Skip to main content
Erschienen in: Urolithiasis 3/2017

01.10.2016 | Original Paper

Microstructures of Randall’s plaques and their interfaces with calcium oxalate monohydrate kidney stones reflect underlying mineral precipitation mechanisms

verfasst von: Ingo Sethmann, Gunnar Wendt-Nordahl, Thomas Knoll, Frieder Enzmann, Ludwig Simon, Hans-Joachim Kleebe

Erschienen in: Urolithiasis | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

Randall’s plaques (RP) are preferred sites for the formation of calcium oxalate monohydrate (COM) kidney stones. However, although processes of interstitial calcium phosphate (CaP) plaque formation are not well understood, the potential of plaque microstructures as indicators of CaP precipitation conditions received only limited attention. We investigated RP-associated COM stones for structural details of the calcified tissues and microstructural features of plaque–stone interfaces as indicators of the initial processes of stone formation. Significantly increased CaP supersaturation can be expected for interstitial fluid, if reabsorbed ions from the tubular system continuously diffuse into the collagenous connective tissue. Densely packed, fine-grained CaP particles were found in dense textures of basement membranes while larger, laminated particles were scattered in coarse-meshed interstitial tissue, which we propose to be due to differential spatial confinements and restrictions of ion diffusion. Particle morphologies suggest an initial precipitation as metastable amorphous calcium phosphate (ACP). Morphologies and arrangements of first COM crystals at the RP–stone interface ranged from stacked euhedral platelets to skeletal morphologies and even porous, dendritic structures, indicating, in this order, increasing levels of COM supersaturation. Furthermore, these first COM crystals were often coated with CaP. On this basis, we propose that ions from CaP-supersaturated interstitial fluid may diffuse through porous RP into the urine, where a resulting local increase in COM supersaturation could trigger crystal nucleation and, hence, initiate stone formation. Ion-depleted fluid in persistent pores of initial COM layers may get replenished from interstitial fluid, leading to CaP precipitation in porous COM.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Randall A (1940) Papillary pathology as precursor of primary renal calculus. J Urol 44:580–589 Randall A (1940) Papillary pathology as precursor of primary renal calculus. J Urol 44:580–589
3.
Zurück zum Zitat Randall A (1940) The etiology of primary renal calculus. Int Abstr Surg 71:209–240 Randall A (1940) The etiology of primary renal calculus. Int Abstr Surg 71:209–240
4.
Zurück zum Zitat Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommer AJ, Paterson RF, Kuo RL, Grynpas M (2003) Randall’s plaques of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607–616CrossRefPubMedPubMedCentral Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommer AJ, Paterson RF, Kuo RL, Grynpas M (2003) Randall’s plaques of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607–616CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Evan A, Lingeman J, Coe FL, Worcester E (2006) Randall’s plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 69:1313–1318CrossRefPubMed Evan A, Lingeman J, Coe FL, Worcester E (2006) Randall’s plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 69:1313–1318CrossRefPubMed
6.
Zurück zum Zitat Verrier C, Bazin D, Stéphan O, Gloter A, Verpont M-C, Frochot V, Haymann J-P, Brocheriou I, Traxer O, Daudon M, Letavernier E (2016) Topography, composition and structure of incipient Randall plaque at the nanoscale level. J Urol. doi:10.1016/j.juro.2016.04.086 PubMed Verrier C, Bazin D, Stéphan O, Gloter A, Verpont M-C, Frochot V, Haymann J-P, Brocheriou I, Traxer O, Daudon M, Letavernier E (2016) Topography, composition and structure of incipient Randall plaque at the nanoscale level. J Urol. doi:10.​1016/​j.​juro.​2016.​04.​086 PubMed
7.
