Skip to main content
Erschienen in: World Journal of Surgical Oncology 1/2014

Open Access 01.12.2014 | Research

MicroRNA-9 expression is a prognostic biomarker in patients with osteosarcoma

verfasst von: Shi-hong Xu, Yong-liang Yang, Shu-mei Han, Zong-hui Wu

Erschienen in: World Journal of Surgical Oncology | Ausgabe 1/2014

Abstract

Background

The purpose of the present study was to examine the expression levels of microRNA-9 (miR-9) in osteosarcoma tissues and normal bone tissues, and investigate the relationships between miR-9 expression, clinicopathological features and the prognosis of patients with osteosarcoma.

Methods

The expression levels of miR-9 in osteosarcoma tissues and corresponding non-cancerous tissues were detected using a real-time quantitative assay. Differences in patient survival were determined using the Kaplan–Meier method and a log-rank test. A Cox proportional hazards regression analysis was used for univariate and multivariate analyses of prognostic values.

Results

Compared to non-cancerous bone tissues, the expression levels of miR-9 in osteosarcoma tissues were significantly elevated (P < 0.001). We found that the expression level of miR-9 was significantly associated with tumor size (P = 0.011), clinical stage (P = 0.009) and distant metastasis (P < 0.001). The Kaplan–Meier curve showed that patients with low miR-9 expression survived significantly longer than patients with high miR-9 expression (P = 0.0017). Multivariate analysis suggested that miR-9 expression level (P = 0.002) is an independent prognostic factors for overall survival.

Conclusions

The findings of our study suggest that increased miR-9 expression has a strong correlation with the aggressive progression of osteosarcoma and its overexpression is a statistically significant risk factor affecting overall survival, suggesting that increased miR-9 expression could be a valuable marker of tumor progression and for prognosis of osteosarcoma.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1477-7819-12-195) contains supplementary material, which is available to authorized users.

Competing interests

The authors have no proprietary interest in any materials or methods described within this paper. This submission has not been published anywhere previously and it is not simultaneously being considered for any other publication.

Authors’ contributions

XS, YY, HS and WZ carried out the experiments, XS designed the study, XS and YY prepared the manuscript. All authors read and approved the final manuscript.
Abkürzungen
miRNA
microRNA
miR-9
microRNA-9
qRT-PCR
quantitative real-time reverse-transcription-polymerase chain reaction
SD
standard deviation.

Background

Osteosarcoma is the most common primary malignancy in children and adolescents, accounting for 20 to 35% of all malignant primary bone tumors [13]. Although considerable advances in tumor excision technology, adjuvant chemotherapy and radiotherapy have significantly increased the survival rate of patients with osteosarcoma, the survival of osteosarcoma patients with lung metastasis and at an advanced clinical stage is quite poor [4]. A greater understanding of osteosarcoma is essential for developing novel approaches to increase survival rates. To our disappointment, despite the various efforts of basic research and clinical practice, the molecular genetic mechanisms and the biology involved in osteosarcoma remain poorly understood [5].
MicroRNAs (miRNAs) are small non-coding RNA molecules that play an important role in the regulation of mRNA expression. miRNAs are known to be involved in various cellular processes and are associated with various diseases including cancer [68]. The association of altered microRNA expression with cancerogenesis as well as tumor progression is well established [911]. A growing number of microRNAs have been classified as oncogenes or tumor-suppressor genes. In addition, miRNA expression profiles and specific miRNAs have been shown to be potential diagnostic or prognostic tools for cancer [1214].
Previous studies have found that miR-9 is downregulated in several cancers, including ovarian cancer, colon cancer, gastric cancer, renal cancer and esophageal cancer [1519]. However, the expression of miR-9 has been found to be upregulated in biliary tract cancer, breast cancer, brain tumor and lung cancer [2024]. These results suggest that miR-9 may play pivotal roles in tumorigenesis and tumor progression, and also exert different effects in various types of cancer. Hu et al. found that the expression level of miR-9 was increased in an osteosarcoma cell line compared with an osteoblast cell line [25]. However, the clinical significance of miR-9 in human osteosarcoma has not been investigated deeply. In the present study, we examined the expression levels of miR-9 in osteosarcoma tissues and normal bone tissues, and investigated the relationships between miR-9 expression, clinicopathological features and the prognosis of patients with osteosarcoma.

