Skip to main content
Erschienen in:

21.02.2019 | Review article

MicroRNAs in contusion spinal cord injury: pathophysiology and clinical utility

verfasst von: Fang Li, Mou-Wang Zhou

Erschienen in: Acta Neurologica Belgica | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Spinal cord injury (SCI) in humans is a common central nervous system trauma. Pathophysiologically, SCI involves both primary and secondary damages. Therapeutically, targeting secondary damage including inflammation, neuropathic pain, apoptosis, demyelination, and glial reaction to promote functional benefits for SCI patients has long been considered a potential treatment strategy by neuroscientists and clinicians. As a type of small non-coding RNA, microRNAs (miRNAs) have been shown to play essential roles in the regulation of pathophysiologic processes of SCI and are considered to be an effective treatment method for SCI. Dysregulated expression of miRNAs is observed in SCI patients and animal models of SCI. Furthermore, miRNAs might also be used as biomarkers for diagnostic and prognostic purposes in SCI. Given contusion injury is the most clinically relevant type of SCI, this review mainly focuses on the role of miRNAs in the pathophysiology of contusion SCI and the putative utilization of miRNAs as diagnostic biomarkers and therapeutic targets for contusion SCI.
Literatur
1.
Zurück zum Zitat Song JL, Zheng W, Chen W, Qian Y, Ouyang YM, Fan CY (2017) Lentivirus-mediated microRNA-124 gene-modified bone marrow mesenchymal stem cell transplantation promotes the repair of spinal cord injury in rats. Exp Mol Med 49(5):e332CrossRef Song JL, Zheng W, Chen W, Qian Y, Ouyang YM, Fan CY (2017) Lentivirus-mediated microRNA-124 gene-modified bone marrow mesenchymal stem cell transplantation promotes the repair of spinal cord injury in rats. Exp Mol Med 49(5):e332CrossRef
2.
Zurück zum Zitat Hayta E, Elden H (2018) Acute spinal cord injury: a review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention. J Chem Neuroanat 87:25–31CrossRef Hayta E, Elden H (2018) Acute spinal cord injury: a review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention. J Chem Neuroanat 87:25–31CrossRef
3.
Zurück zum Zitat Zhu H, Xie R, Liu X, Shou J, Gu W, Gu S et al (2017) MicroRNA-494 improves functional recovery and inhibits apoptosis by modulating PTEN/AKT/mTOR pathway in rats after spinal cord injury. Biomed Pharmacother 92:879–887CrossRef Zhu H, Xie R, Liu X, Shou J, Gu W, Gu S et al (2017) MicroRNA-494 improves functional recovery and inhibits apoptosis by modulating PTEN/AKT/mTOR pathway in rats after spinal cord injury. Biomed Pharmacother 92:879–887CrossRef
4.
Zurück zum Zitat Fu X, Shen Y, Wang W, Li X (2018) MiR-30a-5p ameliorates spinal cord injury-induced inflammatory responses and oxidative stress by targeting Neurod 1 through MAPK/ERK signalling. Clin Exp Pharmacol Physiol 45(1):68–74CrossRef Fu X, Shen Y, Wang W, Li X (2018) MiR-30a-5p ameliorates spinal cord injury-induced inflammatory responses and oxidative stress by targeting Neurod 1 through MAPK/ERK signalling. Clin Exp Pharmacol Physiol 45(1):68–74CrossRef
5.
Zurück zum Zitat Alizadeh A, Karimi-Abdolrezaee S (2016) Microenvironmental regulation of oligodendrocyte replacement and remyelination in spinal cord injury. J Physiol 594(13):3539–3552CrossRef Alizadeh A, Karimi-Abdolrezaee S (2016) Microenvironmental regulation of oligodendrocyte replacement and remyelination in spinal cord injury. J Physiol 594(13):3539–3552CrossRef
6.
Zurück zum Zitat Bhalala OG, Srikanth M, Kessler JA (2013) The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol 9(6):328–339CrossRef Bhalala OG, Srikanth M, Kessler JA (2013) The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol 9(6):328–339CrossRef
7.