Zurück zum Zitat Khan SR, Rodriguez DE, Gower LB, Monga M (2012) Association of Randall’s plaque with collagen fibers and membrane vesicles. J Urol 187:1094–1100CrossRefPubMedPubMedCentral Khan SR, Rodriguez DE, Gower LB, Monga M (2012) Association of Randall’s plaque with collagen fibers and membrane vesicles. J Urol 187:1094–1100CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Evan AP, Coe FL, Lingeman JE, Shao Y, Sommer AJ, Bledsoe SB, Anderson JC, Worcester EM (2007) Mechanism of the formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec 290:1315–1323CrossRef Evan AP, Coe FL, Lingeman JE, Shao Y, Sommer AJ, Bledsoe SB, Anderson JC, Worcester EM (2007) Mechanism of the formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec 290:1315–1323CrossRef
9.
Zurück zum Zitat Daudon M, Traxer O, Jungers P, Bazin D (2007) Stone morphology suggestive of Randall’s plaque. In: Evan AP, Lingeman JE, Williams JC (eds) Renal stone disease, 1st Annual international urolithiasis research symposium. American institute of physics conference proceedings, vol 900, pp 26–34 Daudon M, Traxer O, Jungers P, Bazin D (2007) Stone morphology suggestive of Randall’s plaque. In: Evan AP, Lingeman JE, Williams JC (eds) Renal stone disease, 1st Annual international urolithiasis research symposium. American institute of physics conference proceedings, vol 900, pp 26–34
10.
Zurück zum Zitat Carpentier X, Bazin D, Jungers P, Reguer S, Thiaudière D, Daudon M (2010) The pathogenesis of Randall’s plaque: a papilla cartography of Ca compounds through a ex vivo investigation based on XANES spectroscopy. J Synchrotron Rad 17:374–379CrossRef Carpentier X, Bazin D, Jungers P, Reguer S, Thiaudière D, Daudon M (2010) The pathogenesis of Randall’s plaque: a papilla cartography of Ca compounds through a ex vivo investigation based on XANES spectroscopy. J Synchrotron Rad 17:374–379CrossRef
13.
Zurück zum Zitat Daudon M, Donsimoni R, Hennequin C, Fellahi S, LeMoel G, Paris M, Troupel S, Lacour B (1995) Sex- and age-related composition of 10,617 calculi analyzed by infrared spectroscopy. Urol Res 23:319–326CrossRefPubMed Daudon M, Donsimoni R, Hennequin C, Fellahi S, LeMoel G, Paris M, Troupel S, Lacour B (1995) Sex- and age-related composition of 10,617 calculi analyzed by infrared spectroscopy. Urol Res 23:319–326CrossRefPubMed
14.
Zurück zum Zitat Knoll T, Schubert AB, Fahlenkamp D, Leusmann DB, Wendt-Nordahl G, Schubert G (2011) Urolithiasis through the ages: data on more than 200,000 urinary stone analyses. J Urol 185:1304–1311CrossRefPubMed Knoll T, Schubert AB, Fahlenkamp D, Leusmann DB, Wendt-Nordahl G, Schubert G (2011) Urolithiasis through the ages: data on more than 200,000 urinary stone analyses. J Urol 185:1304–1311CrossRefPubMed
15.
Zurück zum Zitat Wendt-Nordahl G, Evan AP, Spahn M, Knoll T (2008) Kalziumoxalatsteinbildung. Neue pathogenetische Aspekte einer alten Erkrankung. (Calcium oxalate stone formation. New pathogenic aspects of an old disease.). Urologe 47:538–544CrossRefPubMed Wendt-Nordahl G, Evan AP, Spahn M, Knoll T (2008) Kalziumoxalatsteinbildung. Neue pathogenetische Aspekte einer alten Erkrankung. (Calcium oxalate stone formation. New pathogenic aspects of an old disease.). Urologe 47:538–544CrossRefPubMed
16.