Methods

Patients and tissue samples

This study was approved by the Research Ethics Committee of Shandong Provincial Hospital affiliated to Shandong University. Written informed consent was obtained from all of the patients. All specimens were handled and made anonymous according to the ethical and legal standards. For quantitative real-time reverse-transcriptase-polymerase chain reaction (qRT-PCR) analysis, 79 patients with osteosarcomas and corresponding non-cancerous bone tissue samples from the same specimens were collected at Shandong Provincial Hospital affiliated to Shandong University from June 2006 to July 2012. No patients had received radiotherapy or chemotherapy before surgery. The clinical stage of these osteosarcoma patients was classified according to the sixth edition of the tumor-node-metastases classification of the Union for International Cancer Control. The clinicopathological information of the patients is shown in Table 1.
Table 1
Correlation of miR-9 expression levels with clinicopathological features of patients with osteosarcoma
Clinicopathological features
Number of cases
miR-9 expression
P value
High ( n, %)
Low ( n, %)
Age
    
<50
41
23 (56.1%)
18 (43.9%)
0.879
≥50
38
17 (44.7%)
21 (55.3%)
 
Gender
    
Male
44
25 (56.8%)
19 (43.2%)
0.636
Female
35
15 (42.9%)
20 (57.1%)
 
Anatomical location
    
Tibia/femur
51
26 (51.0%)
25 (49.0%)
0.901
Elsewhere
28
14 (50.0%)
14 (50.0%)
 
Tumor size (cm)
    
<8
48
17 (35.4%)
31 (64.6%)
 
≥8
31
23 (74.2%)
8 (25.8%)
0.011
Clinical stage
    
I/II
39
9 (23.1%)
30 (76.9%)
 
III
40
31 (77.5%)
9 (22.5%)
0.009
Pathological fracture
    
Present
11
6 (54.5%)
5 (45.4%)
 
Absent
68
34 (50.0%)
34 (50.0%)
0.899
Distant metastasis
    
Present
19
17 (89.5%)
2 (10.5%)
 
Absent
60
21 (35.0%)
39 (65.0%)
<0.001

miRNA qRT-PCR assay

The expression levels of miR-9 in osteosarcoma and corresponding non-cancerous tissues were detected using a qRT-PCR assay. Briefly, total RNA from tissue samples was extracted with TRizol reagent (Invitrogen, Breda, the Netherlands) according to the manufacturer’s instructions. cDNA was reverse transcribed from total RNA samples using specific miRNA primers from the TaqMan MicroRNA Assays and reagents from the TaqMan MicroRNA Reverse Transcription kit (Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s instructions. Products were amplified by PCR using TaqMan Universal PCR Master Mix kit (Applied Biosystems). The quantitative PCR was performed with the specific primers as follows: miR-9_F, 5′-GTGCAGGGTCCGAGGT; miR-9_R, 5′-GCGCTCTTTGGTTATCTAGC-3′; U6_F, 5′-CTCGCTTCGGCAGCACA-3′; U6_R, 5′-AACGCTTCACGAATTTGCGT-3′. Small nucleolar RNA U6 was used as an internal standard for normalization. The cycle threshold (C T ) was calculated. The 2-ΔCTC T  = CT miR-9CT U6 RNA) method was used to quantify the relative amount of miR-9. In addition, each measurement was performed in triplicate.

Statistical analysis

SPSS 13.0 statistical software (SPSS Inc, Chicago, IL, USA) was used for the statistical assay of all experimental data. Continuous variables were expressed as mean ± standard deviation (SD). The paired t-test was used to evaluate the differences in miR-9 expression levels in osteosarcoma and corresponding non-cancerous bone tissues. The chi-square test was used to show differences in categorical variables. Differences in patient survival were determined by the Kaplan–Meier method and log-rank test. A Cox proportional hazards regression analysis was used for univariate and multivariate analyses of prognostic values. A difference was considered statistically significant when P < 0.05.

Results

Elevated expression of miR-9 in osteosarcoma tissues

The expression levels of miR-9 in osteosarcoma and corresponding non-cancerous bone samples were detected by qRT-PCR and normalized to RNU6. Compared to non-cancerous bone tissues, the expression levels of miR-9 in osteosarcoma tissues were significantly elevated (P < 0.001, Figure 1). The relative level of miR-9 expression normalized to RNU6 in osteosarcoma tissues (mean ± SD: 5.57 ± 2.28) was significantly higher than that in corresponding non-cancerous bone tissues (mean ± SD: 3.21 ± 1.61). The median of miR-9 expression levels in all 79 patients with osteosarcoma was 5.44. We divided the patients into two groups according to their expression levels of miR-9 using the median as a cutoff: high miR-9 expression group (n = 40, mean ± SD: 7.30 ± 1.69) and low miR-9 expression group (n = 39, mean ± SD: 3.80 ± 1.18).

