Skip to main content
Erschienen in: Calcified Tissue International 3/2019

07.06.2019 | Review

MicroRNAs Involved in the Regulation of Angiogenesis in Bone Regeneration

verfasst von: Sepanta Hosseinpour, Yan He, Ashwin Nanda, Qingsong Ye

Erschienen in: Calcified Tissue International | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

MicroRNAs (miRNAs) as a newly founded and thriving non-coding endogenous class of molecules which regulate many cellular pathways after transcription have been extensively investigated in regenerative medicine. In this systematic review, we sought to analyze miRNAs-mediated therapeutic approaches for influencing angiogenesis in bone tissue/bone regeneration. An electronic search in MEDLINE, Scopus, EMBASE, Cochrane library, web of science, and google scholar with no time limit were done on English publications. All types of original articles which a miRNA for angiogenesis in bone regeneration were included in our review. In the process of reviewing, we used PRISMA guideline and, SYRCLE’s and science in risk assessment and policy tools for analyzing risk of bias. Among 751 initial retrieved records, 16 studies met the inclusion criteria and were fully assessed in this review. 275 miRNAs, one miRNA 195~497 cluster, and one Cysteine-rich 61 short hairpin RNA were differentially expressed during bone regeneration with 24 predicted targets reported in these studies. Among these miRNAs, miRNA-7b, -9, -21, -26a, -27a, -210, -378, -195~497 cluster, -378 and -675 positively promoted both angiogenesis and osteogenesis, whereas miRNA-10a, -222 and -494 inhibited both processes. The most common target was vasculoendothelial growth factor-signaling pathway. Recent evidence has demonstrated that miRNAs actively participated in angio-osteogenic coupling that can improve their therapeutic potentials for the treatment of bone-related diseases and bone regeneration. However, there is still need for further research to unravel the exact mechanisms.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zhu S, Yao F, Qiu H, Zhang G, Xu H, Xu J (2018) Coupling factors and exosomal packaging micro RNA s involved in the regulation of bone remodelling. Biol Rev 93:469–480CrossRefPubMed Zhu S, Yao F, Qiu H, Zhang G, Xu H, Xu J (2018) Coupling factors and exosomal packaging micro RNA s involved in the regulation of bone remodelling. Biol Rev 93:469–480CrossRefPubMed
2.
Zurück zum Zitat Stegen S, van Gastel N, Carmeliet G (2015) Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone 70:19–27CrossRefPubMed Stegen S, van Gastel N, Carmeliet G (2015) Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone 70:19–27CrossRefPubMed
3.
Zurück zum Zitat Götz W, Reichert C, Canullo L, Jäger A, Heinemann F (2012) Coupling of osteogenesis and angiogenesis in bone substitute healing—a brief overview. Ann Anat Anat Anz 194:171–173CrossRef Götz W, Reichert C, Canullo L, Jäger A, Heinemann F (2012) Coupling of osteogenesis and angiogenesis in bone substitute healing—a brief overview. Ann Anat Anat Anz 194:171–173CrossRef
4.
Zurück zum Zitat Riddle RC, Khatri R, Schipani E, Clemens TL (2009) Role of hypoxia-inducible factor-1α in angiogenic–osteogenic coupling. J Mol Med 87:583–590CrossRefPubMed Riddle RC, Khatri R, Schipani E, Clemens TL (2009) Role of hypoxia-inducible factor-1α in angiogenic–osteogenic coupling. J Mol Med 87:583–590CrossRefPubMed
5.
Zurück zum Zitat Einhorn T (1991) Mechanisms of fracture healing. Hosp Pract 26:41–45CrossRef Einhorn T (1991) Mechanisms of fracture healing. Hosp Pract 26:41–45CrossRef
6.
Zurück zum Zitat Hosseinpour S, Bastami F (2017) Critical-sized bone defects in mandible of canine model. Tissue Eng Part A 23:470–470CrossRefPubMed Hosseinpour S, Bastami F (2017) Critical-sized bone defects in mandible of canine model. Tissue Eng Part A 23:470–470CrossRefPubMed
8.
Zurück zum Zitat Motamedian SR, Hosseinpour S, Ahsaie MG, Khojasteh A (2015) Smart scaffolds in bone tissue engineering: a systematic review of literature. World J Stem Cells 7:657CrossRefPubMedPubMedCentral Motamedian SR, Hosseinpour S, Ahsaie MG, Khojasteh A (2015) Smart scaffolds in bone tissue engineering: a systematic review of literature. World J Stem Cells 7:657CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat De Witte T-M, Fratila-Apachitei LE, Zadpoor AA, Peppas NA (2018) Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regen Biomater 5:197–211CrossRefPubMedPubMedCentral De Witte T-M, Fratila-Apachitei LE, Zadpoor AA, Peppas NA (2018) Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regen Biomater 5:197–211CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Nakasa T, Yoshizuka M, Andry Usman M, Elbadry Mahmoud E, Ochi M (2015) MicroRNAs and bone regeneration. Curr Genom 16:441–452CrossRef Nakasa T, Yoshizuka M, Andry Usman M, Elbadry Mahmoud E, Ochi M (2015) MicroRNAs and bone regeneration. Curr Genom 16:441–452CrossRef
11.
Zurück zum Zitat Xia M (2008) Great potential of microRNA in cancer stem cell. Mol Cancer J 4:79–89 Xia M (2008) Great potential of microRNA in cancer stem cell. Mol Cancer J 4:79–89
12.
Zurück zum Zitat Lu Y, Thomson JM, Wong HYF, Hammond SM, Hogan BL (2007) Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 310:442–453CrossRefPubMedPubMedCentral Lu Y, Thomson JM, Wong HYF, Hammond SM, Hogan BL (2007) Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 310:442–453CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Yau WWY, P-o Rujitanaroj, Lam L, Chew SY (2012) Directing stem cell fate by controlled RNA interference. Biomaterials 33:2608–2628CrossRefPubMed Yau WWY, P-o Rujitanaroj, Lam L, Chew SY (2012) Directing stem cell fate by controlled RNA interference. Biomaterials 33:2608–2628CrossRefPubMed
14.