Zurück zum Zitat Kim SC, Coe FL, Tinmouth WW, Kuo RL, Paterson RF, Parks JH, Munch LC, Evan AP, Lingeman JE (2005) Stone formation is proportional to papillary surface coverage by Randall’s plaques. J Urol 173:117–119CrossRefPubMed Kim SC, Coe FL, Tinmouth WW, Kuo RL, Paterson RF, Parks JH, Munch LC, Evan AP, Lingeman JE (2005) Stone formation is proportional to papillary surface coverage by Randall’s plaques. J Urol 173:117–119CrossRefPubMed
17.
Zurück zum Zitat Meyer JL, Bergert JH, Smith LH (1975) Epitaxial relationships in urolithiasis: the calcium oxalate monohydrate–hydroxyapatite system. Clin Sci Mol Med 49:369–374PubMed Meyer JL, Bergert JH, Smith LH (1975) Epitaxial relationships in urolithiasis: the calcium oxalate monohydrate–hydroxyapatite system. Clin Sci Mol Med 49:369–374PubMed
18.
Zurück zum Zitat Ebrahimpour A, Perez L, Nancollas GH (1991) Induced crystal growth of calcium oxalate monohydrate at hydroxyapatite surfaces. The influence of human serum albumin, citrate, and magnesium. Langmuir 7:577–583CrossRef Ebrahimpour A, Perez L, Nancollas GH (1991) Induced crystal growth of calcium oxalate monohydrate at hydroxyapatite surfaces. The influence of human serum albumin, citrate, and magnesium. Langmuir 7:577–583CrossRef
19.
Zurück zum Zitat Tiselius H-G, Lindbäck B, Fornander A-M, Nilsson M-A (2009) Studies on the role of calcium phosphate in the process of calcium oxalate crystal formation. Urol Res 37:181–192CrossRefPubMed Tiselius H-G, Lindbäck B, Fornander A-M, Nilsson M-A (2009) Studies on the role of calcium phosphate in the process of calcium oxalate crystal formation. Urol Res 37:181–192CrossRefPubMed
20.
Zurück zum Zitat Sethmann I, Grohe B, Kleebe H-J (2014) Replacement of hydroxylapatite by whewellite: implications for kidney stone formation. Mineral Mag 78:91–100CrossRef Sethmann I, Grohe B, Kleebe H-J (2014) Replacement of hydroxylapatite by whewellite: implications for kidney stone formation. Mineral Mag 78:91–100CrossRef
21.
Zurück zum Zitat Finleyson B (1978) Physicochemical aspects of urolithiasis. Kidney Int 13:344–360CrossRef Finleyson B (1978) Physicochemical aspects of urolithiasis. Kidney Int 13:344–360CrossRef
22.
Zurück zum Zitat Nancollas GH (1983) Crystallization theory relating to urinary stone formation. World J Urol 1:131–137CrossRef Nancollas GH (1983) Crystallization theory relating to urinary stone formation. World J Urol 1:131–137CrossRef
24.
Zurück zum Zitat Putnis A, Prieto M, Fernández-Díaz L (1995) Fluid supersaturation and crystallization in porous media. Geol Mag 132:1–13CrossRef Putnis A, Prieto M, Fernández-Díaz L (1995) Fluid supersaturation and crystallization in porous media. Geol Mag 132:1–13CrossRef
25.
Zurück zum Zitat Prieto M (2014) Nucleation and supersaturation in porous media (revisited). Mineral Mag 78:1437–1447CrossRef Prieto M (2014) Nucleation and supersaturation in porous media (revisited). Mineral Mag 78:1437–1447CrossRef
26.
Zurück zum Zitat Cristoffersen MR, Christoffersen J, Kibalczyc W (1990) Apparent solubilities of two amorphous calcium phosphates and of octacalcium phosphate in the temperature range 30–42 °C. J Cryst Growth 106:349–354CrossRef Cristoffersen MR, Christoffersen J, Kibalczyc W (1990) Apparent solubilities of two amorphous calcium phosphates and of octacalcium phosphate in the temperature range 30–42 °C. J Cryst Growth 106:349–354CrossRef
27.
