Skip to main content
Erschienen in: Inflammation 1/2019

09.11.2018 | ORIGINAL ARTICLE

MicroRNA-92a Drives Th1 Responses in the Experimental Autoimmune Encephalomyelitis

verfasst von: Nahid Rezaei, Farideh Talebi, Samira Ghorbani, Abbas Rezaei, Abolghasem Esmaeili, Farshid Noorbakhsh, Mazdak Ganjalikhani Hakemi

Erschienen in: Inflammation | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Dysregulation of microRNAs (miRNAs) has been linked to the progress of a number of autoimmune diseases including multiple sclerosis (MS), and its animal model, experimental autoimmune encephalomyelitis (EAE). IFN-γ-producing Th1 cells are major players in MS/EAE pathogenesis. It is known that differentiation of T cells towards the Th1 phenotype is influenced by various factors including miRNAs. The miR-92a shows substantial upregulation in MS; however, little is known about its role in the development of autoimmune and inflammatory responses. Herein, we investigated the role of miR-92a in the pathogenesis of MS, focusing on its potential effects on differentiation of Th1 cells. The expression levels of miR-92a were assessed in the spinal cord tissues and splenocytes from mice with EAE using real-time RT-PCR. Next, using transfection with miR-92a mimic sequences, the potential involvement of miR-92a in Th1 polarization was investigated by flow cytometric analysis. Moreover, the expression levels of miR-92a targets were explored in spinal cord tissues of EAE mice. miR-92a expression was enhanced in mouse spinal cord samples at the peak of EAE disease. Overexpression of miR-92a in splenocytes led to increased differentiation of Th1 cells compared with cells transfected with negative control sequences. Enhanced miR-92a expression was accompanied by reduced expression TSC1 or DUSP10, predicted miR-92a targets, in EAE spinal cords. Our data point to a potential role for miR-92a in neuroinflammatory responses in EAE. Our results indicate that miR-92a might affect Th1 differentiation, likely due to downregulation of TSC1 and DUSP10
Literatur
1.
2.
Zurück zum Zitat Mix, E., H. Meyer-Rienecker, H.P. Hartung, and U.K. Zettl. 2010. Animal models of multiple sclerosis—potentials and limitations. Progress in Neurobiology 92 (3): 386–404.CrossRefPubMed Mix, E., H. Meyer-Rienecker, H.P. Hartung, and U.K. Zettl. 2010. Animal models of multiple sclerosis—potentials and limitations. Progress in Neurobiology 92 (3): 386–404.CrossRefPubMed
3.
Zurück zum Zitat Amedei, A., D. Prisco, and M.M. D’Elios. 2012. Multiple sclerosis: The role of cytokines in pathogenesis and in therapies. International Journal of Molecular Sciences 13 (10): 13438–13460.CrossRefPubMedPubMedCentral Amedei, A., D. Prisco, and M.M. D’Elios. 2012. Multiple sclerosis: The role of cytokines in pathogenesis and in therapies. International Journal of Molecular Sciences 13 (10): 13438–13460.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat McFarland, H.F., and R. Martin. 2007. Multiple sclerosis: A complicated picture of autoimmunity. Nature Immunology 8 (9): 913–919.CrossRefPubMed McFarland, H.F., and R. Martin. 2007. Multiple sclerosis: A complicated picture of autoimmunity. Nature Immunology 8 (9): 913–919.CrossRefPubMed
5.
Zurück zum Zitat Felekkis, K., E. Touvana, Ch. Stefanou, and C. Deltas. 2010. microRNAs: A newly described class of encoded molecules that play a role in health and disease. Hippokratia 14 (4): 236–240.PubMedPubMedCentral Felekkis, K., E. Touvana, Ch. Stefanou, and C. Deltas. 2010. microRNAs: A newly described class of encoded molecules that play a role in health and disease. Hippokratia 14 (4): 236–240.PubMedPubMedCentral
6.