Zurück zum Zitat Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368:1685–1694CrossRefPubMed Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368:1685–1694CrossRefPubMed
15.
Zurück zum Zitat Wang X, Guo B, Li Q, Peng J, Yang Z, Wang A, Li D, Hou Z, Lv K, Kan G (2013) miR-214 targets ATF4 to inhibit bone formation. Nat Med 19:93CrossRefPubMed Wang X, Guo B, Li Q, Peng J, Yang Z, Wang A, Li D, Hou Z, Lv K, Kan G (2013) miR-214 targets ATF4 to inhibit bone formation. Nat Med 19:93CrossRefPubMed
16.
Zurück zum Zitat Murata K, Ito H, Yoshitomi H, Yamamoto K, Fukuda A, Yoshikawa J, Furu M, Ishikawa M, Shibuya H, Matsuda S (2014) Inhibition of miR-92a enhances fracture healing via promoting angiogenesis in a model of stabilized fracture in young mice. J Bone Miner Res 29:316–326CrossRefPubMed Murata K, Ito H, Yoshitomi H, Yamamoto K, Fukuda A, Yoshikawa J, Furu M, Ishikawa M, Shibuya H, Matsuda S (2014) Inhibition of miR-92a enhances fracture healing via promoting angiogenesis in a model of stabilized fracture in young mice. J Bone Miner Res 29:316–326CrossRefPubMed
17.
Zurück zum Zitat Deng Y, Bi X, Zhou H, You Z, Wang Y, Gu P, Fan X (2014) Repair of critical-sized bone defects with anti-miR-31-expressing bone marrow stromal stem cells and poly(glycerol sebacate) scaffolds. Eur Cell Mater 27:13–24CrossRefPubMed Deng Y, Bi X, Zhou H, You Z, Wang Y, Gu P, Fan X (2014) Repair of critical-sized bone defects with anti-miR-31-expressing bone marrow stromal stem cells and poly(glycerol sebacate) scaffolds. Eur Cell Mater 27:13–24CrossRefPubMed
18.
Zurück zum Zitat Deng Y, Zhou H, Zou D, Xie Q, Bi X, Gu P, Fan X (2013) The role of miR-31-modified adipose tissue-derived stem cells in repairing rat critical-sized calvarial defects. Biomaterials 34:6717–6728CrossRefPubMed Deng Y, Zhou H, Zou D, Xie Q, Bi X, Gu P, Fan X (2013) The role of miR-31-modified adipose tissue-derived stem cells in repairing rat critical-sized calvarial defects. Biomaterials 34:6717–6728CrossRefPubMed
19.
Zurück zum Zitat Tiwari A, Mukherjee B, Dixit M (2018) MicroRNA key to angiogenesis regulation: miRNA biology and therapy. Curr Cancer Drug Targets 18:266–277CrossRefPubMed Tiwari A, Mukherjee B, Dixit M (2018) MicroRNA key to angiogenesis regulation: miRNA biology and therapy. Curr Cancer Drug Targets 18:266–277CrossRefPubMed
20.
Zurück zum Zitat Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G (2006) MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108:3068–3071CrossRefPubMed Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G (2006) MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108:3068–3071CrossRefPubMed
22.
Zurück zum Zitat Chen S, Xue Y, Wu X, Le C, Bhutkar A, Bell EL, Zhang F, Langer R, Sharp PA (2014) Global microRNA depletion suppresses tumor angiogenesis. Genes Dev 28:1054–1067CrossRefPubMedPubMedCentral Chen S, Xue Y, Wu X, Le C, Bhutkar A, Bell EL, Zhang F, Langer R, Sharp PA (2014) Global microRNA depletion suppresses tumor angiogenesis. Genes Dev 28:1054–1067CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Urbich C, Kuehbacher A, Dimmeler S (2008) Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 79:581–588CrossRefPubMed Urbich C, Kuehbacher A, Dimmeler S (2008) Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 79:581–588CrossRefPubMed
24.
25.
Zurück zum Zitat Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW (2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14:43CrossRefPubMedPubMedCentral Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW (2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14:43CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Costa V, Raimondi L, Conigliaro A, Salamanna F, Carina V, De Luca A, Bellavia D, Alessandro R, Fini M, Giavaresi G (2017) Hypoxia-inducible factor 1Α may regulate the commitment of mesenchymal stromal cells toward angio-osteogenesis by mirna-675-5P. Cytotherapy 19:1412–1425CrossRefPubMed Costa V, Raimondi L, Conigliaro A, Salamanna F, Carina V, De Luca A, Bellavia D, Alessandro R, Fini M, Giavaresi G (2017) Hypoxia-inducible factor 1Α may regulate the commitment of mesenchymal stromal cells toward angio-osteogenesis by mirna-675-5P. Cytotherapy 19:1412–1425CrossRefPubMed
28.
Zurück zum Zitat Qu J, Lu D, Guo H, Miao W, Wu G, Zhou M (2016) MicroRNA-9 regulates osteoblast differentiation and angiogenesis via the AMPK signaling pathway. Mol Cell Biochem 411:23–33CrossRefPubMed Qu J, Lu D, Guo H, Miao W, Wu G, Zhou M (2016) MicroRNA-9 regulates osteoblast differentiation and angiogenesis via the AMPK signaling pathway. Mol Cell Biochem 411:23–33CrossRefPubMed
29.
Zurück zum Zitat Liu X-D, Cai F, Liu L, Zhang Y, Yang A-L (2015) MicroRNA-210 is involved in the regulation of postmenopausal osteoporosis through promotion of VEGF expression and osteoblast differentiation. Biol Chem 396:339–347CrossRefPubMed Liu X-D, Cai F, Liu L, Zhang Y, Yang A-L (2015) MicroRNA-210 is involved in the regulation of postmenopausal osteoporosis through promotion of VEGF expression and osteoblast differentiation. Biol Chem 396:339–347CrossRefPubMed
30.
