef Ding H, Xu Y, Jiang N. Upregulation of miR-101a suppresses chronic renal fibrosis by regulating KDM3A via blockade of the YAP-TGF-beta-smad signaling pathway. Mol Ther Nucleic Acids. 2020;19:1276–89.CrossRef
23.
Zurück zum Zitat Liu J, et al. Long noncoding RNA MIAT knockdown potentiates the therapeutic effect of transcatheter arterial embolization in liver cancer by regulating the miR203a/HIF1alpha axis. Oncol Rep. 2020;44(2):722–34.CrossRef Liu J, et al. Long noncoding RNA MIAT knockdown potentiates the therapeutic effect of transcatheter arterial embolization in liver cancer by regulating the miR203a/HIF1alpha axis. Oncol Rep. 2020;44(2):722–34.CrossRef
24.
Zurück zum Zitat Zhou J, et al. MicroRNA-155 suppresses the catabolic effect induced by TNF-alpha and IL-1beta by targeting C/EBPbeta in rat nucleus pulposus cells. Connect Tissue Res. 2019;60(2):165–77.CrossRef Zhou J, et al. MicroRNA-155 suppresses the catabolic effect induced by TNF-alpha and IL-1beta by targeting C/EBPbeta in rat nucleus pulposus cells. Connect Tissue Res. 2019;60(2):165–77.CrossRef
25.
Zurück zum Zitat Divi SN, et al. Circulating miR-155–5p as a novel biomarker of lumbar degenerative disc disease. Spine (Phila Pa 1976). 2020;45(9):E499–507.CrossRef Divi SN, et al. Circulating miR-155–5p as a novel biomarker of lumbar degenerative disc disease. Spine (Phila Pa 1976). 2020;45(9):E499–507.CrossRef
26.
Zurück zum Zitat Sun J, et al. Transcription factor 7-like 2 controls matrix degradation through nuclear factor kappaB signaling and is repressed by microRNA-155 in nucleus pulposus cells. Biomed Pharmacother. 2018;108:646–55.CrossRef Sun J, et al. Transcription factor 7-like 2 controls matrix degradation through nuclear factor kappaB signaling and is repressed by microRNA-155 in nucleus pulposus cells. Biomed Pharmacother. 2018;108:646–55.CrossRef
27.
Zurück zum Zitat Wang Y, et al. NT21MP negatively regulates paclitaxel-resistant cells by targeting miR1553p and miR155-5p via the CXCR4 pathway in breast cancer. Int J Oncol. 2018;53(3):1043–54.PubMedPubMedCentral Wang Y, et al. NT21MP negatively regulates paclitaxel-resistant cells by targeting miR1553p and miR155-5p via the CXCR4 pathway in breast cancer. Int J Oncol. 2018;53(3):1043–54.PubMedPubMedCentral
28.
Zurück zum Zitat Xiao T, et al. NF-kappaB-regulation of miR-155, via SOCS1/STAT3, is involved in the PM2.5-accelerated cell cycle and proliferation of human bronchial epithelial cells. Toxicol Appl Pharmacol. 2019;377:114616.CrossRef Xiao T, et al. NF-kappaB-regulation of miR-155, via SOCS1/STAT3, is involved in the PM2.5-accelerated cell cycle and proliferation of human bronchial epithelial cells. Toxicol Appl Pharmacol. 2019;377:114616.CrossRef
29.
Zurück zum Zitat Wang F, et al. MiR-155-5p inhibits PDK1 and promotes autophagy via the mTOR pathway in cervical cancer. Int J Biochem Cell Biol. 2018;99:91–9.CrossRef Wang F, et al. MiR-155-5p inhibits PDK1 and promotes autophagy via the mTOR pathway in cervical cancer. Int J Biochem Cell Biol. 2018;99:91–9.CrossRef
30.
Zurück zum Zitat Du ZM, et al. Upregulation of MiR-155 in nasopharyngeal carcinoma is partly driven by LMP1 and LMP2A and downregulates a negative prognostic marker JMJD1A. PLoS ONE. 2011;6(4):e19137.CrossRef Du ZM, et al. Upregulation of MiR-155 in nasopharyngeal carcinoma is partly driven by LMP1 and LMP2A and downregulates a negative prognostic marker JMJD1A. PLoS ONE. 2011;6(4):e19137.CrossRef
31.
Zurück zum Zitat Wan W, et al. Histone demethylase JMJD1A promotes urinary bladder cancer progression by enhancing glycolysis through coactivation of hypoxia inducible factor 1alpha. Oncogene. 2017;36(27):3868–77.CrossRef Wan W, et al. Histone demethylase JMJD1A promotes urinary bladder cancer progression by enhancing glycolysis through coactivation of hypoxia inducible factor 1alpha. Oncogene. 2017;36(27):3868–77.CrossRef
32.
Zurück zum Zitat Thorpe AA, et al. Thermally triggered injectable hydrogel, which induces mesenchymal stem cell differentiation to nucleus pulposus cells: potential for regeneration of the intervertebral disc. Acta Biomater. 2016;36:99–111.CrossRef Thorpe AA, et al. Thermally triggered injectable hydrogel, which induces mesenchymal stem cell differentiation to nucleus pulposus cells: potential for regeneration of the intervertebral disc. Acta Biomater. 2016;36:99–111.CrossRef
Metadaten
Titel
microRNA-155-3p attenuates intervertebral disc degeneration via inhibition of KDM3A and HIF1α
verfasst von
Xianwei Zhou
Jitian Li
Junyan Teng
Yufeng Liu
Di Zhang
Linyun Liu
Wenming Zhang
Publikationsdatum
23.01.2021
Verlag
Springer International Publishing
Erschienen in
Inflammation Research / Ausgabe 3/2021
Print ISSN: 1023-3830
Elektronische ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-021-01434-5

Weitere Artikel der Ausgabe 3/2021

Inflammation Research 3/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.