Zurück zum Zitat Wu, T., A. Wieland, K. Araki, C.W. Davis, L. Ye, J.S. Hale, and R. Ahmed. 2012. Temporal expression of microRNA cluster miR-17-92 regulates effector and memory CD8+ T-cell differentiation. Proceedings of the National Academy of Sciences of the United States of America 109 (25): 9965–9970.CrossRefPubMedPubMedCentral Wu, T., A. Wieland, K. Araki, C.W. Davis, L. Ye, J.S. Hale, and R. Ahmed. 2012. Temporal expression of microRNA cluster miR-17-92 regulates effector and memory CD8+ T-cell differentiation. Proceedings of the National Academy of Sciences of the United States of America 109 (25): 9965–9970.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Thamilarasan, M., D. Koczan, M. Hecker, B. Paap, and U.K. Zettl. 2012. MicroRNAs in multiple sclerosis and experimental autoimmune encephalomyelitis. Autoimmunity Reviews 11 (3): 174–179.CrossRefPubMed Thamilarasan, M., D. Koczan, M. Hecker, B. Paap, and U.K. Zettl. 2012. MicroRNAs in multiple sclerosis and experimental autoimmune encephalomyelitis. Autoimmunity Reviews 11 (3): 174–179.CrossRefPubMed
8.
Zurück zum Zitat Jin, X.F., Wu N, L. Wang, and J. Li. 2013. Circulating microRNAs: A novel class of potential biomarkers for diagnosing and prognosing central nervous system diseases. Cellular and Molecular Neurobiology 33 (5): 601–613.CrossRefPubMed Jin, X.F., Wu N, L. Wang, and J. Li. 2013. Circulating microRNAs: A novel class of potential biomarkers for diagnosing and prognosing central nervous system diseases. Cellular and Molecular Neurobiology 33 (5): 601–613.CrossRefPubMed
9.
Zurück zum Zitat Wu, W., H. Xiao, A. Laguna-Fernandez, G. Villarreal Jr., K.C. Wang, G.G. Geary, Y. Zhang, et al. 2011. Flow-dependent regulation of Kruppel-like factor 2 is mediated by MicroRNA-92a. Circulation 124 (5): 633–641.CrossRefPubMed Wu, W., H. Xiao, A. Laguna-Fernandez, G. Villarreal Jr., K.C. Wang, G.G. Geary, Y. Zhang, et al. 2011. Flow-dependent regulation of Kruppel-like factor 2 is mediated by MicroRNA-92a. Circulation 124 (5): 633–641.CrossRefPubMed
10.
Zurück zum Zitat Xiao, C., L. Srinivasan, D.P. Calado, H.C. Patterson, B. Zhang, J. Wang, J.M. Henderson, J.L. Kutok, and K. Rajewsky. 2008. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nature Immunology 9 (4): 405–414.CrossRefPubMedPubMedCentral Xiao, C., L. Srinivasan, D.P. Calado, H.C. Patterson, B. Zhang, J. Wang, J.M. Henderson, J.L. Kutok, and K. Rajewsky. 2008. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nature Immunology 9 (4): 405–414.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat de Kouchkovsky, D., J.H. Esensten, W.L. Rosenthal, M.M. Morar, J.A. Bluestone, and L.T. Jeker. 2013. microRNA-17-92 regulates IL-10 production by regulatory T cells and control of experimental autoimmune encephalomyelitis. Journal of Immunology 191 (4): 1594–1605.CrossRef de Kouchkovsky, D., J.H. Esensten, W.L. Rosenthal, M.M. Morar, J.A. Bluestone, and L.T. Jeker. 2013. microRNA-17-92 regulates IL-10 production by regulatory T cells and control of experimental autoimmune encephalomyelitis. Journal of Immunology 191 (4): 1594–1605.CrossRef
12.