Zurück zum Zitat Krichevsky AM (2007) MicroRNA profiling: from dark matter to white matter, or identifying new players in neurobiology. Sci World J 7:155–166CrossRef Krichevsky AM (2007) MicroRNA profiling: from dark matter to white matter, or identifying new players in neurobiology. Sci World J 7:155–166CrossRef
8.
Zurück zum Zitat Nieto-Diaz M, Esteban FJ, Reigada D, Munoz-Galdeano T, Yunta M, Caballero-Lopez M et al (2014) MicroRNA dysregulation in spinal cord injury: causes, consequences and therapeutics. Front Cell Neurosci 8:53CrossRef Nieto-Diaz M, Esteban FJ, Reigada D, Munoz-Galdeano T, Yunta M, Caballero-Lopez M et al (2014) MicroRNA dysregulation in spinal cord injury: causes, consequences and therapeutics. Front Cell Neurosci 8:53CrossRef
9.
Zurück zum Zitat Liu NK, Wang XF, Lu QB, Xu XM (2009) Altered microRNA expression following traumatic spinal cord injury. Exp Neurol 219(2):424–429CrossRef Liu NK, Wang XF, Lu QB, Xu XM (2009) Altered microRNA expression following traumatic spinal cord injury. Exp Neurol 219(2):424–429CrossRef
10.
Zurück zum Zitat Bak M, Silahtaroglu A, Moller M, Christensen M, Rath MF, Skryabin B et al (2008) MicroRNA expression in the adult mouse central nervous system. RNA 14(3):432–444CrossRef Bak M, Silahtaroglu A, Moller M, Christensen M, Rath MF, Skryabin B et al (2008) MicroRNA expression in the adult mouse central nervous system. RNA 14(3):432–444CrossRef
11.
Zurück zum Zitat Smirnova L, Grafe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21(6):1469–1477CrossRef Smirnova L, Grafe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21(6):1469–1477CrossRef
12.
Zurück zum Zitat Zhao X, He X, Han X, Yu Y, Ye F, Chen Y et al (2010) MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 65(5):612–626CrossRef Zhao X, He X, Han X, Yu Y, Ye F, Chen Y et al (2010) MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 65(5):612–626CrossRef
13.
Zurück zum Zitat Wang H, Moyano AL, Ma Z, Deng Y, Lin Y, Zhao C et al (2017) miR-219 cooperates with miR-338 in myelination and promotes myelin repair in the CNS. Dev Cell 40(6):566–582.e5CrossRef Wang H, Moyano AL, Ma Z, Deng Y, Lin Y, Zhao C et al (2017) miR-219 cooperates with miR-338 in myelination and promotes myelin repair in the CNS. Dev Cell 40(6):566–582.e5CrossRef
14.
Zurück zum Zitat Ruan W, Ning G, Feng S, Gao S, Hao Y (2018) MicroRNA381/Hes1 is a potential therapeutic target for spinal cord injury. Int J Mol Med 42(2):1008–1017PubMed Ruan W, Ning G, Feng S, Gao S, Hao Y (2018) MicroRNA381/Hes1 is a potential therapeutic target for spinal cord injury. Int J Mol Med 42(2):1008–1017PubMed
15.
Zurück zum Zitat Martirosyan NL, Carotenuto A, Patel AA, Kalani MY, Yagmurlu K, Lemole GM Jr et al (2016) The role of microRNA markers in the diagnosis, treatment, and outcome prediction of spinal cord injury. Front Surg 3:56PubMedPubMedCentral Martirosyan NL, Carotenuto A, Patel AA, Kalani MY, Yagmurlu K, Lemole GM Jr et al (2016) The role of microRNA markers in the diagnosis, treatment, and outcome prediction of spinal cord injury. Front Surg 3:56PubMedPubMedCentral
16.
Zurück zum Zitat Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773CrossRef Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773CrossRef
17.
Zurück zum Zitat Hu JZ, Huang JH, Zeng L, Wang G, Cao M, Lu HB (2013) Anti-apoptotic effect of microRNA-21 after contusion spinal cord injury in rats. J Neurotrauma 30(15):1349–1360CrossRef Hu JZ, Huang JH, Zeng L, Wang G, Cao M, Lu HB (2013) Anti-apoptotic effect of microRNA-21 after contusion spinal cord injury in rats. J Neurotrauma 30(15):1349–1360CrossRef
18.
