Skip to main content
Erschienen in: BMC Medicine 1/2015

Open Access 01.12.2015 | Research article

Microvascular obstruction and endothelial activation are independently associated with the clinical manifestations of severe falciparum malaria in adults: an observational study

verfasst von: Josh Hanson, Sue J. Lee, Md Amir Hossain, Nicholas M. Anstey, Prakaykaew Charunwatthana, Richard J. Maude, Hugh W. F. Kingston, Saroj K. Mishra, Sanjib Mohanty, Katherine Plewes, Kim Piera, Mahtab U. Hassan, Aniruddha Ghose, M. Abul Faiz, Nicholas J. White, Nicholas P. J. Day, Arjen M. Dondorp

Erschienen in: BMC Medicine | Ausgabe 1/2015

Abstract

Background

Microvascular obstruction and endothelial dysfunction have both been linked to tissue hypoperfusion in falciparum malaria, but their relative contributions to the disease’s pathogenesis and outcome are unknown.

Methods

Microvascular blood flow was quantified in adults with severe falciparum malaria on their admission to hospital; plasma biomarkers of endothelial function were measured simultaneously. The relationship between these indices and the patients’ clinical findings and in-hospital course was examined.

Results

Microvascular obstruction was observed in 119/142 (84 %) patients; a median (interquartile range (IQR)) of 14.9 % (6.6–34.9 %) of capillaries were obstructed in patients that died versus 8.3 % (1.7–26.6 %) in survivors (P = 0.039). The proportion of obstructed capillaries correlated with the estimated parasite biomass (rs = 0.25, P = 0.004) and with plasma lactate (rs = 0.38, P <0.0001), the strongest predictor of death in the series. Plasma angiopoietin-2 (Ang-2) concentrations were markedly elevated suggesting widespread endothelial activation; the median (IQR) Ang-2 concentration was 21.9 ng/mL (13.4–29.4 ng/mL) in patients that died versus 14.9 ng/mL (9.8–29.3 ng/mL) in survivors (P = 0.035). Ang-2 concentrations correlated with estimated parasite biomass (rs = 0.35, P <0.001) and plasma lactate (rs = 0.37, P <0.0001). Microvascular obstruction and Ang-2 concentrations were not significantly correlated with each other (rs = 0.17, P = 0.06), but were independently associated with plasma lactate (P <0.001 and P = 0.002, respectively).

Conclusions

Microvascular obstruction and systemic endothelial activation are independently associated with plasma lactate, the strongest predictor of death in adults with falciparum malaria. This supports the hypothesis that the two processes make an independent contribution to the pathogenesis and clinical manifestations of the disease.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

JH cared for the patients, collected data, performed the OPS analysis, wrote the first draft of the manuscript and assisted with the statistical analysis. SJL performed the statistical analysis. MAH, MUH, AG and MAF supervised the study and the care of the patients in Chittagong. NMA revised the manuscript. PC, RJM and HWFK cared for the patients, collected data and performed OPS analysis. KP (MORU) cared for patients and collected data in Bangladesh. SKM and SM supervised the study and the care of the patients in Rourkela. KP (Menzies) performed the laboratory analysis of the biomarkers of endothelial function. NJW, NPJD and AMD supervised the studies and revised the manuscript. All authors read and approved the final manuscript.
Abkürzungen
ADMA
Asymmetric dimethylarginine
AKI
Acute kidney injury
Ang-2
Angiopoietin-2
AOR
Adjusted odds ratio
CI
Confidence interval
GCS
Glasgow Coma Scale
IQR
Interquartile range
OPS
Orthogonal polarization spectral
Pf HRP2
Plasmodium falciparum histidine-rich protein 2
pRBC
Parasitized red blood cell
RBC
Red blood cell
RRT
Renal replacement therapy
VEGF
Vascular endothelial growth factor
WHO
World Health Organization