Zurück zum Zitat Noorbakhsh, F., K.K. Ellestad, F. Maingat, K.G. Warren, M.H. Han, L. Steinman, G.B. Baker, and C. Power. 2011. Impaired neurosteroid synthesis in multiple sclerosis. Brain 134 (Pt 9): 2703–2721.CrossRefPubMedPubMedCentral Noorbakhsh, F., K.K. Ellestad, F. Maingat, K.G. Warren, M.H. Han, L. Steinman, G.B. Baker, and C. Power. 2011. Impaired neurosteroid synthesis in multiple sclerosis. Brain 134 (Pt 9): 2703–2721.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Giuliani, F., L.M. Metz, T. Wilson, Y. Fan, A. Bar-Or, and V.W. Yong. 2005. Additive effect of the combination of glatiramer acetate and minocycline in a model of MS. Journal of Neuroimmunology 158 (1–2): 213–221.CrossRefPubMed Giuliani, F., L.M. Metz, T. Wilson, Y. Fan, A. Bar-Or, and V.W. Yong. 2005. Additive effect of the combination of glatiramer acetate and minocycline in a model of MS. Journal of Neuroimmunology 158 (1–2): 213–221.CrossRefPubMed
14.
Zurück zum Zitat Schellenberg, A.E., R. Buist, V.W. Yong, M.R. Del Bigio, and J. Peeling. 2007. Magnetic resonance imaging of blood-spinal cord barrier disruption in mice with experimental autoimmune encephalomyelitis. Magnetic Resonance in Medicine 58 (2): 298–305.CrossRefPubMed Schellenberg, A.E., R. Buist, V.W. Yong, M.R. Del Bigio, and J. Peeling. 2007. Magnetic resonance imaging of blood-spinal cord barrier disruption in mice with experimental autoimmune encephalomyelitis. Magnetic Resonance in Medicine 58 (2): 298–305.CrossRefPubMed
15.
Zurück zum Zitat Miller, S.D., and W.J. Karpus. 2007. Experimental autoimmune encephalomyelitis in the mouse. In Current Protocols in Immunology Miller, S.D., and W.J. Karpus. 2007. Experimental autoimmune encephalomyelitis in the mouse. In Current Protocols in Immunology
16.
Zurück zum Zitat Talebi, F., S. Ghorbani, R. WF Chan, F. Boghozian, S. Masoumi, M. Ghasemi, C. Power Vojgani, and F. Noorbakhsh. 2017. MicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosis. Journal of Neuroinflammation 14 (1): 55.CrossRefPubMedPubMedCentral Talebi, F., S. Ghorbani, R. WF Chan, F. Boghozian, S. Masoumi, M. Ghasemi, C. Power Vojgani, and F. Noorbakhsh. 2017. MicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosis. Journal of Neuroinflammation 14 (1): 55.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Ghorbani, S., F. Talebi, W.F. Chan, F. Masoumi, M. Vojgani, C. Power, and F. Noorbakhsh. 2017. MicroRNA-181 variants regulate T cell phenotype in the context of autoimmune Neuroinflammation. Frontiers in Immunology 8: 758.CrossRefPubMedPubMedCentral Ghorbani, S., F. Talebi, W.F. Chan, F. Masoumi, M. Vojgani, C. Power, and F. Noorbakhsh. 2017. MicroRNA-181 variants regulate T cell phenotype in the context of autoimmune Neuroinflammation. Frontiers in Immunology 8: 758.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Constantinescu, C.S., N. Farooqi, K. O’Brien, and B. Gran. 2011. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). British Journal of Pharmacology 164 (4): 1079–1106.CrossRefPubMedPubMedCentral Constantinescu, C.S., N. Farooqi, K. O’Brien, and B. Gran. 2011. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). British Journal of Pharmacology 164 (4): 1079–1106.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Chou, C.H., S. Shrestha, C.D. Yang, N.W. Chang, Y.L. Lin, K.W. Liao, W.C. Huang, et al. 2018. miRTarBase update 2018: A resource for experimentally validated microRNA-target interactions. Nucleic Acids Research 46 (D1): D296–D302.CrossRefPubMed Chou, C.H., S. Shrestha, C.D. Yang, N.W. Chang, Y.L. Lin, K.W. Liao, W.C. Huang, et al. 2018. miRTarBase update 2018: A resource for experimentally validated microRNA-target interactions. Nucleic Acids Research 46 (D1): D296–D302.CrossRefPubMed
20.