Zurück zum Zitat Yunta M, Nieto-Diaz M, Esteban FJ, Caballero-Lopez M, Navarro-Ruiz R, Reigada D et al (2012) MicroRNA dysregulation in the spinal cord following traumatic injury. PLoS One 7(4):e34534CrossRef Yunta M, Nieto-Diaz M, Esteban FJ, Caballero-Lopez M, Navarro-Ruiz R, Reigada D et al (2012) MicroRNA dysregulation in the spinal cord following traumatic injury. PLoS One 7(4):e34534CrossRef
19.
Zurück zum Zitat Strickland ER, Hook MA, Balaraman S, Huie JR, Grau JW, Miranda RC (2011) MicroRNA dysregulation following spinal cord contusion: implications for neural plasticity and repair. Neuroscience 186:146–160CrossRef Strickland ER, Hook MA, Balaraman S, Huie JR, Grau JW, Miranda RC (2011) MicroRNA dysregulation following spinal cord contusion: implications for neural plasticity and repair. Neuroscience 186:146–160CrossRef
20.
Zurück zum Zitat Nakanishi K, Nakasa T, Tanaka N, Ishikawa M, Yamada K, Yamasaki K et al (2010) Responses of microRNAs 124a and 223 following spinal cord injury in mice. Spinal Cord 48(3):192–196CrossRef Nakanishi K, Nakasa T, Tanaka N, Ishikawa M, Yamada K, Yamasaki K et al (2010) Responses of microRNAs 124a and 223 following spinal cord injury in mice. Spinal Cord 48(3):192–196CrossRef
21.
Zurück zum Zitat Li H, Zhao D, Zhang M (2016) Temporal expression MicroRNA-21 in serum of patients with spinal cord injury. In: International conference on biomedical and biological engineering, pp 116–122 Li H, Zhao D, Zhang M (2016) Temporal expression MicroRNA-21 in serum of patients with spinal cord injury. In: International conference on biomedical and biological engineering, pp 116–122
22.
Zurück zum Zitat Wei J, Wang J, Zhou Y, Yan S, Li K, Lin H (2016) MicroRNA-146a contributes to SCI recovery via regulating TRAF6 and IRAK1 expression. BioMed Res Int 2016:4013487PubMedPubMedCentral Wei J, Wang J, Zhou Y, Yan S, Li K, Lin H (2016) MicroRNA-146a contributes to SCI recovery via regulating TRAF6 and IRAK1 expression. BioMed Res Int 2016:4013487PubMedPubMedCentral
23.
Zurück zum Zitat Ning B, Gao L, Liu RH, Liu Y, Zhang NS, Chen ZY (2014) microRNAs in spinal cord injury: potential roles and therapeutic implications. Int J Biol Sci 10(9):997–1006CrossRef Ning B, Gao L, Liu RH, Liu Y, Zhang NS, Chen ZY (2014) microRNAs in spinal cord injury: potential roles and therapeutic implications. Int J Biol Sci 10(9):997–1006CrossRef
24.
Zurück zum Zitat Dong J, Lu M, He X, Xu J, Qin J, Cheng Z et al (2014) Identifying the role of microRNAs in spinal cord injury. Neurol Sci 35(11):1663–1671CrossRef Dong J, Lu M, He X, Xu J, Qin J, Cheng Z et al (2014) Identifying the role of microRNAs in spinal cord injury. Neurol Sci 35(11):1663–1671CrossRef
25.
Zurück zum Zitat Jee MK, Jung JS, Choi JI, Jang JA, Kang KS, Im YB et al (2012) MicroRNA 486 is a potentially novel target for the treatment of spinal cord injury. Brain 135(Pt 4):1237–1252CrossRef Jee MK, Jung JS, Choi JI, Jang JA, Kang KS, Im YB et al (2012) MicroRNA 486 is a potentially novel target for the treatment of spinal cord injury. Brain 135(Pt 4):1237–1252CrossRef
26.