Background

In 1892, five years before Ross identified mosquitoes as the vector, Marchiafava and Bignami explored the clinical presentations and related pathology of malaria in their seminal monograph, On Summer-Autumnal Fevers [1]. They observed that only Plasmodium falciparum caused ‘malignant malaria’ and presented a post-mortem series that identified the sequestration of parasitized red blood cells (pRBCs) in the microcirculation as the pathological signature of the disease. They highlighted the relationship between the extent of this sequestration and the patients’ clinical course, hypothesizing that the resulting microvascular obstruction was responsible for many of falciparum malaria’s distinctive clinical manifestations [1]. In the subsequent 120 years, post-mortem series have validated their findings, confirming microvascular obstruction’s central role in the disease’s pathogenesis [25].
More recently the potential pathological contributions of systemic endothelial activation and dysfunction have been recognized [6, 7]. These processes result, in part, from reduced nitric oxide bioavailability and may further impair microvascular blood flow [8]. Plasma concentrations of a key autocrine mediator of endothelial activation, angiopoietin-2 (Ang-2), correlate with later death in falciparum malaria in both adults [7, 9] and children [10]. Endothelial activation potentiates sequestration through the upregulation of endothelial ligands [5]; however, endothelial activation occurs in both mild and severe falciparum malaria [11] and in many other infectious and non-infectious conditions [12, 13]. And while endothelial activation in severe malaria is associated with death independent of total parasite biomass [7], its association with disease severity and mortality independent of direct measures of microvascular obstruction has never been evaluated.
This study explored the relationship between microvascular obstruction (assessed directly with orthogonal polarization spectral (OPS) imaging) and endothelial activation and function (quantified with plasma biomarkers) in adults with severe falciparum malaria to determine their association with the disease’s clinical manifestations and outcome.

Methods

Clinical, laboratory and OPS imaging data were gathered prospectively from three groups of adult patients enrolled in studies of severe falciparum malaria between April 2003 and August 2011. OPS imaging data from the first two groups have been presented previously: the first group (n = 43) comprised patients enrolled in a study of OPS imaging in falciparum malaria [14] and the second group (n = 26) comprised patients enrolled in a study assessing the fluid management of patients with severe falciparum malaria [15]. The third group (n = 91) comprised patients enrolled in studies examining adjunctive therapies in falciparum malaria and pathophysiology [16, 17]. Their OPS imaging data was analysed specifically for this series.
All patients were hospitalized at Chittagong Medical College Hospital, Bangladesh or Ispat General Hospital, Rourkela, India. Malaria transmission is seasonal at both sites. Falciparum malaria was diagnosed if asexual forms of P. falciparum were present on a blood film. When expert microscopy was not available immediately, patients were enrolled if an immunochromatographic rapid diagnostic test (Paracheck Pf, Orchid Biomedical Systems, Goa, India) was positive, and P. falciparum infection was confirmed later by microscopy of a simultaneously collected blood slide.
All patients satisfied a strict definition of severe falciparum malaria. Patients had at least one of the following modified World Health Organization (WHO) criteria: cerebral malaria (Glasgow Coma Scale (GCS) <11); severe anaemia (haematocrit <20 % with a parasite count >100,000/mm3); renal failure (blood urea nitrogen >21.4 mmol/L or serum creatinine level >265 μmol/L); pulmonary oedema (oxygen saturation <90 % and bibasal crepitations); generalized convulsions; acidosis (venous bicarbonate <15 mmol/l); hyperparasitaemia (peripheral parasitaemia >10 %); hyperlactataemia (venous lactate >4 mmol/L); jaundice (bilirubin >42.8 mmol/L and a parasite count >100,000/mm3); hypoglycaemia (glucose <2.2 mmol/L); and spontaneous bleeding or shock (systolic blood pressure <80 mmHg with cool extremities). Multi-organ dysfunction was defined as the presence of more than one of these criteria (excluding hyperparasitaemia), although in this definition coma and seizures were classified as one criterion, as were acidosis and hyperlactatemia; if data were missing, the patient was presumed not to satisfy that criterion. Patients were excluded if they were <13 years of age or if they had received parenteral antimalarial treatment for >24 h before enrolment.
On enrolment, a standardized history was taken, a physical examination performed and venous blood collected. Nine patients in the first group were treated with intravenous quinine but all the remaining patients received intravenous artesunate. Patients received standard supportive care as per contemporary WHO treatment guidelines [1820], although the availability of supportive therapies including mechanical ventilation and renal replacement therapy (RRT) was limited, particularly in the earlier study years.
The absolute peripheral parasite count (parasites/μl) was calculated on admission from the thin blood film using the formula: parasite count/1,000 RBC × 125.6 × haematocrit (%) or from the thick film using the formula: parasite count/200 white blood cells × 40. Laboratory indices were measured at field sites using a portable handheld analyser (i-Stat®, Abbott, Princeton, NJ, USA). For other indices plasma samples were processed and stored at −80 °C for further analysis in Bangkok, Thailand and Darwin, Australia. Plasma Plasmodium falciparum histidine-rich protein 2 (PfHRP2) was measured using ELISA (Cellabs, Sydney, New South Wales, Australia), according to the manufacturer’s instructions with minor modifications as described previously [21]. Ang-2 and vascular endothelial growth factor (VEGF) were also measured using ELISA (R&D Systems, Minneapolis, MN, USA). L-arginine, the substrate for endothelial cell NO synthase, and asymmetric dimethylarginine (ADMA), an endogenous inhibitor of NO synthase, were measured using high performance liquid chromatography as described previously [22]. As there are no published reference ranges for these measures of endothelial function in the normal Bangladeshi population, samples were collected - and a reference range determined - from 45 healthy volunteers. It was not possible to export Indian plasma and so the 15 Indian patients did not have their Ang-2, L-arginine, VEGF or ADMA measured.