Zurück zum Zitat He, G., L. Zhang, Q. Li, and L. Yang. 2014. miR-92a/DUSP10/JNK signalling axis promotes human pancreatic cancer cells proliferation. Biomedicine & Pharmacotherapy 68 (1): 25–30.CrossRef He, G., L. Zhang, Q. Li, and L. Yang. 2014. miR-92a/DUSP10/JNK signalling axis promotes human pancreatic cancer cells proliferation. Biomedicine & Pharmacotherapy 68 (1): 25–30.CrossRef
21.
Zurück zum Zitat Park, Y., H.S. Jin, J. Lopez, C. Elly, G. Kim, M. Murai, M. Kronenberg, and Y.C. Liu. 2013. TSC1 regulates the balance between effector and regulatory T cells. Journal of Clinical Investigation 123 (12): 5165–5178.CrossRefPubMed Park, Y., H.S. Jin, J. Lopez, C. Elly, G. Kim, M. Murai, M. Kronenberg, and Y.C. Liu. 2013. TSC1 regulates the balance between effector and regulatory T cells. Journal of Clinical Investigation 123 (12): 5165–5178.CrossRefPubMed
22.
Zurück zum Zitat Lang, R., M. Hammer, and J. Mages. 2006. DUSP meet immunology: Dual specificity MAPK phosphatases in control of the inflammatory response. Journal of Immunology 177 (11): 7497–7504.CrossRef Lang, R., M. Hammer, and J. Mages. 2006. DUSP meet immunology: Dual specificity MAPK phosphatases in control of the inflammatory response. Journal of Immunology 177 (11): 7497–7504.CrossRef
23.
Zurück zum Zitat Wu, T., A. Wieland, J. Lee, J.S. Hale, J.H. Han, Xu X, and R. Ahmed. 2015. Cutting edge: miR-17-92 is required for both CD4 Th1 and T follicular helper cell responses during viral infection. Journal of Immunology 195 (6): 2515–2519.CrossRef Wu, T., A. Wieland, J. Lee, J.S. Hale, J.H. Han, Xu X, and R. Ahmed. 2015. Cutting edge: miR-17-92 is required for both CD4 Th1 and T follicular helper cell responses during viral infection. Journal of Immunology 195 (6): 2515–2519.CrossRef
24.
Zurück zum Zitat Jiang, S., C. Li, V. Olive, E. Lykken, F. Feng, J. Sevilla, Y. Wan, L. He, and Q.J. Li. 2011. Molecular dissection of the miR-17-92 cluster’s critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation. Blood 118 (20): 5487–5497.CrossRefPubMedPubMedCentral Jiang, S., C. Li, V. Olive, E. Lykken, F. Feng, J. Sevilla, Y. Wan, L. He, and Q.J. Li. 2011. Molecular dissection of the miR-17-92 cluster’s critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation. Blood 118 (20): 5487–5497.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Liu, S.Q., S. Jiang, C. Li, B. Zhang, and Q.J. Li. 2014. miR-17-92 cluster targets phosphatase and tensin homology and Ikaros Family Zinc Finger 4 to promote TH17-mediated inflammation. Journal of Biological Chemistry 289 (18): 12446–12456.CrossRefPubMed Liu, S.Q., S. Jiang, C. Li, B. Zhang, and Q.J. Li. 2014. miR-17-92 cluster targets phosphatase and tensin homology and Ikaros Family Zinc Finger 4 to promote TH17-mediated inflammation. Journal of Biological Chemistry 289 (18): 12446–12456.CrossRefPubMed
26.
