Skip to main content
Erschienen in: Inflammation 1/2020

20.11.2019 | Original Article

MicroRNA-30a Targets ATG5 and Attenuates Airway Fibrosis in Asthma by Suppressing Autophagy

verfasst von: Bin Bin Li, Yun long Chen, Fuzhen Pang

Erschienen in: Inflammation | Ausgabe 1/2020

Einloggen, um Zugang zu erhalten

Abstract

Asthma is the most common chronic disease of childhood, chronic airway inflammation; bronchial tissue fibrosis, is a pathological feature common to children asthma, and an emerging data has indicted that autophagy plays critical roles in airway inflammation and fibrosis-mediated airway remodeling. The aim of this study was to examine whether the antifibrotic effect of epithelial microRNAs (miRNAs) relies on regulating autophagy-mediated airway remodeling and to identify the factors involved and the underlying mechanisms. Our results showed miR-30a were downregulated in children with asthma and ovalbumin (OVA) mouse model in parallel with the upregulation of autophagy-related proteins; moreover, we observed miR-30a inhibited the autophagy by downregulated autophagy-related 5 (ATG5). Then, we observed that overexpression of miR-30a suppressed the fibrogenesis and autophagic flux which was stimulated by interleukin-33 (IL-33) in bronchial epithelial cells. In vivo experiments showed that miR-30a overexpression decreased airway remodeling by decreased autophagy. This study uncovered a previously unrecognized antifibrotic role of miR-30a in asthma, in IL-33-induced lung epithelial cells in vitro, and in a murine model of OVA-induced airway inflammation in vivo and explored the underlying mechanisms.
Literatur
1.
Zurück zum Zitat Holgate, S.T. 2008. The airway epithelium is central to the pathogenesis of asthma. Allergology International 57 (1): 1–10.CrossRef Holgate, S.T. 2008. The airway epithelium is central to the pathogenesis of asthma. Allergology International 57 (1): 1–10.CrossRef
2.
Zurück zum Zitat Holgate, S.T. 2008. Pathogenesis of asthma. Clinical and Experimental Allergy 38 (6): 872–897.CrossRef Holgate, S.T. 2008. Pathogenesis of asthma. Clinical and Experimental Allergy 38 (6): 872–897.CrossRef
3.
Zurück zum Zitat Poe, C.A., and S. Johnson. 1972. Psychologists’ conception of optimal adjustment. Journal of Clinical Psychology 28 (4): 449–451.CrossRef Poe, C.A., and S. Johnson. 1972. Psychologists’ conception of optimal adjustment. Journal of Clinical Psychology 28 (4): 449–451.CrossRef
4.
Zurück zum Zitat Papi, A., C. Brightling, S.E. Pedersen, and H.K. Reddel. 2018. Asthma. Lancet. 391 (10122): 783–800.CrossRef Papi, A., C. Brightling, S.E. Pedersen, and H.K. Reddel. 2018. Asthma. Lancet. 391 (10122): 783–800.CrossRef
5.
Zurück zum Zitat Lopez, E., V. del Pozo, T. Miguel, B. Sastre, C. Seoane, E. Civantos, et al. 2006. Inhibition of chronic airway inflammation and remodeling by galectin-3 gene therapy in a murine model. Journal of Immunology 176 (3): 1943–1950.CrossRef Lopez, E., V. del Pozo, T. Miguel, B. Sastre, C. Seoane, E. Civantos, et al. 2006. Inhibition of chronic airway inflammation and remodeling by galectin-3 gene therapy in a murine model. Journal of Immunology 176 (3): 1943–1950.CrossRef
6.