Zurück zum Zitat Rakovan J (2002) Phosphates—geochemical, geobiological, and materials importance. In: Kohn MJ, Rakovan J, Hughes JM (eds) Growth and surface properties of apatite. Reviews in mineralogy and geochemistry, vol 48. Mineralogical Society of America, Washington, DC, pp 51–86 Rakovan J (2002) Phosphates—geochemical, geobiological, and materials importance. In: Kohn MJ, Rakovan J, Hughes JM (eds) Growth and surface properties of apatite. Reviews in mineralogy and geochemistry, vol 48. Mineralogical Society of America, Washington, DC, pp 51–86
28.
Zurück zum Zitat Hunter GK (2013) Role of osteopontin in modulation of hydroxyapatite formation. Calcif Tissue Int 93:348–354CrossRefPubMed Hunter GK (2013) Role of osteopontin in modulation of hydroxyapatite formation. Calcif Tissue Int 93:348–354CrossRefPubMed
29.
Zurück zum Zitat Chidambaram A, Rodriguez D, Khan S, Gower L (2015) Biomimetic Randall’s plaque as an in vitro model system for studying the role of acidic biopolymers in idiopathic stone formation. Urolithiasis 43(Suppl. 1):77–92CrossRefPubMed Chidambaram A, Rodriguez D, Khan S, Gower L (2015) Biomimetic Randall’s plaque as an in vitro model system for studying the role of acidic biopolymers in idiopathic stone formation. Urolithiasis 43(Suppl. 1):77–92CrossRefPubMed
30.
Zurück zum Zitat Gower LB, Amos FF, Khan SR (2010) Mineralogical signatures of stone formation mechanisms. Urol Res 38:281–292CrossRefPubMed Gower LB, Amos FF, Khan SR (2010) Mineralogical signatures of stone formation mechanisms. Urol Res 38:281–292CrossRefPubMed
31.
Zurück zum Zitat Streit J, Tran-Ho L-C, Königsberger E (1998) Solubility of the three calcium oxalate hydrates in sodium chloride solutions and urine-like liquors. Monatsh Chem 129:1225–1236 Streit J, Tran-Ho L-C, Königsberger E (1998) Solubility of the three calcium oxalate hydrates in sodium chloride solutions and urine-like liquors. Monatsh Chem 129:1225–1236
32.
Zurück zum Zitat Siener R, Hesse A (2002) The effect of different diets on urine composition and the risk of calcium oxalate crystallisation in healthy subjects. Eur Urol 42:289–296CrossRefPubMed Siener R, Hesse A (2002) The effect of different diets on urine composition and the risk of calcium oxalate crystallisation in healthy subjects. Eur Urol 42:289–296CrossRefPubMed
33.
Zurück zum Zitat Pak CYC, Adams-Huet B, Poindexter JR, Pearle MS, Peterson RD, Moe OW (2004) Relative effect of urinary calcium and oxalate on saturation of calcium oxalate. Kidney Int 66:2032–2037CrossRefPubMed Pak CYC, Adams-Huet B, Poindexter JR, Pearle MS, Peterson RD, Moe OW (2004) Relative effect of urinary calcium and oxalate on saturation of calcium oxalate. Kidney Int 66:2032–2037CrossRefPubMed
34.
Zurück zum Zitat Hoyer JR (1994) Uropontin in urinary calcium stone formation. Miner Electrolyte Metab 20:385–392PubMed Hoyer JR (1994) Uropontin in urinary calcium stone formation. Miner Electrolyte Metab 20:385–392PubMed
35.
Zurück zum Zitat Taller A, Grohe B, Rogers KA, Goldberg HA, Hunter GK (2007) Specific adsorption of osteopontin and synthetic polypeptides to calcium oxalate monohydrate crystals. Biophys J 93:1768–1777CrossRefPubMedPubMedCentral Taller A, Grohe B, Rogers KA, Goldberg HA, Hunter GK (2007) Specific adsorption of osteopontin and synthetic polypeptides to calcium oxalate monohydrate crystals. Biophys J 93:1768–1777CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Kok DJ, Khan SR (1994) Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 46:847–854CrossRefPubMed Kok DJ, Khan SR (1994) Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 46:847–854CrossRefPubMed
37.