OPS recording and analysis

Video recordings of the microcirculation in the rectal mucosa were collected at the time of study enrolment, with an OPS device (either Cytoscan® from Cytometrics, Heathpark, Honiton, Devon, UK or Microscan® from Microvision Medical, Amsterdam, The Netherlands), which was applied gently to prevent pressure artefact. The video recordings were imported into Final Cut Pro (version 3.0.2, Apple, Cupertino, CA, USA), and were analysed using image analysis software (OpenLab 3.1.5, Improvision, Waltham, MA, USA). Separate recordings of at least 10 seconds were collected at three different sites on the rectal mucosa of all patients. Blood flow was measured by tracing the movement of individual erythrocytes over time; only erythrocytes that could be tracked over three successive frames were assessed. Obstructed microvascular blood flow was defined as a blood flow velocity <100 μm/s. Assessment was performed on three occasions: two reviewers (JH and PC) separately analysed the recordings from the first group blinded to patient details and outcome in 2006. In this group of patients a mean of 50 (95 % confidence interval (CI) 37–62) capillaries were assessed. In 2009 the recordings from the second group were analysed by the clinician (JH) who had managed the patients a year previously (although patients were identified only by a patient code and the results were validated by blinded reviewers (RJM and HK) [15]). In 2013 the third group was analysed by a single reviewer (JH) blinded to patient details and outcome. In the second and third group of patients the blood flow in 60 capillaries was assessed in all patients.