Zurück zum Zitat Chan, V., J.K. Burgess, J.C. Ratoff, B.J. O'Connor, A. Greenough, T.H. Lee, and S.J. Hirst. 2006. Extracellular matrix regulates enhanced eotaxin expression in asthmatic airway smooth muscle cells. American Journal of Respiratory and Critical Care Medicine 174 (4): 379–385.CrossRef Chan, V., J.K. Burgess, J.C. Ratoff, B.J. O'Connor, A. Greenough, T.H. Lee, and S.J. Hirst. 2006. Extracellular matrix regulates enhanced eotaxin expression in asthmatic airway smooth muscle cells. American Journal of Respiratory and Critical Care Medicine 174 (4): 379–385.CrossRef
7.
Zurück zum Zitat Yick, C.Y., D.S. Ferreira, R. Annoni, J.H. von der Thusen, P.W. Kunst, E.H. Bel, et al. 2012. Extracellular matrix in airway smooth muscle is associated with dynamics of airway function in asthma. Allergy 67 (4): 552–559.CrossRef Yick, C.Y., D.S. Ferreira, R. Annoni, J.H. von der Thusen, P.W. Kunst, E.H. Bel, et al. 2012. Extracellular matrix in airway smooth muscle is associated with dynamics of airway function in asthma. Allergy 67 (4): 552–559.CrossRef
8.
Zurück zum Zitat Gudbjartsson, D.F., U.S. Bjornsdottir, E. Halapi, A. Helgadottir, P. Sulem, G.M. Jonsdottir, G. Thorleifsson, H. Helgadottir, V. Steinthorsdottir, H. Stefansson, C. Williams, J. Hui, J. Beilby, N.M. Warrington, A. James, L.J. Palmer, G.H. Koppelman, A. Heinzmann, M. Krueger, H.M. Boezen, A. Wheatley, J. Altmuller, H.D. Shin, S.T. Uh, H.S. Cheong, B. Jonsdottir, D. Gislason, C.S. Park, L.M. Rasmussen, C. Porsbjerg, J.W. Hansen, V. Backer, T. Werge, C. Janson, U.B. Jönsson, M.C.Y. Ng, J. Chan, W.Y. So, R. Ma, S.H. Shah, C.B. Granger, A.A. Quyyumi, A.I. Levey, V. Vaccarino, M.P. Reilly, D.J. Rader, M.J.A. Williams, A.M. van Rij, G.T. Jones, E. Trabetti, G. Malerba, P.F. Pignatti, A. Boner, L. Pescollderungg, D. Girelli, O. Olivieri, N. Martinelli, B.R. Ludviksson, D. Ludviksdottir, G.I. Eyjolfsson, D. Arnar, G. Thorgeirsson, K. Deichmann, P.J. Thompson, M. Wjst, I.P. Hall, D.S. Postma, T. Gislason, J. Gulcher, A. Kong, I. Jonsdottir, U. Thorsteinsdottir, and K. Stefansson. 2009. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nature Genetics 41 (3): 342–347.CrossRef Gudbjartsson, D.F., U.S. Bjornsdottir, E. Halapi, A. Helgadottir, P. Sulem, G.M. Jonsdottir, G. Thorleifsson, H. Helgadottir, V. Steinthorsdottir, H. Stefansson, C. Williams, J. Hui, J. Beilby, N.M. Warrington, A. James, L.J. Palmer, G.H. Koppelman, A. Heinzmann, M. Krueger, H.M. Boezen, A. Wheatley, J. Altmuller, H.D. Shin, S.T. Uh, H.S. Cheong, B. Jonsdottir, D. Gislason, C.S. Park, L.M. Rasmussen, C. Porsbjerg, J.W. Hansen, V. Backer, T. Werge, C. Janson, U.B. Jönsson, M.C.Y. Ng, J. Chan, W.Y. So, R. Ma, S.H. Shah, C.B. Granger, A.A. Quyyumi, A.I. Levey, V. Vaccarino, M.P. Reilly, D.J. Rader, M.J.A. Williams, A.M. van Rij, G.T. Jones, E. Trabetti, G. Malerba, P.F. Pignatti, A. Boner, L. Pescollderungg, D. Girelli, O. Olivieri, N. Martinelli, B.R. Ludviksson, D. Ludviksdottir, G.I. Eyjolfsson, D. Arnar, G. Thorgeirsson, K. Deichmann, P.J. Thompson, M. Wjst, I.P. Hall, D.S. Postma, T. Gislason, J. Gulcher, A. Kong, I. Jonsdottir, U. Thorsteinsdottir, and K. Stefansson. 2009. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nature Genetics 41 (3): 342–347.CrossRef
9.
Zurück zum Zitat Bianchetti, L., M.A. Marini, M. Isgro, A. Bellini, M. Schmidt, and S. Mattoli. 2012. IL-33 promotes the migration and proliferation of circulating fibrocytes from patients with allergen-exacerbated asthma. Biochemical and Biophysical Research Communications 426 (1): 116–121.CrossRef Bianchetti, L., M.A. Marini, M. Isgro, A. Bellini, M. Schmidt, and S. Mattoli. 2012. IL-33 promotes the migration and proliferation of circulating fibrocytes from patients with allergen-exacerbated asthma. Biochemical and Biophysical Research Communications 426 (1): 116–121.CrossRef