Correlation between clinicopathological features and miR-9 expression levels in osteosarcoma tissues

To further delineate the possible roles of miR-9 in the development and progression of osteosarcoma, we conducted an investigation into the associations of miR-9 expression with clinicopathological features of the patients with osteosarcoma. Table 1 summarizes the associations of miR-9 expression with various clinicopathological parameters of the patients with osteosarcoma. We found that the expression level of miR-9 was significantly associated with tumor size (P = 0.011), clinical stage (P = 0.009) and distant metastasis (P < 0.001). In contrast, no association was found between the expression level of miR-9 with age (P = 0.879), gender (P = 0.636), anatomical location (P = 0.901) or pathological fracture (P = 0.899).

MiR-9 expression is a prognostic biomarker in patients with osteosarcoma

The correlation between miR-9 expression level and survival time of the patients with osteosarcoma was evaluated using Kaplan–Meier survival analysis. The Kaplan–Meier curve for overall survival regarding miR-9 expression level is shown in Figure 2. The curve shows that osteosarcoma patients with low miR-9 expression in their tumor tissues survived significantly longer than patients with high miR-9 expression (P = 0.0017, by log-rank test). For patients with high miR-9 expression, the 5-year overall survival was 16.2%; however, the overall survival of patients with low miR-9 expression was 60.6%. Multivariate analysis suggested that clinical stage (P = 0.01) and miR-9 expression level (P = 0.002) were significant independent prognostic factors for overall survival (shown in Table 2).
Table 2
Multivariate analysis of overall survival in patients with osteosarcoma
Parameter
Hazard ratio
95% confidence interval
P value
Age
1.06
0.62–2.98
0.67
Gender
0.91
0.67–1.84
0.53
Anatomical location
0.95
0.81–2.01
0.79
Tumor size (cm)
2.56
0.91–5.39
0.08
Clinical stage
3.31
1.93–6.77
0.01
Pathological fracture
1.27
0.59–2.33
0.49
Distant metastasis
4.01
0.98–10.89
0.06
miR-9 expression level
4.77
2.86–5.91
0.002

Discussion

miRNAs are known to be involved in various cellular processes and are associated with various diseases including cancer. They can regulate gene expression at a post-transcriptional level and play a pivotal role in the regulation of cell development, metabolism, immunity, proliferation, differentiation and apoptosis. Published data shows that miRNAs are involved in carcinogenesis as either oncogenes or tumor suppressors and many cancer-related miRNAs have been identified functionally [26, 27].
Many molecular markers have proven prognostic value for osteosarcoma. It would be helpful if these markers were used as objective instruments for predicting the chance of survival or chemotherapy response, especially early in treatment, preferably even before surgery. Previous studies have found that miR-9 is downregulated in several cancers, including ovarian cancer, colon cancer, gastric cancer, renal cancer and esophageal cancer [1519]. However, the expression of miR-9 has been found to be upregulated in biliary tract cancer, breast cancer, brain tumor and lung cancer [2024]. These results suggest that miR-9 may play pivotal roles in tumorigenesis and tumor progression, and also exert different effects in various types of cancer. In the present study, we found that miR-9 expression was increased in osteosarcoma tissues compared with non-cancerous bone tissues; further, the upregulation of miR-9 in osteosarcoma tissues was significantly correlated with aggressive clinicopathological features, including tumor size, clinical stage and distant metastasis. These findings suggested that a higher level of miR-9 expression may be involved in osteosarcoma pathogenesis and progression. Furthermore, we analyzed a correlation between miR-9 expression level and prognosis of osteosarcoma. Patients with high miR-9 expression had a shorter overall survival rate than those with low miR-9 expression. These findings were further supported by the multivariate analyses of a Cox proportional hazards regression model, suggesting that the level of miR-9 expression may be an independent factor for predicting the prognosis of patients with osteosarcoma. This was in agreement with previous studies that validated miR-9 as a novel prognostic biomarker for lung cancer, cervical cancer and glioma [20, 28, 29].
Therefore, our data suggest that the high expression of miR-9 is associated with an increased risk of death from osteosarcoma. To our knowledge, this is the first study to investigate the clinical significance of miR-9 in patients with osteosarcoma. There are several possible causes for the dysregulation of miRNA profiling, including miR-9, in diverse carcinomas. miRNA expression is regulated by genetic and epigenetic factors. For instance, MYC/MYCN regulates the expression of miR-9 in breast cancer, and DNA methylation influences miR-9 expression in colorectal cancer [21, 30]. Regarding the possible molecular mechanisms regulated by miR-9 expression in human cancers, Ma et al. reported that miR-9 is a putative metastasis promoter in breast cancer. They demonstrated that miR-9 targeted CDH-1 mRNA, which encodes E-cadherin, leading to the scattering and EMT-like conversion of SUM149 cells. Ectopic expression of miR-9 downregulated the E-cadherin level, thus increasing the nuclear translocation of β-catenin, and enhanced its binding with transcription factors TCF/LEF to upregulate the transcription of genes that facilitate cell proliferation and angiogenesis [21]. Zheng et al. identified cyclin D1 and Ets1 as new targets of miR-9 in gastric cancer and demonstrated that miR-9 suppressed proliferation, invasion and metastasis [15]. Guo et al. reported that miR-9 inhibited ovarian cancer cell growth through regulation of NF-κB1 [18]. In this study, we identified that miR-9 played an oncogenic role in osteosarcoma; however, the precise mechanism of miR-9 in osteosarcoma tumorigenesis and progression is still not understood.