Zurück zum Zitat Dai J, Xu LJ, Han GD, Sun HL, Zhu GT, Jiang HT et al (2018) MiR-137 attenuates spinal cord injury by modulating NEUROD4 through reducing inflammation and oxidative stress. Eur Rev Med Pharmacol Sci 22(7):1884–1890PubMed Dai J, Xu LJ, Han GD, Sun HL, Zhu GT, Jiang HT et al (2018) MiR-137 attenuates spinal cord injury by modulating NEUROD4 through reducing inflammation and oxidative stress. Eur Rev Med Pharmacol Sci 22(7):1884–1890PubMed
27.
Zurück zum Zitat Gao L, Dai C, Feng Z, Zhang L, Zhang Z (2018) MiR-137 inhibited inflammatory response and apoptosis after spinal cord injury via targeting of MK2. J Cell Biochem 119(4):3280–3292CrossRef Gao L, Dai C, Feng Z, Zhang L, Zhang Z (2018) MiR-137 inhibited inflammatory response and apoptosis after spinal cord injury via targeting of MK2. J Cell Biochem 119(4):3280–3292CrossRef
28.
Zurück zum Zitat Gaudet AD, Fonken LK, Watkins LR, Nelson RJ, Popovich PG (2018) MicroRNAs: roles in regulating neuroinflammation. Neuroscientist 24(3):221–245CrossRef Gaudet AD, Fonken LK, Watkins LR, Nelson RJ, Popovich PG (2018) MicroRNAs: roles in regulating neuroinflammation. Neuroscientist 24(3):221–245CrossRef
29.
Zurück zum Zitat Shi Z, Zhou H, Lu L, Li X, Fu Z, Liu J et al (2017) The roles of microRNAs in spinal cord injury. Int J Neurosci 127(12):1104–1115CrossRef Shi Z, Zhou H, Lu L, Li X, Fu Z, Liu J et al (2017) The roles of microRNAs in spinal cord injury. Int J Neurosci 127(12):1104–1115CrossRef
30.
Zurück zum Zitat Bhalala OG, Pan L, Sahni V, McGuire TL, Gruner K, Tourtellotte WG et al (2012) microRNA-21 regulates astrocytic response following spinal cord injury. J Neurosci 32(50):17935–17947CrossRef Bhalala OG, Pan L, Sahni V, McGuire TL, Gruner K, Tourtellotte WG et al (2012) microRNA-21 regulates astrocytic response following spinal cord injury. J Neurosci 32(50):17935–17947CrossRef
31.
Zurück zum Zitat Wang W, Tang S, Li H, Liu R, Su Y, Shen L et al (2018) MicroRNA-21a-5p promotes fibrosis in spinal fibroblasts after mechanical trauma. Exp Cell Res 370:24–30CrossRef Wang W, Tang S, Li H, Liu R, Su Y, Shen L et al (2018) MicroRNA-21a-5p promotes fibrosis in spinal fibroblasts after mechanical trauma. Exp Cell Res 370:24–30CrossRef
32.
Zurück zum Zitat Sahni V, Mukhopadhyay A, Tysseling V, Hebert A, Birch D, McGuire TL et al (2010) BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury. J Neurosci 30(5):1839–1855CrossRef Sahni V, Mukhopadhyay A, Tysseling V, Hebert A, Birch D, McGuire TL et al (2010) BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury. J Neurosci 30(5):1839–1855CrossRef
33.
Zurück zum Zitat Wang W, Liu R, Su Y, Li H, Xie W, Ning B (2018) MicroRNA-21-5p mediates TGF-beta-regulated fibrogenic activation of spinal fibroblasts and the formation of fibrotic scars after spinal cord injury. Int J Biol Sci 14(2):178–188CrossRef Wang W, Liu R, Su Y, Li H, Xie W, Ning B (2018) MicroRNA-21-5p mediates TGF-beta-regulated fibrogenic activation of spinal fibroblasts and the formation of fibrotic scars after spinal cord injury. Int J Biol Sci 14(2):178–188CrossRef
34.