Zurück zum Zitat Li J, Zhang Y, Zhao Q, Wang J, He X (2015) MicroRNA-10a influences osteoblast differentiation and angiogenesis by regulating β-catenin expression. Cell Physiol Biochem 37:2194–2208CrossRefPubMed Li J, Zhang Y, Zhao Q, Wang J, He X (2015) MicroRNA-10a influences osteoblast differentiation and angiogenesis by regulating β-catenin expression. Cell Physiol Biochem 37:2194–2208CrossRefPubMed
31.
Zurück zum Zitat Almeida MI, Silva AM, Vasconcelos DM, Almeida CR, Caires H, Pinto MT, Calin GA, Santos SG, Barbosa MA (2016) miR-195 in human primary mesenchymal stromal/stem cells regulates proliferation, osteogenesis and paracrine effect on angiogenesis. Oncotarget 7:7CrossRefPubMed Almeida MI, Silva AM, Vasconcelos DM, Almeida CR, Caires H, Pinto MT, Calin GA, Santos SG, Barbosa MA (2016) miR-195 in human primary mesenchymal stromal/stem cells regulates proliferation, osteogenesis and paracrine effect on angiogenesis. Oncotarget 7:7CrossRefPubMed
32.
Zurück zum Zitat Wu X, Gu Q, Chen X, Mi W, Wu T, Huang H (2019) MiR-27a targets DKK2 and SFRP1 to promote reosseointegration in the regenerative treatment of peri-implantitis. J Bone Miner Res 34:123–134CrossRefPubMed Wu X, Gu Q, Chen X, Mi W, Wu T, Huang H (2019) MiR-27a targets DKK2 and SFRP1 to promote reosseointegration in the regenerative treatment of peri-implantitis. J Bone Miner Res 34:123–134CrossRefPubMed
33.
Zurück zum Zitat Dou C, Ding N, Luo F, Hou T, Cao Z, Bai Y, Liu C, Xu J, Dong S (2018) Graphene-based microRNA transfection blocks preosteoclast fusion to increase bone formation and vascularization. Adv Sci 5:1700578CrossRef Dou C, Ding N, Luo F, Hou T, Cao Z, Bai Y, Liu C, Xu J, Dong S (2018) Graphene-based microRNA transfection blocks preosteoclast fusion to increase bone formation and vascularization. Adv Sci 5:1700578CrossRef
34.
Zurück zum Zitat Geng Z, Wang X, Zhao J, Li Z, Ma L, Zhu S, Liang Y, Cui Z, He H, Yang X (2018) The synergistic effect of strontium-substituted hydroxyapatite and microRNA-21 on improving bone remodeling and osseointegration. Biomater Sci 6:2694–2703CrossRefPubMed Geng Z, Wang X, Zhao J, Li Z, Ma L, Zhu S, Liang Y, Cui Z, He H, Yang X (2018) The synergistic effect of strontium-substituted hydroxyapatite and microRNA-21 on improving bone remodeling and osseointegration. Biomater Sci 6:2694–2703CrossRefPubMed
35.
Zurück zum Zitat Zha X, Sun B, Zhang R, Li C, Yan Z, Chen J (2018) Regulatory effect of microRNA-34a on osteogenesis and angiogenesis in glucocorticoid-induced osteonecrosis of the femoral head. J Orthop Res 36:417–424PubMed Zha X, Sun B, Zhang R, Li C, Yan Z, Chen J (2018) Regulatory effect of microRNA-34a on osteogenesis and angiogenesis in glucocorticoid-induced osteonecrosis of the femoral head. J Orthop Res 36:417–424PubMed
36.
Zurück zum Zitat Chen CY, Su CM, Hsu CJ, Huang CC, Wang SW, Liu SC, Chen WC, Fuh LJ, Tang CH (2017) CCN1 promotes VEGF production in osteoblasts and induces endothelial progenitor cell angiogenesis by inhibiting miR-126 expression in rheumatoid arthritis. J Bone Miner Res 32:34–45CrossRefPubMed Chen CY, Su CM, Hsu CJ, Huang CC, Wang SW, Liu SC, Chen WC, Fuh LJ, Tang CH (2017) CCN1 promotes VEGF production in osteoblasts and induces endothelial progenitor cell angiogenesis by inhibiting miR-126 expression in rheumatoid arthritis. J Bone Miner Res 32:34–45CrossRefPubMed
37.
Zurück zum Zitat Yang M, Li C-J, Sun X, Guo Q, Xiao Y, Su T, Tu M-L, Peng H, Lu Q, Liu Q (2017) MiR-497 ∼ 195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF-1α activity. Nat Commun 8:16003CrossRefPubMedPubMedCentral Yang M, Li C-J, Sun X, Guo Q, Xiao Y, Su T, Tu M-L, Peng H, Lu Q, Liu Q (2017) MiR-497 ∼ 195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF-1α activity. Nat Commun 8:16003CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat He B, Zhang Z-K, Liu J, He Y-X, Tang T, Li J, Guo B-S, Lu A-P, Zhang B-T, Zhang G (2016) Bioinformatics and microarray analysis of miRNAs in aged female mice model implied new molecular mechanisms for impaired fracture healing. Int J Mol Sci 17:1260CrossRefPubMedCentral He B, Zhang Z-K, Liu J, He Y-X, Tang T, Li J, Guo B-S, Lu A-P, Zhang B-T, Zhang G (2016) Bioinformatics and microarray analysis of miRNAs in aged female mice model implied new molecular mechanisms for impaired fracture healing. Int J Mol Sci 17:1260CrossRefPubMedCentral
39.
Zurück zum Zitat Yoshizuka M, Nakasa T, Kawanishi Y, Hachisuka S, Furuta T, Miyaki S, Adachi N, Ochi M (2016) Inhibition of microRNA-222 expression accelerates bone healing with enhancement of osteogenesis, chondrogenesis, and angiogenesis in a rat refractory fracture model. J Orthop Sci 21:852–858CrossRefPubMed Yoshizuka M, Nakasa T, Kawanishi Y, Hachisuka S, Furuta T, Miyaki S, Adachi N, Ochi M (2016) Inhibition of microRNA-222 expression accelerates bone healing with enhancement of osteogenesis, chondrogenesis, and angiogenesis in a rat refractory fracture model. J Orthop Sci 21:852–858CrossRefPubMed
40.