Conclusions

In conclusion, the findings of our study suggest that increased miR-9 expression has a strong correlation with the aggressive progression of osteosarcoma and its overexpression is a statistically significant risk factor affecting overall survival in patients with osteosarcoma, suggesting that increased miR-9 expression could be a valuable marker of tumor progression and for prognosis of osteosarcoma. Further research is needed to clarify the exact mechanism of miR-9 in osteosarcoma.

Acknowledgments

We thank all the patients who were included in the present study.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors have no proprietary interest in any materials or methods described within this paper. This submission has not been published anywhere previously and it is not simultaneously being considered for any other publication.

Authors’ contributions

XS, YY, HS and WZ carried out the experiments, XS designed the study, XS and YY prepared the manuscript. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Marina N, Gebhardt M, Teot L, Gorlick R: Biology and therapeutic advances for pediatric osteosarcoma. Oncologist. 2004, 9: 422-441.CrossRefPubMed Marina N, Gebhardt M, Teot L, Gorlick R: Biology and therapeutic advances for pediatric osteosarcoma. Oncologist. 2004, 9: 422-441.CrossRefPubMed
2.
Zurück zum Zitat Bielack SS, Marina N, Ferrari S, Helman LJ, Smeland S, Whelan JS, Reaman GH: Osteosarcoma: the same old drugs or more?. J Clin Oncol. 2008, 26: 3102-3103. author reply 3104–3105.CrossRefPubMed Bielack SS, Marina N, Ferrari S, Helman LJ, Smeland S, Whelan JS, Reaman GH: Osteosarcoma: the same old drugs or more?. J Clin Oncol. 2008, 26: 3102-3103. author reply 3104–3105.CrossRefPubMed
3.
Zurück zum Zitat Longhi A, Errani C, De Paolis M, Mercuri M, Bacci G: Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat Rev. 2006, 32: 423-436.CrossRefPubMed Longhi A, Errani C, De Paolis M, Mercuri M, Bacci G: Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat Rev. 2006, 32: 423-436.CrossRefPubMed
4.
Zurück zum Zitat Messerschmitt PJ, Rettew AN, Brookover RE, Garcia RM, Getty PJ, Greenfield EM: Specific tyrosine kinase inhibitors regulate human osteosarcoma cells in vitro. Clin Orthop Relat Res. 2008, 466: 2168-2175.PubMedCentralCrossRefPubMed Messerschmitt PJ, Rettew AN, Brookover RE, Garcia RM, Getty PJ, Greenfield EM: Specific tyrosine kinase inhibitors regulate human osteosarcoma cells in vitro. Clin Orthop Relat Res. 2008, 466: 2168-2175.PubMedCentralCrossRefPubMed
5.
Zurück zum Zitat Bacci G, Longhi A, Versari M, Mercuri M, Briccoli A, Picci P: Prognostic factors for osteosarcoma of the extremity treated with neoadjuvant chemotherapy: 15-year experience in 789 patients treated at a single institution. Cancer. 2006, 106: 1154-1161.CrossRefPubMed Bacci G, Longhi A, Versari M, Mercuri M, Briccoli A, Picci P: Prognostic factors for osteosarcoma of the extremity treated with neoadjuvant chemotherapy: 15-year experience in 789 patients treated at a single institution. Cancer. 2006, 106: 1154-1161.CrossRefPubMed
6.
Zurück zum Zitat Filipowicz W, Bhattacharyya SN, Sonenberg N: Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nature Rev Genet. 2008, 9: 102-114.CrossRefPubMed Filipowicz W, Bhattacharyya SN, Sonenberg N: Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nature Rev Genet. 2008, 9: 102-114.CrossRefPubMed
7.