Statistics

Data were collected and analysed using statistical software (Stata version 10, StataCorp, College Station, TX, USA). Associations between continuous variables were examined using Spearman’s rank correlation coefficient. Groups were compared using the Kruskal-Wallis test, the chi-squared and Fisher’s exact test. The strongest predictor of death was identified using backward stepwise estimation in a logistic regression model with random effects for study year. All risk factors that were significant in the univariate analysis at P <0.05 were included in the initial model (Table 1). Only variables that were significant at P <0.05 were retained in the final model.
Table 1
Baseline characteristics of the patients and association with outcome
Variable
N
All n = 142
Survivors n = 95
Deaths n = 47
P b
Age (years)
141
35 (25–45)
31 (24–46)
35 (25–45)
1.00
Sex (% male)
141
71 %
74 %
64 %
0.24
Glasgow Coma Score
142
9 (6–13)
10 (8–14)
8 (4–10)
<0.001
Mean arterial pressure (mmHg)
140
82 (72–93)
80 (72–90)
83 (71–97)
0.32
Respiratory rate (breaths/min)
137
30 (26–36)
30 (25–36)
32 (28–40)
0.02
Oxygen saturation (%)
138
96 (94–97)
96 (94–97)
96 (93–97)
0.39
Temperature (°C)
142
38 (37.2– 38.9)
37.9 (37.2–38.6)
38.2 (37.1–39.2)
0.25
Heart rate (beats/min)
138
109 (96–122)
107 (93–119)
117 (102–132)
0.02
Plasma sodium (mmol/L)
140
135 (132–139)
135 (132–139)
135 (132–140)
0.4
Plasma potassium (mmol/L)
139
4 (3.6–4.5)
3.9 (3.6–4.4)
4.2 (3.8–4.6)
0.05
Blood urea nitrogen (mmol/L)
141
14.3 (8.8–24.1)
12.9 (8.2 –22)
17.9 (10.3–29.3)
0.02
Plasma creatinine (μmol/L)
140
136 (88–220)
122 (86–193)
150 (97–300)
0.16
Plasma lactate (mmol/L)
141
4.3 (2.6–6.6)
3.7 (2.2–5.1)
6.3 (4.1–10)
<0.001
Base deficit (meq/L)
140
8 (3–12)
6.5 (2–10)
12 (5–17)
<0.001
White cell count (x 109/L)
104
8.5 (6.1–10.9)
8 (5.4–10)
10.9 (7.2–11.5)
0.002
Haemoglobin (g/dL)
139
9.6 (7.8–11.3)
9.3 (8–11.2)
10.2 (7–12)
0.64
Platelet count (x 109/L)
107
36 (21–66)
43 (24–87)
27 (15–41)
0.02
Microvascular obstruction (%)a
142
11.9 (3–26.7)
8.3 (1.7–26.6)
14.9 (6.6–34.9)
0.039
PfHRP2 (ng/mL)
135
2,268 (960–4,789)
2,151 (881–4,261)
2,584 (1,075–5,946)
0.17
Parasite count (parasites/uL)
134
67,133 (20,253–274,499)
97,968 (11,681–310,546)
60,288 (24,116–176,845)
0.59
Angiopoietin-2 (ng/mL)
126
19.1 (10.8–29.1)
14.9 (9.8–29.3)
21.9 (13.4–29.4)
0.035
L-arginine (μmol/L)
126
59.6 (44.3–79.9)
59.6 (44.1–77.8)
60.1 (38.3–71.5)
0.78
ADMA (μmol/L)
126
0.77 (0.58–1.01)
0.77 (0.57–0.99)
0.77 (0.58–1.18)
0.58
L-arginine: ADMA ratio
126
73.3 (59.8–90.6)
72.7 (62.7–89.6)
73.5 (58.6–90.7)
0.43
VEGF (pg/mL)
125
27.3 (0–59.2)
24.9 (0–54.7)
34.1.7 (0–64.9)
0.93
Plasma glucose (mmol/L)
137
6.6 (5–9.2)
6.8 (5.3–9.3)
6.2 (3.6–9.1)
0.07
All values represent the median (interquartile range) unless otherwise stated. aDetermined using orthogonal polarization spectral imaging. The percentage of capillaries with a blood flow of <100 μm/s. bStatistical significance for a difference between survivors and non-survivors. ADMA: Asymmetric dimethylarginine; PfHRP2: Plasmodium falciparum histidine-rich protein 2; VEGF: Vascular endothelial growth factor
Logistic regression models were used to quantify the odds of death with study and year fitted as a random effect to account for clustering and, in the case of the OPS imaging data, any unobserved heterogeneity due to inter-rater variability. An interaction term for plasma Ang-2 concentration and microvascular obstruction was created to determine whether their association with disease severity and death could be interpreted without effect modification.