Zurück zum Zitat Li Y, Fan L, Liu S, Liu W, Zhang H, Zhou T, Wu D, Yang P, Shen L, Chen J (2013) The promotion of bone regeneration through positive regulation of angiogenic–osteogenic coupling using microRNA-26a. Biomaterials 34:5048–5058CrossRefPubMed Li Y, Fan L, Liu S, Liu W, Zhang H, Zhou T, Wu D, Yang P, Shen L, Chen J (2013) The promotion of bone regeneration through positive regulation of angiogenic–osteogenic coupling using microRNA-26a. Biomaterials 34:5048–5058CrossRefPubMed
41.
Zurück zum Zitat Cai C, Xie Y, Chen X, Liu H, Zhou Y, Zou H, Liu D, Zhao Y, Kong X, Liu P (2017) PLGA-based dual targeted nanoparticles enhance miRNA transfection efficiency in hepatic carcinoma. Sci Rep 7:46250CrossRefPubMedPubMedCentral Cai C, Xie Y, Chen X, Liu H, Zhou Y, Zou H, Liu D, Zhao Y, Kong X, Liu P (2017) PLGA-based dual targeted nanoparticles enhance miRNA transfection efficiency in hepatic carcinoma. Sci Rep 7:46250CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Roux J, Gonzalez-Porta M, Robinson-Rechavi M (2012) Comparative analysis of human and mouse expression data illuminates tissue-specific evolutionary patterns of miRNAs. Nucleic Acids Res 40:5890–5900CrossRefPubMedPubMedCentral Roux J, Gonzalez-Porta M, Robinson-Rechavi M (2012) Comparative analysis of human and mouse expression data illuminates tissue-specific evolutionary patterns of miRNAs. Nucleic Acids Res 40:5890–5900CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Güller I, McNaughton S, Crowley T, Gilsanz V, Kajimura S, Watt M, Russell AP (2015) Comparative analysis of microRNA expression in mouse and human brown adipose tissue. BMC Genom 16:820CrossRef Güller I, McNaughton S, Crowley T, Gilsanz V, Kajimura S, Watt M, Russell AP (2015) Comparative analysis of microRNA expression in mouse and human brown adipose tissue. BMC Genom 16:820CrossRef
45.
Zurück zum Zitat Clark EA, Kalomoiris S, Nolta JA, Fierro FA (2014) Concise review: microRNA function in multipotent mesenchymal stromal cells. Stem cells 32:1074–1082CrossRefPubMed Clark EA, Kalomoiris S, Nolta JA, Fierro FA (2014) Concise review: microRNA function in multipotent mesenchymal stromal cells. Stem cells 32:1074–1082CrossRefPubMed
46.
Zurück zum Zitat Dong S, Yang B, Guo H, Kang F (2012) MicroRNAs regulate osteogenesis and chondrogenesis. Biochem Biophys Res Commun 418:587–591CrossRefPubMed Dong S, Yang B, Guo H, Kang F (2012) MicroRNAs regulate osteogenesis and chondrogenesis. Biochem Biophys Res Commun 418:587–591CrossRefPubMed
48.
Zurück zum Zitat Yan B, Wang Z-H, Zhu C-D, Guo J-T, Zhao J-L (2014) MicroRNA repertoire for functional genome research in tilapia identified by deep sequencing. Mol Biol Rep 41:4953–4963CrossRefPubMed Yan B, Wang Z-H, Zhu C-D, Guo J-T, Zhao J-L (2014) MicroRNA repertoire for functional genome research in tilapia identified by deep sequencing. Mol Biol Rep 41:4953–4963CrossRefPubMed
49.
Zurück zum Zitat Dou C, Zhang C, Kang F, Yang X, Jiang H, Bai Y, Xiang J, Xu J, Dong S (2014) MiR-7b directly targets DC-STAMP causing suppression of NFATc1 and c-Fos signaling during osteoclast fusion and differentiation. Biochim Biophys Acta Gene Regulat Mech 1839:1084–1096CrossRef Dou C, Zhang C, Kang F, Yang X, Jiang H, Bai Y, Xiang J, Xu J, Dong S (2014) MiR-7b directly targets DC-STAMP causing suppression of NFATc1 and c-Fos signaling during osteoclast fusion and differentiation. Biochim Biophys Acta Gene Regulat Mech 1839:1084–1096CrossRef
50.
Zurück zum Zitat Brandenburger T, Castoldi M, Brendel M, Grievink H, Schlösser L, Werdehausen R, Bauer I, Hermanns H (2012) Expression of spinal cord microRNAs in a rat model of chronic neuropathic pain. Neurosci Lett 506:281–286CrossRefPubMed Brandenburger T, Castoldi M, Brendel M, Grievink H, Schlösser L, Werdehausen R, Bauer I, Hermanns H (2012) Expression of spinal cord microRNAs in a rat model of chronic neuropathic pain. Neurosci Lett 506:281–286CrossRefPubMed
51.
Zurück zum Zitat Zhuang G, Wu X, Jiang Z, Kasman I, Yao J, Guan Y, Oeh J, Modrusan Z, Bais C, Sampath D (2012) Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J 31:3513–3523CrossRefPubMedPubMedCentral Zhuang G, Wu X, Jiang Z, Kasman I, Yao J, Guan Y, Oeh J, Modrusan Z, Bais C, Sampath D (2012) Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J 31:3513–3523CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Zhao X, Zmijewski JW, Lorne E, Liu G, Park YJ, Tsuruta Y, Abraham E (2008) Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury. Am J Physiol Lung Cell Mol Physiol 295:497–504CrossRef Zhao X, Zmijewski JW, Lorne E, Liu G, Park YJ, Tsuruta Y, Abraham E (2008) Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury. Am J Physiol Lung Cell Mol Physiol 295:497–504CrossRef
53.
Zurück zum Zitat Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2008) Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem Biophys Res Commun 375:414–419CrossRefPubMed Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2008) Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem Biophys Res Commun 375:414–419CrossRefPubMed
54.