10.
Zurück zum Zitat Malaviya, R., J.D. Laskin, and D.L. Laskin. 2017. Anti-TNF alpha therapy in inflammatory lung diseases. Pharmacology & Therapeutics 180: 90–98.CrossRef Malaviya, R., J.D. Laskin, and D.L. Laskin. 2017. Anti-TNF alpha therapy in inflammatory lung diseases. Pharmacology & Therapeutics 180: 90–98.CrossRef
11.
Zurück zum Zitat Cayrol, C., A. Duval, P. Schmitt, S. Roga, M. Camus, A. Stella, O. Burlet-Schiltz, A. Gonzalez-de-Peredo, and J.P. Girard. 2018. Environmental allergens induce allergic inflammation through proteolytic maturation of IL-33. Nature Immunology 19 (4): 375–385.CrossRef Cayrol, C., A. Duval, P. Schmitt, S. Roga, M. Camus, A. Stella, O. Burlet-Schiltz, A. Gonzalez-de-Peredo, and J.P. Girard. 2018. Environmental allergens induce allergic inflammation through proteolytic maturation of IL-33. Nature Immunology 19 (4): 375–385.CrossRef
12.
Zurück zum Zitat Suzuki, K., T. Kirisako, Y. Kamada, N. Mizushima, T. Noda, and Y. Ohsumi. 2001. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. The EMBO Journal 20 (21): 5971–5981.CrossRef Suzuki, K., T. Kirisako, Y. Kamada, N. Mizushima, T. Noda, and Y. Ohsumi. 2001. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. The EMBO Journal 20 (21): 5971–5981.CrossRef
13.
Zurück zum Zitat Jounai, N., F. Takeshita, K. Kobiyama, A. Sawano, A. Miyawaki, K.Q. Xin, K.J. Ishii, T. Kawai, S. Akira, K. Suzuki, and K. Okuda. 2007. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proceedings of the National Academy of Sciences of the United States of America 104 (35): 14050–14055.CrossRef Jounai, N., F. Takeshita, K. Kobiyama, A. Sawano, A. Miyawaki, K.Q. Xin, K.J. Ishii, T. Kawai, S. Akira, K. Suzuki, and K. Okuda. 2007. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proceedings of the National Academy of Sciences of the United States of America 104 (35): 14050–14055.CrossRef
14.
Zurück zum Zitat Araya, J., J. Kojima, N. Takasaka, S. Ito, S. Fujii, H. Hara, H. Yanagisawa, K. Kobayashi, C. Tsurushige, M. Kawaishi, N. Kamiya, J. Hirano, M. Odaka, T. Morikawa, S.L. Nishimura, Y. Kawabata, H. Hano, K. Nakayama, and K. Kuwano. 2013. Insufficient autophagy in idiopathic pulmonary fibrosis. American Journal of Physiology Lung Cellular and Molecular Physiology 304 (1): L56–L69.CrossRef Araya, J., J. Kojima, N. Takasaka, S. Ito, S. Fujii, H. Hara, H. Yanagisawa, K. Kobayashi, C. Tsurushige, M. Kawaishi, N. Kamiya, J. Hirano, M. Odaka, T. Morikawa, S.L. Nishimura, Y. Kawabata, H. Hano, K. Nakayama, and K. Kuwano. 2013. Insufficient autophagy in idiopathic pulmonary fibrosis. American Journal of Physiology Lung Cellular and Molecular Physiology 304 (1): L56–L69.CrossRef
15.
Zurück zum Zitat Hernandez-Gea, V., Z. Ghiassi-Nejad, R. Rozenfeld, R. Gordon, M.I. Fiel, Z. Yue, et al. 2012. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142 (4): 938–946.CrossRef Hernandez-Gea, V., Z. Ghiassi-Nejad, R. Rozenfeld, R. Gordon, M.I. Fiel, Z. Yue, et al. 2012. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142 (4): 938–946.CrossRef
16.