Zurück zum Zitat Taylor ER, Stoller ML (2015) Vascular theory of the formation of Randall plaques. Urolithiasis 43(Suppl. 1):S41–S45CrossRef Taylor ER, Stoller ML (2015) Vascular theory of the formation of Randall plaques. Urolithiasis 43(Suppl. 1):S41–S45CrossRef
38.
Zurück zum Zitat Khan SR, Canales BK (2015) Unified theory on the pathogenesis of Randall’s plaques and plugs. Urolithiasis 43(Suppl. 1):S109–S123CrossRef Khan SR, Canales BK (2015) Unified theory on the pathogenesis of Randall’s plaques and plugs. Urolithiasis 43(Suppl. 1):S109–S123CrossRef
39.
Zurück zum Zitat Hunter GK, Nyburg SC, Pritzker KPH (1986) Hydroxyapatite formation in collagen, gelatin, and agarose gels. Coll Relat Res 6:229–238CrossRefPubMed Hunter GK, Nyburg SC, Pritzker KPH (1986) Hydroxyapatite formation in collagen, gelatin, and agarose gels. Coll Relat Res 6:229–238CrossRefPubMed
40.
Zurück zum Zitat Henisch HK (1988) Crystals in gels and Liesegang rings. Cambridge University Press, CambridgeCrossRef Henisch HK (1988) Crystals in gels and Liesegang rings. Cambridge University Press, CambridgeCrossRef
41.
Zurück zum Zitat Evan AP, Coe FL, Rittling SR, Bledsoe SM, Shao Y, Lingeman JE, Worcester EM (2005) Apatite plaque particles in the inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int 68:145–154CrossRefPubMed Evan AP, Coe FL, Rittling SR, Bledsoe SM, Shao Y, Lingeman JE, Worcester EM (2005) Apatite plaque particles in the inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int 68:145–154CrossRefPubMed
43.
Zurück zum Zitat Chen NX, O’Neill KD, Duan D, Moe SM (2002) Phosphorus and uremic serum up-regulate osteopontin expression in vascular smooth muscle cells. Kidney Int 62:1724–1731CrossRefPubMed Chen NX, O’Neill KD, Duan D, Moe SM (2002) Phosphorus and uremic serum up-regulate osteopontin expression in vascular smooth muscle cells. Kidney Int 62:1724–1731CrossRefPubMed
44.
Zurück zum Zitat Kohri K, Nomura S, Kitamura Y, Nagata T, Yoshioka K, Iguchi M, Yamate T, Umekawa T, Suzuki Y, Sinohara H, Kurita T (1993) Structure and expression of the mRNA encoding urinary stone protein (osteopontin). J Biol Chem 268:15180–15184PubMed Kohri K, Nomura S, Kitamura Y, Nagata T, Yoshioka K, Iguchi M, Yamate T, Umekawa T, Suzuki Y, Sinohara H, Kurita T (1993) Structure and expression of the mRNA encoding urinary stone protein (osteopontin). J Biol Chem 268:15180–15184PubMed
45.
Zurück zum Zitat Wang Y-W, Christenson HK, Meldrum FC (2014) Confinement increases the lifetimes of hydroxyapatite precursors. Chem Mater 26:5830–5838CrossRef Wang Y-W, Christenson HK, Meldrum FC (2014) Confinement increases the lifetimes of hydroxyapatite precursors. Chem Mater 26:5830–5838CrossRef
46.
Zurück zum Zitat Rajasekharan AK, Andersson M (2015) Role of nanoscale confinement on calcium phosphate formation at high supersaturation. Cryst Growth Des 15:2775–2780CrossRef Rajasekharan AK, Andersson M (2015) Role of nanoscale confinement on calcium phosphate formation at high supersaturation. Cryst Growth Des 15:2775–2780CrossRef
47.