Zurück zum Zitat Li X, Guo L, Liu Y, Su Y, Xie Y, Du J, Zhou J, Ding G, Wang H, Bai Y (2017) MicroRNA-21 promotes osteogenesis of bone marrow mesenchymal stem cells via the Smad7-Smad1/5/8-Runx2 pathway. Biochem Biophys Res Commun 493:928–933CrossRefPubMed Li X, Guo L, Liu Y, Su Y, Xie Y, Du J, Zhou J, Ding G, Wang H, Bai Y (2017) MicroRNA-21 promotes osteogenesis of bone marrow mesenchymal stem cells via the Smad7-Smad1/5/8-Runx2 pathway. Biochem Biophys Res Commun 493:928–933CrossRefPubMed
55.
Zurück zum Zitat Sabatel C, Malvaux L, Bovy N, Deroanne C, Lambert V, Gonzalez M-LA, Colige A, Rakic J-M, Noël A, Martial JA (2011) MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells. PLoS ONE 6:e16979CrossRefPubMedPubMedCentral Sabatel C, Malvaux L, Bovy N, Deroanne C, Lambert V, Gonzalez M-LA, Colige A, Rakic J-M, Noël A, Martial JA (2011) MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells. PLoS ONE 6:e16979CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Hu C-H, Sui B-D, Du F-Y, Shuai Y, Zheng C-X, Zhao P, Yu X-R, Jin Y (2017) miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice. Sci Rep 7:43191CrossRefPubMedPubMedCentral Hu C-H, Sui B-D, Du F-Y, Shuai Y, Zheng C-X, Zhao P, Yu X-R, Jin Y (2017) miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice. Sci Rep 7:43191CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Lian JB, Stein GS, Javed A, Van Wijnen AJ, Stein JL, Montecino M, Hassan MQ, Gaur T, Lengner CJ, Young DW (2006) Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord 7:1–16CrossRefPubMed Lian JB, Stein GS, Javed A, Van Wijnen AJ, Stein JL, Montecino M, Hassan MQ, Gaur T, Lengner CJ, Young DW (2006) Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord 7:1–16CrossRefPubMed
58.
Zurück zum Zitat Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523CrossRefPubMed Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523CrossRefPubMed
59.
Zurück zum Zitat Su X, Liao L, Shuai Y, Jing H, Liu S, Zhou H, Liu Y, Jin Y (2015) MiR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway. Cell Death Dis 6:e1851CrossRefPubMedPubMedCentral Su X, Liao L, Shuai Y, Jing H, Liu S, Zhou H, Liu Y, Jin Y (2015) MiR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway. Cell Death Dis 6:e1851CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Icli B, Wara A, Moslehi J, Sun X, Plovie E, Cahill M, Marchini JF, Schissler A, Padera RF, Shi J (2013) MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling. Circ Res 113:1231–1241CrossRefPubMedPubMedCentral Icli B, Wara A, Moslehi J, Sun X, Plovie E, Cahill M, Marchini JF, Schissler A, Padera RF, Shi J (2013) MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling. Circ Res 113:1231–1241CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Qin W, Yang F, Deng R, Li D, Song Z, Tian Y, Wang R, Ling J, Lin Z (2012) Smad 1/5 is involved in bone morphogenetic protein-2-induced odontoblastic differentiation in human dental pulp cells. J Endod 38:66–71CrossRefPubMed Qin W, Yang F, Deng R, Li D, Song Z, Tian Y, Wang R, Ling J, Lin Z (2012) Smad 1/5 is involved in bone morphogenetic protein-2-induced odontoblastic differentiation in human dental pulp cells. J Endod 38:66–71CrossRefPubMed
62.
Zurück zum Zitat Min J-K, Park H, Choi H-J, Kim Y, Pyun B-J, Agrawal V, Song B-W, Jeon J, Maeng Y-S, Rho S-S (2011) The WNT antagonist Dickkopf2 promotes angiogenesis in rodent and human endothelial cells. J Clin Investig 121:1882–1893CrossRefPubMedPubMedCentral Min J-K, Park H, Choi H-J, Kim Y, Pyun B-J, Agrawal V, Song B-W, Jeon J, Maeng Y-S, Rho S-S (2011) The WNT antagonist Dickkopf2 promotes angiogenesis in rodent and human endothelial cells. J Clin Investig 121:1882–1893CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Petković A, Matić S, Stamatović N, Vojvodić D, Todorović T, Lazić Z, Kozomara R (2010) Proinflammatory cytokines (IL-1β and TNF-α) and chemokines (IL-8 and MIP-1α) as markers of peri-implant tissue condition. Int J Oral Maxillofac Surg 39:478–485CrossRefPubMed Petković A, Matić S, Stamatović N, Vojvodić D, Todorović T, Lazić Z, Kozomara R (2010) Proinflammatory cytokines (IL-1β and TNF-α) and chemokines (IL-8 and MIP-1α) as markers of peri-implant tissue condition. Int J Oral Maxillofac Surg 39:478–485CrossRefPubMed
64.
Zurück zum Zitat Mo J, Zhang D, Yang R (2016) MicroRNA-195 regulates proliferation, migration, angiogenesis and autophagy of endothelial progenitor cells by targeting GABARAPL1. Biosci Rep 36:e00396CrossRefPubMedPubMedCentral Mo J, Zhang D, Yang R (2016) MicroRNA-195 regulates proliferation, migration, angiogenesis and autophagy of endothelial progenitor cells by targeting GABARAPL1. Biosci Rep 36:e00396CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Grunhagen J, Bhushan R, Degenkolbe E, Jager M, Knaus P, Mundlos S, Robinson PN, Ott CE (2015) MiR-497 approximately 195 cluster microRNAs regulate osteoblast differentiation by targeting BMP signaling. J Bone Miner Res 30:796–808CrossRefPubMed Grunhagen J, Bhushan R, Degenkolbe E, Jager M, Knaus P, Mundlos S, Robinson PN, Ott CE (2015) MiR-497 approximately 195 cluster microRNAs regulate osteoblast differentiation by targeting BMP signaling. J Bone Miner Res 30:796–808CrossRefPubMed
66.