Ethics review

All of the studies from which data were analysed received prospective ethical approval from the Bangladeshi Medical Research Council, the institutional ethical board of Ispat General Hospital and the Oxford Tropical Medicine Research Ethical Committee. ISRCTN registration numbers: ISRCTN 27232551, ISRCTN 20156397 and ClinicalTrials.gov identifier NCT00692627. Family members provided written informed consent, via a local interpreter, before participants were enrolled into the studies.

Results

Patients

OPS imaging data were available for 160 patients (69 previously reported [14, 15] and 91 new patients). Poor quality images precluded reliable assessment of 18 of the new patients’ films (Fig. 1), leaving a total of 142 patients’ recordings for analysis (Table 1). Overall 47 (33 %) of these 142 patients died despite the prompt use of parenteral anti-malarial therapy and management by dedicated study clinicians. Patients presented late in the course of their illness: the median (interquartile range (IQR)) duration of symptoms was 7 (5–8) days by which stage most (n = 90 (63.4 %)) had multi-organ dysfunction. Patients with multi-organ dysfunction on admission were more likely to die (39/90 (43 %)) than those with single organ involvement (8/52 (15 %), P = 0.001). Death also varied by study year (range 8.3–60 %, P = 0.02, degrees of freedom = 8). The highest case fatality rates occurred in the first two study years (60 % and 52.3 %, respectively) when few patients had access to RRT and mechanical ventilation. In the ensuing years, when this support was more accessible, the median (IQR) case fatality rate was 27.9 % (12.8–36.1). However, using a stepwise model, admission plasma lactate was identified as the strongest predictor of death (adjusted odds ratio (AOR): 1.39, 95 % CI 1.15–1.68). When controlled for disease severity (plasma lactate on admission), the association between death and multi-organ involvement and death and study year was no longer significant (P = 0.07 and P = 0.06, respectively).

Microcirculation

On admission, 119/142 (84 %) patients had obstructed microvascular flow visualized with OPS imaging. The median (IQR) percentage of obstructed capillaries was greater in the patients who died (14.9 % (6.6–34.9)) than in survivors (8.3 % (1.7–26.6)) (P = 0.039) (Fig. 2). The relationship remained significant when controlled for inter-rater variability (AOR: 1.03, 95 % CI 1.00–1.05, P = 0.026) and study year (AOR: 1.03, 95 % CI 1.00–1.05, P = 0.027).
There was a higher proportion of obstructed capillaries in patients with a significantly elevated plasma lactate (≥4 mmol/L, the WHO cut-off for elevated lactate) (P = 0.0001) (Fig. 3), in patients with multi-organ dysfunction (P = 0.002) (Fig. 4) and in patients with acute kidney injury ((AKI), plasma creatinine ≥176 μmol/L) (P = 0.006) (Fig. 5). The percentage of obstructed capillaries on admission correlated with the estimated parasite biomass (rs = 0.25, P = 0.004), and more weakly with peripheral parasite count (rs = 0.19, P = 0.027). There was no significant relationship between the rectal OPS findings and the presence of coma (GCS <11) (P = 0.14) (Fig. 6). There was no statistically significant association between microvascular obstruction and plasma Ang-2 concentrations (rs = 0.17, P = 0.057), or any of the other markers of endothelial function.