Zurück zum Zitat Niu, H., K. Wang, A. Zhang, S. Yang, Z. Song, W. Wang, C. Qian, X. Li, Y. Zhu, and Y. Wang. 2012. miR-92a is a critical regulator of the apoptosis pathway in glioblastoma with inverse expression of BCL2L11. Oncology Reports 28 (5): 1771–1777.CrossRefPubMed Niu, H., K. Wang, A. Zhang, S. Yang, Z. Song, W. Wang, C. Qian, X. Li, Y. Zhu, and Y. Wang. 2012. miR-92a is a critical regulator of the apoptosis pathway in glioblastoma with inverse expression of BCL2L11. Oncology Reports 28 (5): 1771–1777.CrossRefPubMed
27.
Zurück zum Zitat Ren, C., W. Wang, C. Han, H. Chen, Fu D, Y. Luo, H. Yao, et al. 2016. Expression and prognostic value of miR-92a in patients with gastric cancer. Tumor Biology 37 (7): 9483–9491.CrossRefPubMed Ren, C., W. Wang, C. Han, H. Chen, Fu D, Y. Luo, H. Yao, et al. 2016. Expression and prognostic value of miR-92a in patients with gastric cancer. Tumor Biology 37 (7): 9483–9491.CrossRefPubMed
28.
Zurück zum Zitat Nilsson, S., C. Möller, K. Jirström, A. Lee, S. Busch, R. Lamb, and G. Landberg. 2012. Downregulation of miR-92a is associated with aggressive breast cancer features and increased tumour macrophage infiltration. PLoS One 7 (4): e36051.CrossRefPubMedPubMedCentral Nilsson, S., C. Möller, K. Jirström, A. Lee, S. Busch, R. Lamb, and G. Landberg. 2012. Downregulation of miR-92a is associated with aggressive breast cancer features and increased tumour macrophage infiltration. PLoS One 7 (4): e36051.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Zhou, T., G. Zhang, Z. Liu, S. Xia, and H. Tian. 2013. Overexpression of miR-92a correlates with tumor metastasis and poor prognosis in patients with colorectal cancer. International Journal of Colorectal Disease 28 (1): 19–24.CrossRefPubMed Zhou, T., G. Zhang, Z. Liu, S. Xia, and H. Tian. 2013. Overexpression of miR-92a correlates with tumor metastasis and poor prognosis in patients with colorectal cancer. International Journal of Colorectal Disease 28 (1): 19–24.CrossRefPubMed
30.
Zurück zum Zitat Li, M., X. Guan, Y. Sun, J. Mi, X. Shu, F. Liu, and C. Li. 2014. miR-92a family and their target genes in tumorigenesis and metastasis. Experimental Cell Research 323 (1): 1–6.CrossRefPubMed Li, M., X. Guan, Y. Sun, J. Mi, X. Shu, F. Liu, and C. Li. 2014. miR-92a family and their target genes in tumorigenesis and metastasis. Experimental Cell Research 323 (1): 1–6.CrossRefPubMed
31.
Zurück zum Zitat Lv, X.B., X. Zhang, L. Deng, L. Jiang, W. Meng, Lu Z, and X. Wang. 2014. MiR-92a mediates AZD6244 induced apoptosis and G1-phase arrest of lymphoma cells by targeting Bim. Cell Biology International 38 (4): 435–443.CrossRefPubMed Lv, X.B., X. Zhang, L. Deng, L. Jiang, W. Meng, Lu Z, and X. Wang. 2014. MiR-92a mediates AZD6244 induced apoptosis and G1-phase arrest of lymphoma cells by targeting Bim. Cell Biology International 38 (4): 435–443.CrossRefPubMed
32.
