Skip to main content
Erschienen in: Archives of Virology 11/2017

04.08.2017 | Original Article

MicroRNA transcriptome analysis in chicken kidneys in response to differing virulent infectious bronchitis virus infections

verfasst von: Xin Yang, Wenqian Gao, Hui Liu, Jianan Li, Danyu Chen, Feng Yuan, Zhikun Zhang, Hongning Wang

Erschienen in: Archives of Virology | Ausgabe 11/2017

Einloggen, um Zugang zu erhalten

Abstract

Infectious bronchitis virus (IBV) can cause a highly contagious and acute respiratory disease in poultry. MicroRNAs (miRNAs) have emerged as a class of crucial regulators for gene expression and are involved in the regulation of virus defence and immunological processes. To understand miRNA regulation in chickens in response to IBV infection, high-throughput sequencing was performed to compare the small RNA libraries from the kidneys of chicken infected with SCK2, SCDY2 and LDT3-A. By comparing these data to healthy chickens, a total of 58 differentially expressed (DE) miRNAs were identified. The DE miRNAs were further classified into five miRNA expression patterns (up or down regulation compared to control). Using Gene Ontology (GO) enrichment prediction, the DE miRNAs were shown to be mostly associated with metabolic processes, catalytic activities, gene expression, binding activities and immune responses. Seven highly expressed miRNAs (gga-miR-30d, gga-miR-1454, gga-miR-7b, gga-miR-215-5p, gga-miR-1a-3p, gga-miR-3538 and gga-miR-2954) were selected for miRNA-mRNA conjoint analysis. Furthermore, the miRNAs inversely correlated with the corresponding target gene mRNAs. These seven miRNAs were considered to play an important role in IBV-host interactions and the differing virulence of IBV strains. This is the first demonstration that infection with different virulent IBVs elicits different expression of miRNAs in chicken kidneys; this expression also seems to be associated with the virulence of IBV. These results are significant for the study of immune responses to infection with different virulent IBVs mediated by miRNAs as well as the interaction between the chicken host and IBV.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Cook JK, Jackwood M, Jones RC (2012) The long view: 40 years of infectious bronchitis research. Avian Pathol J WVPA 41(3):239–250CrossRef Cook JK, Jackwood M, Jones RC (2012) The long view: 40 years of infectious bronchitis research. Avian Pathol J WVPA 41(3):239–250CrossRef
2.
3.
Zurück zum Zitat De Wit JJS, Cook JK, van der Heijden HM (2011) Infectious bronchitis virus variants: a review of the history, current situation and control measures. Avian Pathol 40(3):223–235CrossRef De Wit JJS, Cook JK, van der Heijden HM (2011) Infectious bronchitis virus variants: a review of the history, current situation and control measures. Avian Pathol 40(3):223–235CrossRef
4.
Zurück zum Zitat Burnside J, Morgan R (2011) Emerging roles of chicken and viral microRNAs in avian disease. In: BMC proceedings, vol 4. BioMed Central, S2 Burnside J, Morgan R (2011) Emerging roles of chicken and viral microRNAs in avian disease. In: BMC proceedings, vol 4. BioMed Central, S2
5.
Zurück zum Zitat Morgan RW, Burnside J (2011) Roles of avian herpesvirus microRNAs in infection, latency, and oncogenesis. Biochim et Biophys Acta (BBA) Gene Regul Mech 1809(11):654–659CrossRef Morgan RW, Burnside J (2011) Roles of avian herpesvirus microRNAs in infection, latency, and oncogenesis. Biochim et Biophys Acta (BBA) Gene Regul Mech 1809(11):654–659CrossRef
6.
Zurück zum Zitat Wang X, Wang L, Mo Q, Jia A, Dong Y, Wang G (2016) A positive feedback loop of p53/miR-19/TP53INP1 modulates pancreatic cancer cell proliferation and apoptosis. Oncol Rep 35(1):518–523CrossRefPubMed Wang X, Wang L, Mo Q, Jia A, Dong Y, Wang G (2016) A positive feedback loop of p53/miR-19/TP53INP1 modulates pancreatic cancer cell proliferation and apoptosis. Oncol Rep 35(1):518–523CrossRefPubMed
7.
Zurück zum Zitat Hussain M, Asgari S (2014) MicroRNA-like viral small RNA from Dengue virus 2 autoregulates its replication in mosquito cells. Proc Natl Acad Sci 111(7):2746–2751CrossRefPubMedPubMedCentral Hussain M, Asgari S (2014) MicroRNA-like viral small RNA from Dengue virus 2 autoregulates its replication in mosquito cells. Proc Natl Acad Sci 111(7):2746–2751CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Trakooljul N, Hicks J, Liu HC (2010) Identification of target genes and pathways associated with chicken microRNA miR-143. Anim Genet 41(4):357–364PubMed Trakooljul N, Hicks J, Liu HC (2010) Identification of target genes and pathways associated with chicken microRNA miR-143. Anim Genet 41(4):357–364PubMed