Zurück zum Zitat Chih-Yen W, Shang-Hsun Y, Shun-Fen T (2015) MicroRNA-145 as one negative regulator of astrogliosis. Glia 63(2):194–205CrossRef Chih-Yen W, Shang-Hsun Y, Shun-Fen T (2015) MicroRNA-145 as one negative regulator of astrogliosis. Glia 63(2):194–205CrossRef
35.
Zurück zum Zitat Hong P, Jiang M, Li H (2014) Functional requirement of dicer1 and miR-17-5p in reactive astrocyte proliferation after spinal cord injury in the mouse. Glia 62(12):2044–2060CrossRef Hong P, Jiang M, Li H (2014) Functional requirement of dicer1 and miR-17-5p in reactive astrocyte proliferation after spinal cord injury in the mouse. Glia 62(12):2044–2060CrossRef
36.
Zurück zum Zitat Luan Y, Chen M, Zhou L (2017) MiR-17 targets PTEN and facilitates glial scar formation after spinal cord injuries via the PI3K/Akt/mTOR pathway. Brain Res Bull 128:68–75CrossRef Luan Y, Chen M, Zhou L (2017) MiR-17 targets PTEN and facilitates glial scar formation after spinal cord injuries via the PI3K/Akt/mTOR pathway. Brain Res Bull 128:68–75CrossRef
37.
Zurück zum Zitat Sayed D, He M, Hong C, Gao S, Rane S, Yang Z et al (2010) MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand. J Biol Chem 285(26):20281–20290CrossRef Sayed D, He M, Hong C, Gao S, Rane S, Yang Z et al (2010) MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand. J Biol Chem 285(26):20281–20290CrossRef
38.
Zurück zum Zitat Liu NK, Xu XM (2011) MicroRNA in central nervous system trauma and degenerative disorders. Physiol Genomics 43(10):571–580CrossRef Liu NK, Xu XM (2011) MicroRNA in central nervous system trauma and degenerative disorders. Physiol Genomics 43(10):571–580CrossRef
39.
Zurück zum Zitat Chandran R, Mehta SL, Vemuganti R (2017) Non-coding RNAs and neuroprotection after acute CNS injuries. Neurochem Int 111:12–22CrossRef Chandran R, Mehta SL, Vemuganti R (2017) Non-coding RNAs and neuroprotection after acute CNS injuries. Neurochem Int 111:12–22CrossRef
40.
Zurück zum Zitat Xu Y, An BY, Xi XB, Li ZW, Li FY (2016) MicroRNA-9 controls apoptosis of neurons by targeting monocyte chemotactic protein-induced protein 1 expression in rat acute spinal cord injury model. Brain Res Bull 121:233–240CrossRef Xu Y, An BY, Xi XB, Li ZW, Li FY (2016) MicroRNA-9 controls apoptosis of neurons by targeting monocyte chemotactic protein-induced protein 1 expression in rat acute spinal cord injury model. Brain Res Bull 121:233–240CrossRef
41.
Zurück zum Zitat Liu D, Huang Y, Jia C, Li Y, Liang F, Fu Q (2015) Administration of antagomir-223 inhibits apoptosis, promotes angiogenesis and functional recovery in rats with spinal cord injury. Cell Mol Neurobiol 35(4):483–491CrossRef Liu D, Huang Y, Jia C, Li Y, Liang F, Fu Q (2015) Administration of antagomir-223 inhibits apoptosis, promotes angiogenesis and functional recovery in rats with spinal cord injury. Cell Mol Neurobiol 35(4):483–491CrossRef
42.
Zurück zum Zitat Liu XJ, Zheng XP, Zhang R, Guo YL, Wang JH (2015) Combinatorial effects of miR-20a and miR-29b on neuronal apoptosis induced by spinal cord injury. Int J Clin Exp Pathol 8(4):3811–3818PubMedPubMedCentral Liu XJ, Zheng XP, Zhang R, Guo YL, Wang JH (2015) Combinatorial effects of miR-20a and miR-29b on neuronal apoptosis induced by spinal cord injury. Int J Clin Exp Pathol 8(4):3811–3818PubMedPubMedCentral
43.