Zurück zum Zitat Ahmadi, S., M. Sharifi, and R. Salehi. 2016. Locked nucleic acid inhibits miR-92a-3p in human colorectal cancer, induces apoptosis and inhibits cell proliferation. Cancer Gene Therapy 23 (7): 199–205.CrossRefPubMed Ahmadi, S., M. Sharifi, and R. Salehi. 2016. Locked nucleic acid inhibits miR-92a-3p in human colorectal cancer, induces apoptosis and inhibits cell proliferation. Cancer Gene Therapy 23 (7): 199–205.CrossRefPubMed
33.
Zurück zum Zitat Carlsen, A.L., A.J. Schetter, C.T. Nielsen, C. Lood, S. Knudsen, A. Voss, C.C. Harris, et al. 2013. Circulating microRNA expression profiles associated with systemic lupus erythematosus. Arthritis & Rheumatology 65 (5):1324–1334. Carlsen, A.L., A.J. Schetter, C.T. Nielsen, C. Lood, S. Knudsen, A. Voss, C.C. Harris, et al. 2013. Circulating microRNA expression profiles associated with systemic lupus erythematosus. Arthritis & Rheumatology 65 (5):1324–1334.
34.
Zurück zum Zitat Kim, B.S., J.Y. Jung, J.Y. Jeon, H.A. Kim, and C.H. Suh. 2016. Circulating hsa-miR-30e-5p, hsa-miR-92a-3p, and hsa-miR-223-3p may be novel biomarkers in systemic lupus erythematosus. HLA 88 (4): 187–193.CrossRefPubMed Kim, B.S., J.Y. Jung, J.Y. Jeon, H.A. Kim, and C.H. Suh. 2016. Circulating hsa-miR-30e-5p, hsa-miR-92a-3p, and hsa-miR-223-3p may be novel biomarkers in systemic lupus erythematosus. HLA 88 (4): 187–193.CrossRefPubMed
35.
Zurück zum Zitat Sing, T., M. Jinnin, K. Yamane, N. Honda, K. Makino, I. Kajihara, T. Makino, K. Sakai, S. Masuguchi, S. Fukushima, and H. Ihn. 2012. microRNA-92a expression in the sera and dermal fibroblasts increases in patients with scleroderma. Rheumatology (Oxford) 51 (9): 1550–1556.CrossRef Sing, T., M. Jinnin, K. Yamane, N. Honda, K. Makino, I. Kajihara, T. Makino, K. Sakai, S. Masuguchi, S. Fukushima, and H. Ihn. 2012. microRNA-92a expression in the sera and dermal fibroblasts increases in patients with scleroderma. Rheumatology (Oxford) 51 (9): 1550–1556.CrossRef
36.
Zurück zum Zitat Chen, Z., L. Wen, M. Martin, C.Y. Hsu, L. Fang, F.M. Lin, T.Y. Lin, et al. 2015. Oxidative stress activates endothelial innate immunity via sterol regulatory element binding protein 2 (SREBP2) transactivation of microRNA-92a. Circulation 131 (9): 805–814.CrossRefPubMed Chen, Z., L. Wen, M. Martin, C.Y. Hsu, L. Fang, F.M. Lin, T.Y. Lin, et al. 2015. Oxidative stress activates endothelial innate immunity via sterol regulatory element binding protein 2 (SREBP2) transactivation of microRNA-92a. Circulation 131 (9): 805–814.CrossRefPubMed
37.
Zurück zum Zitat Loyer, X., S. Potteaux, A.C. Vion, C.L. Guérin, S. Boulkroun, P.E. Rautou, B. Ramkhelawon, et al. 2014. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circulation Research 114 (3): 434–443.CrossRefPubMed Loyer, X., S. Potteaux, A.C. Vion, C.L. Guérin, S. Boulkroun, P.E. Rautou, B. Ramkhelawon, et al. 2014. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circulation Research 114 (3): 434–443.CrossRefPubMed
38.