Zurück zum Zitat van Kouwenhove M, Kedde M, Agami R: MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer. 2011, 11: 644-656.CrossRefPubMed van Kouwenhove M, Kedde M, Agami R: MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer. 2011, 11: 644-656.CrossRefPubMed
8.
Zurück zum Zitat Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY: Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008, 18: 997-1006.CrossRefPubMed Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY: Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008, 18: 997-1006.CrossRefPubMed
9.
Zurück zum Zitat Esquela-Kerscher A, Slack FJ: Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer. 2006, 6: 259-269.CrossRefPubMed Esquela-Kerscher A, Slack FJ: Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer. 2006, 6: 259-269.CrossRefPubMed
10.
Zurück zum Zitat Calin GA, Croce CM: MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 2006, 66: 7390-7394.CrossRefPubMed Calin GA, Croce CM: MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 2006, 66: 7390-7394.CrossRefPubMed
11.
Zurück zum Zitat Zhang B, Pan X, Cobb GP, Anderson TA: microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007, 302: 1-12.CrossRefPubMed Zhang B, Pan X, Cobb GP, Anderson TA: microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007, 302: 1-12.CrossRefPubMed
13.
Zurück zum Zitat He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM: A microRNA polycistron as a potential human oncogene. Nature. 2005, 435: 828-833.CrossRefPubMed He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM: A microRNA polycistron as a potential human oncogene. Nature. 2005, 435: 828-833.CrossRefPubMed
14.
Zurück zum Zitat Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T: A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 2005, 65: 9628-9632.CrossRefPubMed Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T: A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 2005, 65: 9628-9632.CrossRefPubMed
15.
Zurück zum Zitat Zheng L, Qi T, Yang D, Qi M, Li D, Xiang X, Huang K, Tong Q: microRNA-9 suppresses the proliferation, invasion and metastasis of gastric cancer cells through targeting cyclin D1 and Ets1. PLoS ONE. 2013, 8: e55719-PubMedCentralCrossRefPubMed Zheng L, Qi T, Yang D, Qi M, Li D, Xiang X, Huang K, Tong Q: microRNA-9 suppresses the proliferation, invasion and metastasis of gastric cancer cells through targeting cyclin D1 and Ets1. PLoS ONE. 2013, 8: e55719-PubMedCentralCrossRefPubMed
16.
Zurück zum Zitat Hildebrandt MA, Gu J, Lin J, Ye Y, Tan W, Tamboli P, Wood CG, Wu X: Hsa-miR-9 methylation status is associated with cancer development and metastatic recurrence in patients with clear cell renal cell carcinoma. Oncogene. 2010, 29: 5724-5728.CrossRefPubMed Hildebrandt MA, Gu J, Lin J, Ye Y, Tan W, Tamboli P, Wood CG, Wu X: Hsa-miR-9 methylation status is associated with cancer development and metastatic recurrence in patients with clear cell renal cell carcinoma. Oncogene. 2010, 29: 5724-5728.CrossRefPubMed
17.