Zurück zum Zitat Shen Q, Feng ZY, Lu WC (2016) MicroRNA-137 inhibits apoptosis of neuron cells in injured spinal cord by targeting calpain 2. Int J Clin Exp Med 9(8):15:796–803 Shen Q, Feng ZY, Lu WC (2016) MicroRNA-137 inhibits apoptosis of neuron cells in injured spinal cord by targeting calpain 2. Int J Clin Exp Med 9(8):15:796–803
44.
Zurück zum Zitat Finnerup NB, Norrbrink C, Trok K, Piehl F, Johannesen IL, Sorensen JC et al (2014) Phenotypes and predictors of pain following traumatic spinal cord injury: a prospective study. J Pain 15(1):40–48CrossRef Finnerup NB, Norrbrink C, Trok K, Piehl F, Johannesen IL, Sorensen JC et al (2014) Phenotypes and predictors of pain following traumatic spinal cord injury: a prospective study. J Pain 15(1):40–48CrossRef
45.
Zurück zum Zitat Cragg JJ, Noonan VK, Noreau L, Borisoff JF, Kramer JK (2015) Neuropathic pain, depression, and cardiovascular disease: a national multicenter study. Neuroepidemiology 44(3):130–137CrossRef Cragg JJ, Noonan VK, Noreau L, Borisoff JF, Kramer JK (2015) Neuropathic pain, depression, and cardiovascular disease: a national multicenter study. Neuroepidemiology 44(3):130–137CrossRef
46.
Zurück zum Zitat Wang Y, Ye F, Huang C, Xue F, Li Y, Gao S et al (2018) Bioinformatic analysis of potential biomarkers for spinal cord injured patients with intractable neuropathic pain. Clin J Pain 34:825–830PubMedPubMedCentral Wang Y, Ye F, Huang C, Xue F, Li Y, Gao S et al (2018) Bioinformatic analysis of potential biomarkers for spinal cord injured patients with intractable neuropathic pain. Clin J Pain 34:825–830PubMedPubMedCentral
47.
Zurück zum Zitat Favereaux A, Thoumine O, Bouali-Benazzouz R, Roques V, Papon MA, Salam SA et al (2011) Bidirectional integrative regulation of Cav1.2 calcium channel by microRNA miR-103: role in pain. Embo J 30(18):3830–3841CrossRef Favereaux A, Thoumine O, Bouali-Benazzouz R, Roques V, Papon MA, Salam SA et al (2011) Bidirectional integrative regulation of Cav1.2 calcium channel by microRNA miR-103: role in pain. Embo J 30(18):3830–3841CrossRef
48.
Zurück zum Zitat Willemen HL, Huo XJ, Mao-Ying QL, Zijlstra J, Heijnen CJ, Kavelaars A (2012) MicroRNA-124 as a novel treatment for persistent hyperalgesia. J Neuroinflam 9:143CrossRef Willemen HL, Huo XJ, Mao-Ying QL, Zijlstra J, Heijnen CJ, Kavelaars A (2012) MicroRNA-124 as a novel treatment for persistent hyperalgesia. J Neuroinflam 9:143CrossRef
49.
Zurück zum Zitat Sakai A, Suzuki H (2014) Emerging roles of microRNAs in chronic pain. Neurochem Int 77:58–67CrossRef Sakai A, Suzuki H (2014) Emerging roles of microRNAs in chronic pain. Neurochem Int 77:58–67CrossRef
50.
Zurück zum Zitat Plemel JR, Keough MB, Duncan GJ, Sparling JS, Yong VW, Stys PK et al (2014) Remyelination after spinal cord injury: is it a target for repair? Prog Neurobiol 117:54–72CrossRef Plemel JR, Keough MB, Duncan GJ, Sparling JS, Yong VW, Stys PK et al (2014) Remyelination after spinal cord injury: is it a target for repair? Prog Neurobiol 117:54–72CrossRef
51.
Zurück zum Zitat Liu S, Ren C, Qu X, Wu X, Dong F, Chand YK et al (2017) miR-219 attenuates demyelination in cuprizone-induced demyelinated mice by regulating monocarboxylate transporter 1. Eur J Neurosci 45(2):249–259CrossRef Liu S, Ren C, Qu X, Wu X, Dong F, Chand YK et al (2017) miR-219 attenuates demyelination in cuprizone-induced demyelinated mice by regulating monocarboxylate transporter 1. Eur J Neurosci 45(2):249–259CrossRef
52.