Zurück zum Zitat Manning, B.D., and L.C. Cantley. 2003. Rheb fills a GAP between TSC and TOR. Trends in Biochemical Sciences 28 (11): 573–576.CrossRefPubMed Manning, B.D., and L.C. Cantley. 2003. Rheb fills a GAP between TSC and TOR. Trends in Biochemical Sciences 28 (11): 573–576.CrossRefPubMed
39.
Zurück zum Zitat Delgoffe, G.M., K.N. Pollizzi, A.T. Waickman, E. Heikamp, D.J. Meyers, M.R. Horton, B. Xiao, P.F. Worley, and J.D. Powell. 2011. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nature Immunology 12 (4): 295–303.CrossRefPubMedPubMedCentral Delgoffe, G.M., K.N. Pollizzi, A.T. Waickman, E. Heikamp, D.J. Meyers, M.R. Horton, B. Xiao, P.F. Worley, and J.D. Powell. 2011. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nature Immunology 12 (4): 295–303.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Chornoguz, O., R.S. Hagan, A. Haile, M.L. Arwood, C.J. Gamper, A. Banerjee, and J.D. Powell. 2017. mTORC1 promotes T-bet phosphorylation to regulate Th1 differentiation. Journal of Immunology 198 (10): 3939–3948.CrossRef Chornoguz, O., R.S. Hagan, A. Haile, M.L. Arwood, C.J. Gamper, A. Banerjee, and J.D. Powell. 2017. mTORC1 promotes T-bet phosphorylation to regulate Th1 differentiation. Journal of Immunology 198 (10): 3939–3948.CrossRef
41.
Zurück zum Zitat Nomura, M., K. Shiiba, C. Katagiri, I. Kasugai, K. Masuda, I. Sato, M. Sato, Y. Kakugawa, E. Nomura, K. Hayashi, Y. Nakamura, T. Nagata, T. Otsuka, R. Katakura, Y. Yamashita, M. Sato, N. Tanuma, and H. Shima. 2012. Novel function of MKP-5/DUSP10, a phosphatase of stress-activated kinases, on ERK-dependent gene expression, and upregulation of its gene expression in colon carcinomas. Oncology Reports 28 (3): 931–936.PubMed Nomura, M., K. Shiiba, C. Katagiri, I. Kasugai, K. Masuda, I. Sato, M. Sato, Y. Kakugawa, E. Nomura, K. Hayashi, Y. Nakamura, T. Nagata, T. Otsuka, R. Katakura, Y. Yamashita, M. Sato, N. Tanuma, and H. Shima. 2012. Novel function of MKP-5/DUSP10, a phosphatase of stress-activated kinases, on ERK-dependent gene expression, and upregulation of its gene expression in colon carcinomas. Oncology Reports 28 (3): 931–936.PubMed
42.
Zurück zum Zitat Zhang, Y., J.N. Blattman, N.J. Kennedy, J. Duong, T. Nguyen, Y. Wang, R.J. Davis, P.D. Greenberg, R.A. Flavell, and C. Dong. 2004. Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature 430 (7001): 793–797.CrossRefPubMed Zhang, Y., J.N. Blattman, N.J. Kennedy, J. Duong, T. Nguyen, Y. Wang, R.J. Davis, P.D. Greenberg, R.A. Flavell, and C. Dong. 2004. Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature 430 (7001): 793–797.CrossRefPubMed
Metadaten
Titel
MicroRNA-92a Drives Th1 Responses in the Experimental Autoimmune Encephalomyelitis
verfasst von
Nahid Rezaei
Farideh Talebi
Samira Ghorbani
Abbas Rezaei
Abolghasem Esmaeili
Farshid Noorbakhsh
Mazdak Ganjalikhani Hakemi
Publikationsdatum
09.11.2018
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0887-3

Weitere Artikel der Ausgabe 1/2019

Inflammation 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.