Markers of endothelial activation and dysfunction

There was marked derangement of all the measures of endothelial activation and function on admission. Plasma Ang-2 concentrations were higher in the patients with severe malaria (median (IQR) 19.1 (10.8–29.1) ng/mL) than in healthy controls (median (IQR) 1.6 (1.4–2.3) ng/mL) (P = 0.0001). Admission plasma Ang-2 concentrations were significantly greater in patients who died (median (IQR) 21.9 (13.4–29.4) ng/mL) than in survivors (median (IQR) 14.9 (9.8–29.3) ng/mL) (P = 0.035) and were correlated with the presence of an elevated plasma lactate (P = 0.001) (Fig. 3), multi-organ dysfunction (P = 0.004) (Fig. 4), AKI (P = 0.0001) (Fig. 5) and estimated parasite biomass (rs = 0.35, P <0.001). Admission plasma Ang-2 concentrations were significantly lower in the patients with coma on admission than in the non-comatose patients (P = 0.002) (Fig. 6).
Admission plasma ADMA concentrations were elevated in the majority of patients (median (IQR) 0.75 (0.59–1.03) μmol/L versus 0.55 (0.49–0.59) μmol/L in healthy controls (P = 0.0001)), and correlated with Ang-2 (rs = 0.41, P <0.001) and plasma lactate (rs = 0.22, P = 0.01), but not death (P = 0.31). Plasma L-arginine concentrations were decreased on admission in the majority of patients (median (IQR) 59.6 (44.3–79.9) pg/mL in patients versus 141 (116.6–161.6) pg/mL in healthy controls (P = 0.0001)), and correlated with Ang-2 (rs = 0.31, P <0.001) and plasma lactate (rs = 0.29, P = 0.001), but not death (P = 0.56). Median admission plasma VEGF concentrations were generally decreased (median (IQR) 27.3 (0–59.2) pg/mL versus 79.2 (44.0–114.0) pg/mL in healthy controls (P = 0.001)), and were inversely correlated with Ang-2 (rs = −0.37, P <0.001), parasite biomass (rs = −0.31, P <0.001) and plasma lactate (rs = −0.41, P <0.001). However, after controlling for parasite biomass, the relationship between VEGF and plasma lactate was no longer significant. There was no association between plasma VEGF and death (P = 0.93).

Multivariable regression analysis

When combined in a logistic regression model with random effects for study year and inter-rater variability, a statistically significant independent association between microvascular obstruction, Ang-2 concentration and death could not be demonstrated (P = 0.06 for both, n = 126). The inclusion of an interaction term for microvascular obstruction and plasma Ang-2 concentrations was not significant (P = 0.88) and did not improve the model fit.
In a linear regression model with plasma lactate as the dependent variable, both microvascular obstruction and plasma Ang-2 concentrations were significant independent risk factors for increased plasma lactate (both P <0.001). In a model (n = 109) controlling for other factors that influence end organ perfusion, microvascular obstruction (P <0.001) and plasma Ang-2 concentration (P = 0.002) had a stronger correlation with plasma lactate than did estimated parasite biomass (P = 0.01), haemoglobin (P = 0.05), arterial oxygen saturation (P = 0.08), age (P = 0.09) or mean arterial blood pressure (P = 0.58).