Zurück zum Zitat Ujigo S, Kamei N, Hadoush H, Fujioka Y, Miyaki S, Nakasa T et al (2014) Administration of microRNA-210 promotes spinal cord regeneration in mice. Spine 39(14):1099–1107 (Phila Pa 1976)CrossRef Ujigo S, Kamei N, Hadoush H, Fujioka Y, Miyaki S, Nakasa T et al (2014) Administration of microRNA-210 promotes spinal cord regeneration in mice. Spine 39(14):1099–1107 (Phila Pa 1976)CrossRef
53.
Zurück zum Zitat Jin L, Wu Z, Xu W, Hu X, Zhang J, Xue Z et al (2014) Identifying gene expression profile of spinal cord injury in rat by bioinformatics strategy. Mol Biol Rep 41(5):3169–3177CrossRef Jin L, Wu Z, Xu W, Hu X, Zhang J, Xue Z et al (2014) Identifying gene expression profile of spinal cord injury in rat by bioinformatics strategy. Mol Biol Rep 41(5):3169–3177CrossRef
54.
Zurück zum Zitat Dai J, Xu LJ, Han GD, Sun HL, Zhu GT, Jiang HT et al (2018) MicroRNA-125b promotes the regeneration and repair of spinal cord injury through regulation of JAK/STAT pathway. Eur Rev Med Pharmacol Sci 22(3):582–589PubMed Dai J, Xu LJ, Han GD, Sun HL, Zhu GT, Jiang HT et al (2018) MicroRNA-125b promotes the regeneration and repair of spinal cord injury through regulation of JAK/STAT pathway. Eur Rev Med Pharmacol Sci 22(3):582–589PubMed
55.
Zurück zum Zitat Zhou HJ, Wang LQ, Xu QS, Fan ZX, Zhu Y, Jiang H et al (2016) Downregulation of miR-199b promotes the acute spinal cord injury through IKK \(\upbeta\)-NF-\(\upkappa \text{ B }\) signaling pathway activating microglial cells. Exp Cell Res 349(1):60–67CrossRef Zhou HJ, Wang LQ, Xu QS, Fan ZX, Zhu Y, Jiang H et al (2016) Downregulation of miR-199b promotes the acute spinal cord injury through IKK \(\upbeta\)-NF-\(\upkappa \text{ B }\) signaling pathway activating microglial cells. Exp Cell Res 349(1):60–67CrossRef
56.
Zurück zum Zitat Rodrigues LF, Moura-Neto V (2018) TCLS ES. Biomarkers in spinal cord injury: from prognosis to treatment. Mol Neurobiol 55(8):6436–6448CrossRef Rodrigues LF, Moura-Neto V (2018) TCLS ES. Biomarkers in spinal cord injury: from prognosis to treatment. Mol Neurobiol 55(8):6436–6448CrossRef
57.
Zurück zum Zitat Shao Y, Chen Y (2016) Roles of circular RNAs in neurologic disease. Front Mol Neurosci 9:25CrossRef Shao Y, Chen Y (2016) Roles of circular RNAs in neurologic disease. Front Mol Neurosci 9:25CrossRef
58.
Zurück zum Zitat Wang K (2017) The ubiquitous existence of MicroRNA in body fluids. Clin Chem 63(3):784–785CrossRef Wang K (2017) The ubiquitous existence of MicroRNA in body fluids. Clin Chem 63(3):784–785CrossRef
59.
Zurück zum Zitat Hachisuka S, Kamei N, Ujigo S, Miyaki S, Yasunaga Y, Ochi M (2014) Circulating microRNAs as biomarkers for evaluating the severity of acute spinal cord injury. Spinal Cord 52:596–600CrossRef Hachisuka S, Kamei N, Ujigo S, Miyaki S, Yasunaga Y, Ochi M (2014) Circulating microRNAs as biomarkers for evaluating the severity of acute spinal cord injury. Spinal Cord 52:596–600CrossRef
60.