Zurück zum Zitat Amos FF, Dai L, Kumar R, Khan SR, Gower LB (2009) Mechanisms of formation of concentrically laminated spherules: implication to Randall’s plaque and stone formation. Urol Res 37:11–17CrossRefPubMed Amos FF, Dai L, Kumar R, Khan SR, Gower LB (2009) Mechanisms of formation of concentrically laminated spherules: implication to Randall’s plaque and stone formation. Urol Res 37:11–17CrossRefPubMed
48.
Zurück zum Zitat Sunagawa I (1999) Growth and morphology of crystals. Forma 14:147–166 Sunagawa I (1999) Growth and morphology of crystals. Forma 14:147–166
49.
Zurück zum Zitat Ahlstrand C, Larsson L, Tiseluis H-G (1984) Variations in urine composition during the day in patients with calcium oxalate stone disease. J Urol 131:77–81PubMed Ahlstrand C, Larsson L, Tiseluis H-G (1984) Variations in urine composition during the day in patients with calcium oxalate stone disease. J Urol 131:77–81PubMed
50.
Zurück zum Zitat Tiselius H-G (2011) A hypothesis of calcium stone formation: an interpretation of stone research during the past decades. Urol Res 39:231–243CrossRefPubMed Tiselius H-G (2011) A hypothesis of calcium stone formation: an interpretation of stone research during the past decades. Urol Res 39:231–243CrossRefPubMed
51.
Zurück zum Zitat Aggarwal A, Tessadri R, Grohe B (2015) Protein–crystal interactions in calcium oxalate kidney stone formation. Int J Biochem Biophys 3:34–48 Aggarwal A, Tessadri R, Grohe B (2015) Protein–crystal interactions in calcium oxalate kidney stone formation. Int J Biochem Biophys 3:34–48
52.
Zurück zum Zitat Koutsoukos PG, Sheehan ME, Nancollas GH (1981) Epitaxial considerations in urinary stone formation. II. The oxalate–phosphate system. Invest Urol 18:358–363PubMed Koutsoukos PG, Sheehan ME, Nancollas GH (1981) Epitaxial considerations in urinary stone formation. II. The oxalate–phosphate system. Invest Urol 18:358–363PubMed
53.
Zurück zum Zitat Khan SR (1997) Calcium phosphate/calcium oxalate crystal association in urinary stones: implications for heterogeneous nucleation of calcium oxalate. J Urol 157:376–383CrossRefPubMed Khan SR (1997) Calcium phosphate/calcium oxalate crystal association in urinary stones: implications for heterogeneous nucleation of calcium oxalate. J Urol 157:376–383CrossRefPubMed
54.
Zurück zum Zitat Ito S, Saito T, Amano K (2004) In vitro apatite induction by osteopontin: interfacial energy for hydroxyapatite nucleation on osteopontin. J Biomed Mater Res 69A:11–16CrossRef Ito S, Saito T, Amano K (2004) In vitro apatite induction by osteopontin: interfacial energy for hydroxyapatite nucleation on osteopontin. J Biomed Mater Res 69A:11–16CrossRef
Metadaten
Titel
Microstructures of Randall’s plaques and their interfaces with calcium oxalate monohydrate kidney stones reflect underlying mineral precipitation mechanisms
verfasst von
Ingo Sethmann
Gunnar Wendt-Nordahl
Thomas Knoll
Frieder Enzmann
Ludwig Simon
Hans-Joachim Kleebe
Publikationsdatum
01.10.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Urolithiasis / Ausgabe 3/2017
Print ISSN: 2194-7228
Elektronische ISSN: 2194-7236
DOI
https://doi.org/10.1007/s00240-016-0925-2

Weitere Artikel der Ausgabe 3/2017

Urolithiasis 3/2017 Zur Ausgabe

Update Urologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.