Zurück zum Zitat Poon, A.H., F. Chouiali, S.M. Tse, A.A. Litonjua, S.N. Hussain, C.J. Baglole, et al. 2012. Genetic and histologic evidence for autophagy in asthma pathogenesis. The Journal of Allergy and Clinical Immunology 129 (2): 569–571.CrossRef Poon, A.H., F. Chouiali, S.M. Tse, A.A. Litonjua, S.N. Hussain, C.J. Baglole, et al. 2012. Genetic and histologic evidence for autophagy in asthma pathogenesis. The Journal of Allergy and Clinical Immunology 129 (2): 569–571.CrossRef
17.
Zurück zum Zitat Martin, L.J., J. Gupta, S.S. Jyothula, M. Butsch Kovacic, J.M. Biagini Myers, T.L. Patterson, et al. 2012. Functional variant in the autophagy-related 5 gene promotor is associated with childhood asthma. PLoS One 7 (4): e33454.CrossRef Martin, L.J., J. Gupta, S.S. Jyothula, M. Butsch Kovacic, J.M. Biagini Myers, T.L. Patterson, et al. 2012. Functional variant in the autophagy-related 5 gene promotor is associated with childhood asthma. PLoS One 7 (4): e33454.CrossRef
18.
Zurück zum Zitat Winter, J., S. Jung, S. Keller, R.I. Gregory, and S. Diederichs. 2009. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biology 11 (3): 228–234.CrossRef Winter, J., S. Jung, S. Keller, R.I. Gregory, and S. Diederichs. 2009. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biology 11 (3): 228–234.CrossRef
19.
Zurück zum Zitat Lu, T.X., and M.E. Rothenberg. 2013. Diagnostic, functional, and therapeutic roles of microRNA in allergic diseases. The Journal of Allergy and Clinical Immunology 132 (1): 3–13 quiz 4.CrossRef Lu, T.X., and M.E. Rothenberg. 2013. Diagnostic, functional, and therapeutic roles of microRNA in allergic diseases. The Journal of Allergy and Clinical Immunology 132 (1): 3–13 quiz 4.CrossRef
20.
Zurück zum Zitat Pichavant M, Goya S, Hamelmann E, Gelfand EW, Umetsu DT. Animal models of airway sensitization. Current Protocols in Immunology. 2007;Chapter 15:Unit 15 8. Pichavant M, Goya S, Hamelmann E, Gelfand EW, Umetsu DT. Animal models of airway sensitization. Current Protocols in Immunology. 2007;Chapter 15:Unit 15 8.
21.
Zurück zum Zitat McGeachie, M.J., J.S. Davis, A.T. Kho, A. Dahlin, J.E. Sordillo, M. Sun, et al. 2017. Asthma remission: predicting future airways responsiveness using an miRNA network. The Journal of Allergy and Clinical Immunology 140 (2): 598–600 e8.CrossRef McGeachie, M.J., J.S. Davis, A.T. Kho, A. Dahlin, J.E. Sordillo, M. Sun, et al. 2017. Asthma remission: predicting future airways responsiveness using an miRNA network. The Journal of Allergy and Clinical Immunology 140 (2): 598–600 e8.CrossRef
22.
Zurück zum Zitat Croset, M., F. Pantano, C.W.S. Kan, E. Bonnelye, F. Descotes, C. Alix-Panabieres, et al. 2018. miRNA-30 family members inhibit breast cancer invasion, osteomimicry, and bone destruction by directly targeting multiple bone metastasis-associated genes. Cancer Research 78 (18): 5259–5273.CrossRef Croset, M., F. Pantano, C.W.S. Kan, E. Bonnelye, F. Descotes, C. Alix-Panabieres, et al. 2018. miRNA-30 family members inhibit breast cancer invasion, osteomimicry, and bone destruction by directly targeting multiple bone metastasis-associated genes. Cancer Research 78 (18): 5259–5273.CrossRef
23.
Zurück zum Zitat Singh, A.K., R.K. Pandey, C. Shaha, and R. Madhubala. 2016. MicroRNA expression profiling of Leishmania donovani-infected host cells uncovers the regulatory role of MIR30A-3p in host autophagy. Autophagy 12 (10): 1817–1831.CrossRef Singh, A.K., R.K. Pandey, C. Shaha, and R. Madhubala. 2016. MicroRNA expression profiling of Leishmania donovani-infected host cells uncovers the regulatory role of MIR30A-3p in host autophagy. Autophagy 12 (10): 1817–1831.CrossRef