Zurück zum Zitat Yang M, Li CJ, Sun X, Guo Q, Xiao Y, Su T, Tu ML, Peng H, Lu Q, Liu Q, He HB, Jiang TJ, Lei MX, Wan M, Cao X, Luo XH (2017) MiR-497 approximately 195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF-1alpha activity. Nat Commun 8:16003CrossRefPubMedPubMedCentral Yang M, Li CJ, Sun X, Guo Q, Xiao Y, Su T, Tu ML, Peng H, Lu Q, Liu Q, He HB, Jiang TJ, Lei MX, Wan M, Cao X, Luo XH (2017) MiR-497 approximately 195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF-1alpha activity. Nat Commun 8:16003CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Almeida MI, Silva AM, Vasconcelos DM, Almeida CR, Caires H, Pinto MT, Calin GA, Santos SG, Barbosa MA (2016) miR-195 in human primary mesenchymal stromal/stem cells regulates proliferation, osteogenesis and paracrine effect on angiogenesis. Oncotarget 7:7–22CrossRefPubMed Almeida MI, Silva AM, Vasconcelos DM, Almeida CR, Caires H, Pinto MT, Calin GA, Santos SG, Barbosa MA (2016) miR-195 in human primary mesenchymal stromal/stem cells regulates proliferation, osteogenesis and paracrine effect on angiogenesis. Oncotarget 7:7–22CrossRefPubMed
68.
Zurück zum Zitat Yamasaki K, Nakasa T, Miyaki S, Yamasaki T, Yasunaga Y, Ochi M (2012) Angiogenic microRNA-210 is present in cells surrounding osteonecrosis. J Orthop Res 30:1263–1270CrossRefPubMed Yamasaki K, Nakasa T, Miyaki S, Yamasaki T, Yasunaga Y, Ochi M (2012) Angiogenic microRNA-210 is present in cells surrounding osteonecrosis. J Orthop Res 30:1263–1270CrossRefPubMed
69.
Zurück zum Zitat Mizuno Y, Tokuzawa Y, Ninomiya Y, Yagi K, Yatsuka-Kanesaki Y, Suda T, Fukuda T, Katagiri T, Kondoh Y, Amemiya T, Tashiro H, Okazaki Y (2009) miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS Lett 583:2263–2268CrossRefPubMed Mizuno Y, Tokuzawa Y, Ninomiya Y, Yagi K, Yatsuka-Kanesaki Y, Suda T, Fukuda T, Katagiri T, Kondoh Y, Amemiya T, Tashiro H, Okazaki Y (2009) miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS Lett 583:2263–2268CrossRefPubMed
70.
Zurück zum Zitat Lee DY, Deng Z, Wang CH, Yang BB (2007) MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA 104:20350–20355CrossRefPubMedPubMedCentral Lee DY, Deng Z, Wang CH, Yang BB (2007) MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA 104:20350–20355CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat You L, Gu W, Chen L, Pan L, Chen J, Peng Y (2014) MiR-378 overexpression attenuates high glucose-suppressed osteogenic differentiation through targeting CASP3 and activating PI3 K/Akt signaling pathway. Int J Clin Exp Pathol 7:7249–7261PubMedPubMedCentral You L, Gu W, Chen L, Pan L, Chen J, Peng Y (2014) MiR-378 overexpression attenuates high glucose-suppressed osteogenic differentiation through targeting CASP3 and activating PI3 K/Akt signaling pathway. Int J Clin Exp Pathol 7:7249–7261PubMedPubMedCentral
72.
Zurück zum Zitat Zhang B, Li Y, Yu Y, Zhao J, Ou Y, Chao Y, Yang B, Yu X (2018) MicroRNA-378 promotes osteogenesis-angiogenesis coupling in BMMSCs for potential bone regeneration. Anal Cell Pathol 2018:8402390CrossRef Zhang B, Li Y, Yu Y, Zhao J, Ou Y, Chao Y, Yang B, Yu X (2018) MicroRNA-378 promotes osteogenesis-angiogenesis coupling in BMMSCs for potential bone regeneration. Anal Cell Pathol 2018:8402390CrossRef
73.
Zurück zum Zitat Costa V, Raimondi L, Conigliaro A, Salamanna F, Carina V, De Luca A, Bellavia D, Alessandro R, Fini M, Giavaresi G (2017) Hypoxia-inducible factor 1Alpha may regulate the commitment of mesenchymal stromal cells toward angio-osteogenesis by mirna-675-5P. Cytotherapy 19:1412–1425CrossRefPubMed Costa V, Raimondi L, Conigliaro A, Salamanna F, Carina V, De Luca A, Bellavia D, Alessandro R, Fini M, Giavaresi G (2017) Hypoxia-inducible factor 1Alpha may regulate the commitment of mesenchymal stromal cells toward angio-osteogenesis by mirna-675-5P. Cytotherapy 19:1412–1425CrossRefPubMed
74.
Zurück zum Zitat Aguado-Fraile E, Ramos E, Conde E, Rodríguez M, Liaño F, García-Bermejo ML (2013) MicroRNAs in the kidney: novel biomarkers of acute kidney injury. Nefrología (English Edition) 33:826–834 Aguado-Fraile E, Ramos E, Conde E, Rodríguez M, Liaño F, García-Bermejo ML (2013) MicroRNAs in the kidney: novel biomarkers of acute kidney injury. Nefrología (English Edition) 33:826–834
75.
Zurück zum Zitat Tang H (2013) miR-10a regulates epithelial-mesenchymal transition and adhesion and angiogenesis in hepatoma. In: Federation of American Societies for Experimental Biology, p lb153-lb153 Tang H (2013) miR-10a regulates epithelial-mesenchymal transition and adhesion and angiogenesis in hepatoma. In: Federation of American Societies for Experimental Biology, p lb153-lb153
76.
Zurück zum Zitat Day TF, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8:739–750CrossRefPubMed Day TF, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8:739–750CrossRefPubMed
77.
Zurück zum Zitat Sun W, Ma Y, Chen P, Wang D (2015) MicroRNA-10a silencing reverses cisplatin resistance in the A549/cisplatin human lung cancer cell line via the transforming growth factor-β/Smad2/STAT3/STAT5 pathway. Mol Med Rep 11:3854–3859CrossRefPubMed Sun W, Ma Y, Chen P, Wang D (2015) MicroRNA-10a silencing reverses cisplatin resistance in the A549/cisplatin human lung cancer cell line via the transforming growth factor-β/Smad2/STAT3/STAT5 pathway. Mol Med Rep 11:3854–3859CrossRefPubMed
78.