Zurück zum Zitat Cekaite L, Rantala JK, Bruun J, Guriby M, Agesen TH, Danielsen SA, Lind GE, Nesbakken A, Kallioniemi O, Lothe RA, Skotheim RI: MiR-9, -31, and -182 deregulation promote proliferation and tumor cell survival in colon cancer. Neoplasia. 2012, 14: 868-879.PubMedCentralCrossRefPubMed Cekaite L, Rantala JK, Bruun J, Guriby M, Agesen TH, Danielsen SA, Lind GE, Nesbakken A, Kallioniemi O, Lothe RA, Skotheim RI: MiR-9, -31, and -182 deregulation promote proliferation and tumor cell survival in colon cancer. Neoplasia. 2012, 14: 868-879.PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Guo LM, Pu Y, Han Z, Liu T, Li YX, Liu M, Li X, Tang H: MicroRNA-9 inhibits ovarian cancer cell growth through regulation of NF-κB1. FEBS J. 2009, 276: 5537-5546.CrossRefPubMed Guo LM, Pu Y, Han Z, Liu T, Li YX, Liu M, Li X, Tang H: MicroRNA-9 inhibits ovarian cancer cell growth through regulation of NF-κB1. FEBS J. 2009, 276: 5537-5546.CrossRefPubMed
19.
Zurück zum Zitat Hu Y, Correa AM, Hoque A, Guan B, Ye F, Huang J, Swisher SG, Wu TT, Ajani JA, Xu XC: Prognostic significance of differentially expressed miRNAs in esophageal cancer. Int J Cancer. 2011, 128: 132-143.PubMedCentralCrossRefPubMed Hu Y, Correa AM, Hoque A, Guan B, Ye F, Huang J, Swisher SG, Wu TT, Ajani JA, Xu XC: Prognostic significance of differentially expressed miRNAs in esophageal cancer. Int J Cancer. 2011, 128: 132-143.PubMedCentralCrossRefPubMed
20.
Zurück zum Zitat Xu T, Liu X, Han L, Shen H, Liu L, Shu Y: Up-regulation of miR-9 expression as a poor prognostic biomarker in patients with non-small cell lung cancer. Clin Transl Oncol. 2013, 16 (5): 469-475.CrossRefPubMed Xu T, Liu X, Han L, Shen H, Liu L, Shu Y: Up-regulation of miR-9 expression as a poor prognostic biomarker in patients with non-small cell lung cancer. Clin Transl Oncol. 2013, 16 (5): 469-475.CrossRefPubMed
21.
Zurück zum Zitat Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S, Westermann F, Speleman F, Vandesompele J, Weinberg RA: miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010, 12: 247-256.PubMedCentralPubMed Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S, Westermann F, Speleman F, Vandesompele J, Weinberg RA: miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010, 12: 247-256.PubMedCentralPubMed
22.
Zurück zum Zitat Shigehara K, Yokomuro S, Ishibashi O, Mizuguchi Y, Arima Y, Kawahigashi Y, Kanda T, Akagi I, Tajiri T, Yoshida H, Takizawa T, Uchida E: Real-time PCR-based analysis of the human bile microRNAome identifies miR-9 as a potential diagnostic biomarker for biliary tract cancer. PLoS ONE. 2011, 6: e23584-PubMedCentralCrossRefPubMed Shigehara K, Yokomuro S, Ishibashi O, Mizuguchi Y, Arima Y, Kawahigashi Y, Kanda T, Akagi I, Tajiri T, Yoshida H, Takizawa T, Uchida E: Real-time PCR-based analysis of the human bile microRNAome identifies miR-9 as a potential diagnostic biomarker for biliary tract cancer. PLoS ONE. 2011, 6: e23584-PubMedCentralCrossRefPubMed
23.
Zurück zum Zitat Zhou X, Marian C, Makambi KH, Kosti O, Kallakury BV, Loffredo CA, Zheng YL: MicroRNA-9 as potential biomarker for breast cancer local recurrence and tumor estrogen receptor status. PLoS ONE. 2012, 7: e39011-PubMedCentralCrossRefPubMed Zhou X, Marian C, Makambi KH, Kosti O, Kallakury BV, Loffredo CA, Zheng YL: MicroRNA-9 as potential biomarker for breast cancer local recurrence and tumor estrogen receptor status. PLoS ONE. 2012, 7: e39011-PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Nass D, Rosenwald S, Meiri E, Gilad S, Tabibian-Keissar H, Schlosberg A, Kuker H, Sion-Vardy N, Tobar A, Kharenko O, Sitbon E, Lithwick Yanai G, Elyakim E, Cholakh H, Gibori H, Spector Y, Bentwich Z, Barshack I, Rosenfeld N: MiR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol. 2009, 19: 