9.
Zurück zum Zitat Lim W, Jeong W, Kim J, Ka H, Bazer FW, Han JY, Song G (2012) Differential expression of secreted phosphoprotein 1 in response to estradiol-17β and in ovarian tumors in chickens. Biochem Biophys Res Commun 422(3):494–500CrossRefPubMed Lim W, Jeong W, Kim J, Ka H, Bazer FW, Han JY, Song G (2012) Differential expression of secreted phosphoprotein 1 in response to estradiol-17β and in ovarian tumors in chickens. Biochem Biophys Res Commun 422(3):494–500CrossRefPubMed
10.
Zurück zum Zitat Li Y, Chan EY, Li J, Ni C, Peng X, Rosenzweig E, Tumpey TM, Katze MG (2010) MicroRNA expression and virulence in pandemic influenza virus-infected mice. J Virol 84(6):3023–3032CrossRefPubMedPubMedCentral Li Y, Chan EY, Li J, Ni C, Peng X, Rosenzweig E, Tumpey TM, Katze MG (2010) MicroRNA expression and virulence in pandemic influenza virus-infected mice. J Virol 84(6):3023–3032CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Li Y, Li J, Belisle S, Baskin CR, Tumpey TM, Katze MG (2011) Differential microRNA expression and virulence of avian, 1918 reassortant, and reconstructed 1918 influenza A viruses. Virology 421(2):105–113CrossRefPubMedPubMedCentral Li Y, Li J, Belisle S, Baskin CR, Tumpey TM, Katze MG (2011) Differential microRNA expression and virulence of avian, 1918 reassortant, and reconstructed 1918 influenza A viruses. Virology 421(2):105–113CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):25CrossRef Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):25CrossRef
13.
Zurück zum Zitat Wen M, Shen Y, Shi S, Tang T (2012) miREvo: an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments. BMC Bioinform 13(1):140CrossRef Wen M, Shen Y, Shi S, Tang T (2012) miREvo: an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments. BMC Bioinform 13(1):140CrossRef
14.
Zurück zum Zitat Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic acids Res 40(1):37–52CrossRefPubMed Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic acids Res 40(1):37–52CrossRefPubMed
15.
Zurück zum Zitat Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5(1):1CrossRef Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5(1):1CrossRef
16.
Zurück zum Zitat Zhou L, Chen J, Li Z, Li X, Hu X, Huang Y, Zhao X, Liang C, Wang Y, Sun L (2010) Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27. 3 associate with clear cell renal cell carcinoma. PLoS One 5(12):e15224CrossRefPubMedPubMedCentral Zhou L, Chen J, Li Z, Li X, Hu X, Huang Y, Zhao X, Liang C, Wang Y, Sun L (2010) Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27. 3 associate with clear cell renal cell carcinoma. PLoS One 5(12):e15224CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Grassmann R, Jeang K-T (2008) The roles of microRNAs in mammalian virus infection. Biochim et Biophys 1779(11):706–711CrossRef Grassmann R, Jeang K-T (2008) The roles of microRNAs in mammalian virus infection. Biochim et Biophys 1779(11):706–711CrossRef
18.
Zurück zum Zitat Wang Y, Brahmakshatriya V, Zhu H, Lupiani B, Reddy SM, Yoon BJ, Gunaratne PH, Kim JH, Chen R, Wang J, Zhou H (2009) Identification of differentially expressed miRNAs in chicken lung and trachea with avian influenza virus infection by a deep sequencing approach. BMC Genom 10:512CrossRef Wang Y, Brahmakshatriya V, Zhu H, Lupiani B, Reddy SM, Yoon BJ, Gunaratne PH, Kim JH, Chen R, Wang J, Zhou H (2009) Identification of differentially expressed miRNAs in chicken lung and trachea with avian influenza virus infection by a deep sequencing approach. BMC Genom 10:512CrossRef
19.
Zurück zum Zitat Morgan R, Anderson A, Bernberg E, Kamboj S, Huang E, Lagasse G, Isaacs G, Parcells M, Meyers BC, Green PJ (2008) Sequence conservation and differential expression of Marek’s disease virus microRNAs. J Virol 82(24):12213–12220CrossRefPubMedPubMedCentral Morgan R, Anderson A, Bernberg E, Kamboj S, Huang E, Lagasse G, Isaacs G, Parcells M, Meyers BC, Green PJ (2008) Sequence conservation and differential expression of Marek’s disease virus microRNAs. J Virol 82(24):12213–12220CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Cong F, Liu X, Han Z, Shao Y, Kong X, Liu S (2013) Transcriptome analysis of chicken kidney tissues following coronavirus avian infectious bronchitis virus infection. BMC Genom 14(1):743CrossRef Cong F, Liu X, Han Z, Shao Y, Kong X, Liu S (2013) Transcriptome analysis of chicken kidney tissues following coronavirus avian infectious bronchitis virus infection. BMC Genom 14(1):743CrossRef