Zurück zum Zitat Yoshizuka M, Nakasa T, Kawanishi Y, Hachisuka S, Furuta T, Miyaki S, Adachi N, Ochi M (2016) Inhibition of microRNA-222 expression accelerates bone healing with enhancement of osteogenesis, chondrogenesis, and angiogenesis in a rat refractory fracture model. J Orthop Sci 21:852–858CrossRefPubMed Yoshizuka M, Nakasa T, Kawanishi Y, Hachisuka S, Furuta T, Miyaki S, Adachi N, Ochi M (2016) Inhibition of microRNA-222 expression accelerates bone healing with enhancement of osteogenesis, chondrogenesis, and angiogenesis in a rat refractory fracture model. J Orthop Sci 21:852–858CrossRefPubMed
79.
Zurück zum Zitat Yu F, Cui Y, Zhou X, Zhang X, Han J (2011) Osteogenic differentiation of human ligament fibroblasts induced by conditioned medium of osteoclast-like cells. BioSci Trends 5:46–51CrossRefPubMed Yu F, Cui Y, Zhou X, Zhang X, Han J (2011) Osteogenic differentiation of human ligament fibroblasts induced by conditioned medium of osteoclast-like cells. BioSci Trends 5:46–51CrossRefPubMed
80.
Zurück zum Zitat Welten SM, Bastiaansen AJ, de Jong RC, de Vries MR, Peters EA, Boonstra MC, Sheikh SP, La Monica N, Kandimalla ER, Quax PH, Nossent AY (2014) Inhibition of 14q32 MicroRNAs miR-329, miR-487b, miR-494, and miR-495 increases neovascularization and blood flow recovery after ischemia. Circ Res 115:696–708CrossRefPubMed Welten SM, Bastiaansen AJ, de Jong RC, de Vries MR, Peters EA, Boonstra MC, Sheikh SP, La Monica N, Kandimalla ER, Quax PH, Nossent AY (2014) Inhibition of 14q32 MicroRNAs miR-329, miR-487b, miR-494, and miR-495 increases neovascularization and blood flow recovery after ischemia. Circ Res 115:696–708CrossRefPubMed
81.
Zurück zum Zitat He B, Zhang ZK, Liu J, He YX, Tang T, Li J, Guo BS, Lu AP, Zhang BT, Zhang G (2016) Bioinformatics and microarray analysis of miRNAs in aged female mice model implied new molecular mechanisms for impaired fracture healing. Int J Mol Sci 17:1260CrossRefPubMedCentral He B, Zhang ZK, Liu J, He YX, Tang T, Li J, Guo BS, Lu AP, Zhang BT, Zhang G (2016) Bioinformatics and microarray analysis of miRNAs in aged female mice model implied new molecular mechanisms for impaired fracture healing. Int J Mol Sci 17:1260CrossRefPubMedCentral
82.
Zurück zum Zitat Cash DE, Bock CB, Schughart K, Linney E, Underhill TM (1997) Retinoic acid receptor alpha function in vertebrate limb skeletogenesis: a modulator of chondrogenesis. J Cell Biol 136:445–457CrossRefPubMedPubMedCentral Cash DE, Bock CB, Schughart K, Linney E, Underhill TM (1997) Retinoic acid receptor alpha function in vertebrate limb skeletogenesis: a modulator of chondrogenesis. J Cell Biol 136:445–457CrossRefPubMedPubMedCentral
83.
Zurück zum Zitat Wei J, Shi Y, Zheng L, Zhou B, Inose H, Wang J, Guo XE, Grosschedl R, Karsenty G (2012) miR-34 s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. J Cell Biol 197:509–521CrossRefPubMedPubMedCentral Wei J, Shi Y, Zheng L, Zhou B, Inose H, Wang J, Guo XE, Grosschedl R, Karsenty G (2012) miR-34 s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. J Cell Biol 197:509–521CrossRefPubMedPubMedCentral
84.
Zurück zum Zitat Chen L, HolmstrØm K, Qiu W, Ditzel N, Shi K, Hokland L, Kassem M (2014) MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells. Stem Cells 32:902–912CrossRefPubMed Chen L, HolmstrØm K, Qiu W, Ditzel N, Shi K, Hokland L, Kassem M (2014) MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells. Stem Cells 32:902–912CrossRefPubMed
85.
Zurück zum Zitat Chen L, Holmstrom K, Qiu W, Ditzel N, Shi K, Hokland L, Kassem M (2014) MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells. Stem Cells 32:902–912CrossRefPubMed Chen L, Holmstrom K, Qiu W, Ditzel N, Shi K, Hokland L, Kassem M (2014) MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells. Stem Cells 32:902–912CrossRefPubMed
86.
Zurück zum Zitat Lu X, Deng M, He H, Zeng D, Zhang W (2013) miR-125b regulates osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting Smad4. J Cent South Univ Med Sci 38:341–346 Lu X, Deng M, He H, Zeng D, Zhang W (2013) miR-125b regulates osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting Smad4. J Cent South Univ Med Sci 38:341–346
87.
Zurück zum Zitat Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, Jaenisch R, Sharp PA, Jacks T (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132:875–886CrossRefPubMedPubMedCentral Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, Jaenisch R, Sharp PA, Jacks T (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132:875–886CrossRefPubMedPubMedCentral
88.
Zurück zum Zitat Mao G, Wu P, Zhang Z, Zhang Z, Liao W, Li Y, Kang Y (2017) MicroRNA-92a-3p regulates aggrecanase-1 and aggrecanase-2 expression in chondrogenesis and IL-1beta-induced catabolism in human articular chondrocytes. Cell Physiol Biochem 44:38–52CrossRefPubMed Mao G, Wu P, Zhang Z, Zhang Z, Liao W, Li Y, Kang Y (2017) MicroRNA-92a-3p regulates aggrecanase-1 and aggrecanase-2 expression in chondrogenesis and IL-1beta-induced catabolism in human articular chondrocytes. Cell Physiol Biochem 44:38–52CrossRefPubMed
89.