375-383.PubMedCentralCrossRefPubMed Nass D, Rosenwald S, Meiri E, Gilad S, Tabibian-Keissar H, Schlosberg A, Kuker H, Sion-Vardy N, Tobar A, Kharenko O, Sitbon E, Lithwick Yanai G, Elyakim E, Cholakh H, Gibori H, Spector Y, Bentwich Z, Barshack I, Rosenfeld N: MiR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol. 2009, 19: 375-383.PubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Hu H, Zhang Y, Cai XH, Huang JF, Cai L: Changes in microRNA expression in the MG-63 osteosarcoma cell line compared with osteoblasts. Oncol Lett. 2012, 4: 1037-1042.PubMedCentralPubMed Hu H, Zhang Y, Cai XH, Huang JF, Cai L: Changes in microRNA expression in the MG-63 osteosarcoma cell line compared with osteoblasts. Oncol Lett. 2012, 4: 1037-1042.PubMedCentralPubMed
26.
Zurück zum Zitat Chen X, Gong J, Zeng H, Chen N, Huang R, Huang Y, Nie L, Xu M, Xia J, Zhao F, Meng W, Zhou Q: MicroRNA145 targets BNIP3 and suppresses prostate cancer progression. Cancer Res. 2010, 70: 2728-2738.CrossRefPubMed Chen X, Gong J, Zeng H, Chen N, Huang R, Huang Y, Nie L, Xu M, Xia J, Zhao F, Meng W, Zhou Q: MicroRNA145 targets BNIP3 and suppresses prostate cancer progression. Cancer Res. 2010, 70: 2728-2738.CrossRefPubMed
27.
Zurück zum Zitat Pineau P, Volinia S, McJunkin K, Marchio A, Battiston C, Terris B, Mazzaferro V, Lowe SW, Croce CM, Dejean A: miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci U S A. 2010, 107: 264-269.PubMedCentralCrossRefPubMed Pineau P, Volinia S, McJunkin K, Marchio A, Battiston C, Terris B, Mazzaferro V, Lowe SW, Croce CM, Dejean A: miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci U S A. 2010, 107: 264-269.PubMedCentralCrossRefPubMed
28.
Zurück zum Zitat Wu Z, Wang L, Li G, Liu H, Fan F, Li Z, Li Y, Gao G: Increased expression of microRNA-9 predicts an unfavorable prognosis in human glioma. Mol Cell Biochem. 2013, 384: 263-268.CrossRefPubMed Wu Z, Wang L, Li G, Liu H, Fan F, Li Z, Li Y, Gao G: Increased expression of microRNA-9 predicts an unfavorable prognosis in human glioma. Mol Cell Biochem. 2013, 384: 263-268.CrossRefPubMed
29.
Zurück zum Zitat Hu X, Schwarz JK, Lewis JS, Huettner PC, Rader JS, Deasy JO, Grigsby PW, Wang X: A microRNA expression signature for cervical cancer prognosis. Cancer Res. 2010, 70: 1441-1448.PubMedCentralCrossRefPubMed Hu X, Schwarz JK, Lewis JS, Huettner PC, Rader JS, Deasy JO, Grigsby PW, Wang X: A microRNA expression signature for cervical cancer prognosis. Cancer Res. 2010, 70: 1441-1448.PubMedCentralCrossRefPubMed
30.
Zurück zum Zitat Vinci S, Gelmini S, Mancini I, Malentacchi F, Pazzagli M, Beltrami C, Pinzani P, Orlando C: Genetic and epigenetic factors in regulation of microRNA in colorectal cancers. Methods. 2013, 59: 138-146.CrossRefPubMed Vinci S, Gelmini S, Mancini I, Malentacchi F, Pazzagli M, Beltrami C, Pinzani P, Orlando C: Genetic and epigenetic factors in regulation of microRNA in colorectal cancers. Methods. 2013, 59: 138-146.CrossRefPubMed
Metadaten
Titel
MicroRNA-9 expression is a prognostic biomarker in patients with osteosarcoma
verfasst von
Shi-hong Xu
Yong-liang Yang
Shu-mei Han
Zong-hui Wu
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
World Journal of Surgical Oncology / Ausgabe 1/2014
Elektronische ISSN: 1477-7819
DOI
https://doi.org/10.1186/1477-7819-12-195

Weitere Artikel der Ausgabe 1/2014

World Journal of Surgical Oncology 1/2014 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.