21.
Zurück zum Zitat Kint J, Fernandez-Gutierrez M, Maier HJ, Britton P, Langereis MA, Koumans J, Wiegertjes GF, Forlenza M (2015) Activation of the chicken type I interferon response by infectious bronchitis coronavirus. J Virol 89:1156–1167CrossRefPubMed Kint J, Fernandez-Gutierrez M, Maier HJ, Britton P, Langereis MA, Koumans J, Wiegertjes GF, Forlenza M (2015) Activation of the chicken type I interferon response by infectious bronchitis coronavirus. J Virol 89:1156–1167CrossRefPubMed
22.
Zurück zum Zitat Li J, Donath S, Li Y, Qin D, Prabhakar BS, Li P (2010) miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet 6(1):e1000795CrossRefPubMedPubMedCentral Li J, Donath S, Li Y, Qin D, Prabhakar BS, Li P (2010) miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet 6(1):e1000795CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Wang C, Zhang Y, Luo J, Ding H, Liu S, Amer S, Xie L, Lyv W, Su W, Li M (2016) Identification of miRNomes reveals ssc-miR-30d-R_1 as a potential therapeutic target for PRRS viral infection. Sci Rep 27(6):24854CrossRef Wang C, Zhang Y, Luo J, Ding H, Liu S, Amer S, Xie L, Lyv W, Su W, Li M (2016) Identification of miRNomes reveals ssc-miR-30d-R_1 as a potential therapeutic target for PRRS viral infection. Sci Rep 27(6):24854CrossRef
24.
Zurück zum Zitat Lee HJ, Palkovits M, Young WS 3rd (2006) miR-7b, a microRNA up-regulated in the hypothalamus after chronic hyperosmolar stimulation, inhibits Fos translation. Proc Natl Acad Sci U S A 103(42):15669–15674CrossRefPubMedPubMedCentral Lee HJ, Palkovits M, Young WS 3rd (2006) miR-7b, a microRNA up-regulated in the hypothalamus after chronic hyperosmolar stimulation, inhibits Fos translation. Proc Natl Acad Sci U S A 103(42):15669–15674CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Langenberger D, Bartschat S, Hertel J, Hoffmann S, Tafer H, Stadler PF (2011) MicroRNA or not MicroRNA? In: Brazilian Symposium on Bioinformatics, Springer, 1–9 Langenberger D, Bartschat S, Hertel J, Hoffmann S, Tafer H, Stadler PF (2011) MicroRNA or not MicroRNA? In: Brazilian Symposium on Bioinformatics, Springer, 1–9
26.
Zurück zum Zitat Peng X, Gao QS, Zhou L, Chen ZH, Lu S, Huang HJ, Zhan CY, Xiang M (2015) MicroRNAs in avian influenza virus H9N2-infected and non-infected chicken embryo fibroblasts. Genet Mol Res GMR 14(3):9081–9091CrossRefPubMed Peng X, Gao QS, Zhou L, Chen ZH, Lu S, Huang HJ, Zhan CY, Xiang M (2015) MicroRNAs in avian influenza virus H9N2-infected and non-infected chicken embryo fibroblasts. Genet Mol Res GMR 14(3):9081–9091CrossRefPubMed
27.
Zurück zum Zitat Lin J, Xia J, Zhang K, Yang Q (2016) Genome-wide profiling of chicken dendritic cell response to infectious bursal disease. BMC Genom 17(1):878CrossRef Lin J, Xia J, Zhang K, Yang Q (2016) Genome-wide profiling of chicken dendritic cell response to infectious bursal disease. BMC Genom 17(1):878CrossRef
28.
Zurück zum Zitat Yu Z, Gao X, Liu C, Lv X, Zheng S (2017) Analysis of microRNA expression profile in specific pathogen-free chickens in response to reticuloendotheliosis virus infection. Appl Microbiol Biotechnol 101(7):2767–2777CrossRefPubMed Yu Z, Gao X, Liu C, Lv X, Zheng S (2017) Analysis of microRNA expression profile in specific pathogen-free chickens in response to reticuloendotheliosis virus infection. Appl Microbiol Biotechnol 101(7):2767–2777CrossRefPubMed
Metadaten
Titel
MicroRNA transcriptome analysis in chicken kidneys in response to differing virulent infectious bronchitis virus infections
verfasst von
Xin Yang
Wenqian Gao
Hui Liu
Jianan Li
Danyu Chen
Feng Yuan
Zhikun Zhang
Hongning Wang
Publikationsdatum
04.08.2017
Verlag
Springer Vienna
Erschienen in
Archives of Virology / Ausgabe 11/2017
Print ISSN: 0304-8608
Elektronische ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-017-3502-2

Weitere Artikel der Ausgabe 11/2017

Archives of Virology 11/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.