Discussion

This detailed clinical study provides further support for the belief that microvascular obstruction plays a fundamental role in the pathogenesis of severe falciparum malaria. Previous studies of patients with malaria have linked the degree of microvascular obstruction to disease severity [14, 15], but this larger series was also able to establish an association with the patients’ subsequent death; the demonstration of an in vivo association between microvascular obstruction and the presence of multi-organ dysfunction and acute kidney injury is also novel. The correlation between the OPS imaging results and the estimated total parasite burden suggests that the OPS imaging findings are representative of the sequestration that is present throughout the body in falciparum malaria and emphasises the potential utility of OPS imaging, given that it is able to assess a patient’s microcirculation during life. Plasma measures of endothelial activation and function were markedly deranged, with Ang-2 concentrations also correlating with the estimated parasite burden and outcome.
Plasma lactate, a measure of tissue hypoperfusion, was the strongest predictor of death in the series. As microvascular obstruction and endothelial activation are thought to lead to organ dysfunction through tissue hypoperfusion [7, 23], the finding that they were independently associated with plasma lactate is consistent with the hypothesis that they both have a causative role in the disease pathogenesis of the disease. The fact that microvascular obstruction and endothelial activation correlated more strongly with plasma lactate than indices such as blood pressure, oxygen saturation and haemoglobin highlights the pathological significance of the microcirculation in falciparum malaria.
OPS imaging has been used to assess the microcirculation in a variety of conditions [2426]. Bacterial sepsis has been studied in the most detail and, as in falciparum malaria, measures of microvascular function are stronger predictors of outcome than a patient’s systemic hemodynamic status [15, 26]. However, there are clear differences in the OPS imaging findings between the two conditions. In patents with bacterial sepsis there is reduced capillary density and intermittent or absent perfusion in vessels of all sizes, changes which are reversible with the application of acetylcholine [26, 27]. In contrast, in severe falciparum malaria the striking finding is one of numerous persistently obstructed capillaries, an appearance which exactly replicates the histopathological findings at post-mortem examination [25]. These OPS findings also accord with the biochemical changes seen in the two conditions: in falciparum malaria elevated lactate: pyruvate ratios suggest anaerobic metabolism due to tissue hypoxia from an obstructed microcirculation rather than the accelerated aerobic glycolysis that is seen in sepsis [28, 29].
While the degree of visualized microvascular obstruction in the rectal mucosa correlated with many measures of disease severity, there was no association with coma depth. This presumably reflects the marked heterogeneity that is seen in the distribution of sequestration in different organs of the body [4], different parts of the brain [30, 31] and even in different vessels from the same area of the brain [31]. While the clinical presentation of cerebral malaria is correlated with the extent of cerebral sequestration on autopsy [4, 32, 33], the pathogenesis of cerebral malaria is generally believed to be more complex than simply resulting from direct hypoperfusion [31]; other factors including congestion and axonal injury are likely to contribute [32, 34]. The neuroanatomical location of pathological changes is also probably critical: the ascending reticular activating system controls consciousness and the extent to which these neurons are involved will determine coma depth [35].
Plasma Ang-2 concentrations were associated with disease severity and death as in other series of severe falciparum malaria [7, 9, 10] and studies of other critical illnesses [36, 37]. As with many biomarkers, it has been unclear whether elevations in Ang-2 are the cause or result of disease [38]. However, clinical studies of patients with bacterial sepsis have shown that elevations in plasma Ang-2 concentrations precede the appearance of end-organ injury and that serum from patients with sepsis disrupts the integrity of monolayers of endothelial cells in vitro via an Ang-2-dependent mechanism, suggesting that Ang-2 may be directly pathogenic [37]. Although Ang-2 has a variety of context-dependent effects on endothelial cells, by enhancing endothelial activation and increasing vascular permeability it is thought to play an important role in the pathogenesis of acute lung injury and multi-organ failure [36, 39], both of which are complications of falciparum malaria with a high attributable mortality [20]. Plasma Ang-2 concentrations were higher in the patients in this series with multi-organ dysfunction and while there was no clear association with acute lung injury, this was an infrequent finding in the series (six cases, only four of whom had an Ang-2 level available for analysis).
Nitric oxide is essential for the regulation of microvascular blood flow and inhibits the release of Ang-2 and other pro-inflammatory and vasoactive molecules [40, 41], however nitric oxide bioavailability is reduced in patients with falciparum malaria [6]. This is thought to result from hypoargininaemia [6], decreased nitric oxide synthase expression [42], quenching of nitric oxide by haemolysis-related cell-free haemoglobin [43] and impaired metabolism and clearance of the endogenous nitric oxide synthase inhibitor ADMA [44]. As endothelial nitric oxide concentrations decline, there is loss of vasodilatory tone which results in tissue hypoperfusion, lactic acidosis and organ dysfunction [8, 41]. Falling nitric oxide concentrations also lead to endothelial activation and the upregulation of endothelial receptors - including pRBC ligands like ICAM-1 - which facilitates pRBC cytoadherence [45]. This may cause further decreases in local nitric oxide concentrations, as the principal signal for nitric oxide production from the resting endothelium is the shear stress of flowing blood. Microvascular obstruction and loss of vasodilatory tone also lead to tissue hypoxia, another strong stimulus for endothelial activation [46].
It is clear to see how this might evolve into a vicious cycle, but in this series plasma Ang-2 concentrations did not correlate strongly with the visualized obstruction. This suggests that there is either a temporal dissociation between Ang-2 release and microvascular sequestration, that elevated Ang-2 concentrations are not the result of a simple, direct interaction between pRBCs and the endothelium, or that our statistical analysis is limited by the fact that we are comparing a local phenomenon (directly visualized microvascular appearances) with a systemic one (circulating plasma Ang-2 levels).
This study highlights the importance of microvascular obstruction in the unique presentation of falciparum malaria. Endothelial activation is present in many infectious and non-infectious conditions which lack falciparum malaria’s distinctive clinical and pathological findings [12, 13]. This includes vivax malaria [47, 48], a condition in which microvascular obstruction is largely absent [49] and organ failure and death less frequent [50]. The association between microvascular obstruction and the clinical manifestations of falciparum malaria emphasizes the relative clinical significance of the parasites in the RBCs that are obstructing the microcirculation when compared with circulating parasites which are represented by the peripheral parasitaemia [23]. For clinicians this means focusing primarily on a patient’s signs and symptoms and not being falsely reassured by a ‘low’ peripheral parasite count. When all patients with P. falciparum infection are considered, patients with higher peripheral parasite counts have a greater risk of complicated disease; however, in this series, where only patients with severe disease were enrolled, the median circulating parasite count was actually higher in survivors.
Plasma levels of VEGF were significantly decreased in this series and, as in previous studies, had an inverse correlation with disease severity [7]. This is in marked contrast to findings in murine models and argues against a role for excessive VEGF in pathogenesis of severe malaria. The inverse association between parasite biomass and VEGF is hypothesized to result from the absorption and accumulation of host VEGF within the parasitophorous vacuole by mature P. falciparum parasites, sequestered within the microvasculature [7]. VEGF stimulates the release of nitric oxide and upregulates the expression of nitric oxide synthase, thus the decreased VEGF concentrations provide another mechanism for decreased nitric oxide bioavailability. The significantly lower plasma Ang-2 concentrations in comatose patients replicates a similar finding in a previous Vietnamese study [9] and requires further evaluation.