24.
Zurück zum Zitat Xu, J., Y. Wang, X. Tan, and H. Jing. 2012. MicroRNAs in autophagy and their emerging roles in crosstalk with apoptosis. Autophagy 8 (6): 873–882.CrossRef Xu, J., Y. Wang, X. Tan, and H. Jing. 2012. MicroRNAs in autophagy and their emerging roles in crosstalk with apoptosis. Autophagy 8 (6): 873–882.CrossRef
25.
Zurück zum Zitat Taby, R., and J.P. Issa. 2010. Cancer epigenetics. CA: a Cancer Journal for Clinicians 60 (6): 376–392. Taby, R., and J.P. Issa. 2010. Cancer epigenetics. CA: a Cancer Journal for Clinicians 60 (6): 376–392.
26.
Zurück zum Zitat Hu, R., D.A. Kagele, T.B. Huffaker, M.C. Runtsch, M. Alexander, J. Liu, E. Bake, W. Su, M.A. Williams, D.S. Rao, T. Möller, G.A. Garden, J.L. Round, and R.M. O’Connell. 2014. miR-155 promotes T follicular helper cell accumulation during chronic, low-grade inflammation. Immunity. 41 (4): 605–619.CrossRef Hu, R., D.A. Kagele, T.B. Huffaker, M.C. Runtsch, M. Alexander, J. Liu, E. Bake, W. Su, M.A. Williams, D.S. Rao, T. Möller, G.A. Garden, J.L. Round, and R.M. O’Connell. 2014. miR-155 promotes T follicular helper cell accumulation during chronic, low-grade inflammation. Immunity. 41 (4): 605–619.CrossRef
27.
Zurück zum Zitat Xie, Z., and D.J. Klionsky. 2007. Autophagosome formation: core machinery and adaptations. Nature Cell Biology 9 (10): 1102–1109.CrossRef Xie, Z., and D.J. Klionsky. 2007. Autophagosome formation: core machinery and adaptations. Nature Cell Biology 9 (10): 1102–1109.CrossRef
28.
Zurück zum Zitat Ye, X., X.J. Zhou, and H. Zhang. 2018. Exploring the role of autophagy-related gene 5 (ATG5) yields important insights into autophagy in autoimmune/autoinflammatory diseases. Frontiers in Immunology 9: 2334.CrossRef Ye, X., X.J. Zhou, and H. Zhang. 2018. Exploring the role of autophagy-related gene 5 (ATG5) yields important insights into autophagy in autoimmune/autoinflammatory diseases. Frontiers in Immunology 9: 2334.CrossRef
29.
Zurück zum Zitat Ni, H.M., B.L. Woolbright, J. Williams, B. Copple, W. Cui, J.P. Luyendyk, H. Jaeschke, and W.X. Ding. 2014. Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepatic autophagy. Journal of Hepatology 61 (3): 617–625.CrossRef Ni, H.M., B.L. Woolbright, J. Williams, B. Copple, W. Cui, J.P. Luyendyk, H. Jaeschke, and W.X. Ding. 2014. Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepatic autophagy. Journal of Hepatology 61 (3): 617–625.CrossRef
30.
Zurück zum Zitat Poon, A.H., D.F. Choy, F. Chouiali, R.K. Ramakrishnan, B. Mahboub, S. Audusseau, et al. 2017. Increased autophagy-related 5 gene expression is associated with collagen expression in the airways of refractory asthmatics. Frontiers in Immunology 8: 355.CrossRef Poon, A.H., D.F. Choy, F. Chouiali, R.K. Ramakrishnan, B. Mahboub, S. Audusseau, et al. 2017. Increased autophagy-related 5 gene expression is associated with collagen expression in the airways of refractory asthmatics. Frontiers in Immunology 8: 355.CrossRef
Metadaten
Titel
MicroRNA-30a Targets ATG5 and Attenuates Airway Fibrosis in Asthma by Suppressing Autophagy
verfasst von
Bin Bin Li
Yun long Chen
Fuzhen Pang
Publikationsdatum
20.11.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2020
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01076-0

Weitere Artikel der Ausgabe 1/2020

Inflammation 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.