Zurück zum Zitat Tigchelaar S, Streijger F, Sinha S, Flibotte S, Manouchehri N, So K et al (2017) Serum MicroRNAs reflect injury severity in a large animal model of thoracic spinal cord injury. Sci Rep 7(1):1376CrossRef Tigchelaar S, Streijger F, Sinha S, Flibotte S, Manouchehri N, So K et al (2017) Serum MicroRNAs reflect injury severity in a large animal model of thoracic spinal cord injury. Sci Rep 7(1):1376CrossRef
61.
Zurück zum Zitat Yan H, Hong P, Jiang M, Li H (2012) MicroRNAs as potential therapeutics for treating spinal cord injury. Neural Regen Res 7(17):1352–1359PubMedPubMedCentral Yan H, Hong P, Jiang M, Li H (2012) MicroRNAs as potential therapeutics for treating spinal cord injury. Neural Regen Res 7(17):1352–1359PubMedPubMedCentral
62.
Zurück zum Zitat Lin CA, Duan KY, Wang XW, Zhang ZS (2018) MicroRNA-409 promotes recovery of spinal cord injury by regulating ZNF366. Eur Rev Med Pharmacol Sci 22(12):3649–3655PubMed Lin CA, Duan KY, Wang XW, Zhang ZS (2018) MicroRNA-409 promotes recovery of spinal cord injury by regulating ZNF366. Eur Rev Med Pharmacol Sci 22(12):3649–3655PubMed
63.
Zurück zum Zitat Jee MK, Jung JS, Im YB, Jung SJ, Kang SK (2012) Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord. Hum Gene Ther 23(5):508–520CrossRef Jee MK, Jung JS, Im YB, Jung SJ, Kang SK (2012) Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord. Hum Gene Ther 23(5):508–520CrossRef
64.
Zurück zum Zitat Kleaveland B, Shi CY, Stefano J, Bartel DP (2018) A network of noncoding regulatory RNAs acts in the mammalian brain. Cell 174(2):350–62CrossRef Kleaveland B, Shi CY, Stefano J, Bartel DP (2018) A network of noncoding regulatory RNAs acts in the mammalian brain. Cell 174(2):350–62CrossRef
Metadaten
Titel
MicroRNAs in contusion spinal cord injury: pathophysiology and clinical utility
verfasst von
Fang Li
Mou-Wang Zhou
Publikationsdatum
21.02.2019
Verlag
Springer International Publishing
Erschienen in
Acta Neurologica Belgica / Ausgabe 1/2019
Print ISSN: 0300-9009
Elektronische ISSN: 2240-2993
DOI
https://doi.org/10.1007/s13760-019-01076-9

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

Ein pulverisierter Plastiklöffel im Gehirn

Das menschliche Gehirn besteht zu etwa 0,5% aus Nanoplastik – Tendenz weiter steigend. Nach Resultaten eine Autopsiestudie reichert sich Plastik im Gehirn 10- bis 30-fach stärker an als in anderen Organen – mit bislang noch völlig unklaren Folgen.

Schlaganfall durch wandernde A. carotis interna

Die Thrombolyse nützte nichts, vielmehr war eine Teilresektion des Zungenbeins nötig: Es hatte eine verlagerte Carotis interna komprimiert und so bei einem älteren Mann einen Schlaganfall ausgelöst. Per Bildgebung lässt sich eine solche Ursache manchmal nur schwer nachweisen.

Epileptischer Anfall nach Darmreinigung

Die Darmreinigung vor einer Koloskopie führte einen älteren Mann auf die Intensivstation: Seine Natriumwerte waren durch die Prozedur so gesunken, dass er Bewusstseinstrübungen und Krampfanfälle entwickelte.

Welche Faktoren das Demenzrisiko bei Vorhofflimmern beeinflussen

In einer Metaanalyse wurden elf Faktoren identifiziert, die bei Vorhofflimmern(VHF)-Patienten mit dem Risiko für eine kognitive Beeinträchtigung assoziiert sind. Im besten Fall eröffnet sich damit ein Weg für die Prävention.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.