Zurück zum Zitat Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, Chavakis E, Potente M, Tjwa M, Urbich C, Zeiher AM, Dimmeler S (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324:1710–1713CrossRefPubMed Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, Chavakis E, Potente M, Tjwa M, Urbich C, Zeiher AM, Dimmeler S (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324:1710–1713CrossRefPubMed
90.
Zurück zum Zitat Chen CY, Su CM, Hsu CJ, Huang CC, Wang SW, Liu SC, Chen WC, Fuh LJ, Tang CH (2017) CCN1 promotes VEGF production in osteoblasts and induces endothelial progenitor cell angiogenesis by inhibiting miR-126 expression in rheumatoid arthritis. J Bone Miner Res 32:34–45CrossRefPubMed Chen CY, Su CM, Hsu CJ, Huang CC, Wang SW, Liu SC, Chen WC, Fuh LJ, Tang CH (2017) CCN1 promotes VEGF production in osteoblasts and induces endothelial progenitor cell angiogenesis by inhibiting miR-126 expression in rheumatoid arthritis. J Bone Miner Res 32:34–45CrossRefPubMed
91.
Zurück zum Zitat Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ (2008) MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA 105:1516–1521CrossRefPubMedPubMedCentral Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ (2008) MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA 105:1516–1521CrossRefPubMedPubMedCentral
92.
Zurück zum Zitat Marzi MJ, Ghini F, Cerruti B, De Pretis S, Bonetti P, Giacomelli C, Gorski MM, Kress T, Pelizzola M, Muller H (2016) Degradation dynamics of microRNAs revealed by a novel pulse-chase approach. Genome Res 26:554–565CrossRefPubMedPubMedCentral Marzi MJ, Ghini F, Cerruti B, De Pretis S, Bonetti P, Giacomelli C, Gorski MM, Kress T, Pelizzola M, Muller H (2016) Degradation dynamics of microRNAs revealed by a novel pulse-chase approach. Genome Res 26:554–565CrossRefPubMedPubMedCentral
93.
Zurück zum Zitat Curtin CM, Castaño IM, O’brien FJ (2018) Scaffold-based microRNA therapies in regenerative medicine and cancer. Adv Healthc Mater 7:1700695CrossRef Curtin CM, Castaño IM, O’brien FJ (2018) Scaffold-based microRNA therapies in regenerative medicine and cancer. Adv Healthc Mater 7:1700695CrossRef
94.
Zurück zum Zitat Laufs S, Guenechea G, Gonzalez-Murillo A, Nagy KZ, Lozano ML, del Val C, Jonnakuty S, Hotz-Wagenblatt A, Zeller WJ, Bueren JA (2006) Lentiviral vector integration sites in human NOD/SCID repopulating cells. J Gene Med 8:1197–1207CrossRefPubMed Laufs S, Guenechea G, Gonzalez-Murillo A, Nagy KZ, Lozano ML, del Val C, Jonnakuty S, Hotz-Wagenblatt A, Zeller WJ, Bueren JA (2006) Lentiviral vector integration sites in human NOD/SCID repopulating cells. J Gene Med 8:1197–1207CrossRefPubMed
95.
Zurück zum Zitat Kulkarni M, Greiser U, O’Brien T, Pandit A (2010) Liposomal gene delivery mediated by tissue-engineered scaffolds. Trends Biotechnol 28:28–36CrossRefPubMed Kulkarni M, Greiser U, O’Brien T, Pandit A (2010) Liposomal gene delivery mediated by tissue-engineered scaffolds. Trends Biotechnol 28:28–36CrossRefPubMed
96.
Zurück zum Zitat Putnam D, Gentry CA, Pack DW, Langer R (2001) Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc Natl Acad Sci USA 98:1200–1205CrossRefPubMedPubMedCentral Putnam D, Gentry CA, Pack DW, Langer R (2001) Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc Natl Acad Sci USA 98:1200–1205CrossRefPubMedPubMedCentral
97.
Zurück zum Zitat Liang C, Guo B, Wu H, Shao N, Li D, Liu J, Dang L, Wang C, Li H, Li S (2015) Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy. Nat Med 21:288CrossRefPubMedPubMedCentral Liang C, Guo B, Wu H, Shao N, Li D, Liu J, Dang L, Wang C, Li H, Li S (2015) Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy. Nat Med 21:288CrossRefPubMedPubMedCentral
98.
Zurück zum Zitat Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjärn M, Hansen HF, Berger U (2008) LNA-mediated microRNA silencing in non-human primates. Nature 452:896CrossRefPubMed Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjärn M, Hansen HF, Berger U (2008) LNA-mediated microRNA silencing in non-human primates. Nature 452:896CrossRefPubMed
99.
Zurück zum Zitat Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36:D149–153CrossRefPubMed Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36:D149–153CrossRefPubMed
100.
Zurück zum Zitat Wang FS, Chuang PC, Lin CL, Chen MW, Ke HJ, Chang YH, Chen YS, Wu SL, Ko JY (2013) MicroRNA-29a protects against glucocorticoid-induced bone loss and fragility in rats by orchestrating bone acquisition and resorption. Arthritis Rheum 65:1530–1540CrossRefPubMed Wang FS, Chuang PC, Lin CL, Chen MW, Ke HJ, Chang YH, Chen YS, Wu SL, Ko JY (2013) MicroRNA-29a protects against glucocorticoid-induced bone loss and fragility in rats by orchestrating bone acquisition and resorption. Arthritis Rheum 65:1530–1540CrossRefPubMed
Metadaten
Titel
MicroRNAs Involved in the Regulation of Angiogenesis in Bone Regeneration
verfasst von
Sepanta Hosseinpour
Yan He
Ashwin Nanda
Qingsong Ye
Publikationsdatum
07.06.2019
Verlag
Springer US
Erschienen in
Calcified Tissue International / Ausgabe 3/2019
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-019-00571-8

Weitere Artikel der Ausgabe 3/2019

Calcified Tissue International 3/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.