Conclusion

In conclusion, microvascular obstruction and systemic endothelial activation are both associated with tissue hypoperfusion, organ dysfunction and death in adults with falciparum malaria. These associations are consistent with the hypothesis that both processes play a significant role in the pathogenesis of the disease. Interventions which target either pathway may have therapeutic potential.

Acknowledgements

We thank the directors and staff of the trial hospitals, and the doctors, research nurses and research assistants for their help; in particular, Dr Sophia Lam, Dr Sam Douthwaite and Dr Sophie Cohen, who collected and collated data at the study sites, and Dr Kamolrat Silamut, Dr Kesinee Chotinavich, Dr Charlie Woodrow and Dr Yvette McNeil, who provided valuable laboratory support. Federica Barzi provided helpful statistical advice.

Funding

JH (fellowship 1054195) and NMA (fellowship 1042072) are supported by the National Health and Medical Research Council of Australia. NJW, NPJD and AMD are supported by the Wellcome Trust as part of the Wellcome Trust-Mahidol University-Oxford Tropical Medicine Research Programme. Neither funding body played any role in the collection, analysis and interpretation of data, in the writing of the manuscript, or in the decision to submit the review for publication.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

JH cared for the patients, collected data, performed the OPS analysis, wrote the first draft of the manuscript and assisted with the statistical analysis. SJL performed the statistical analysis. MAH, MUH, AG and MAF supervised the study and the care of the patients in Chittagong. NMA revised the manuscript. PC, RJM and HWFK cared for the patients, collected data and performed OPS analysis. KP (MORU) cared for patients and collected data in Bangladesh. SKM and SM supervised the study and the care of the patients in Rourkela. KP (Menzies) performed the laboratory analysis of the biomarkers of endothelial function. NJW, NPJD and AMD supervised the studies and revised the manuscript. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Marchiafava E, Bignami A. On summer-autumnal fevers. London: New Sydenham Society; 1894. Marchiafava E, Bignami A. On summer-autumnal fevers. London: New Sydenham Society; 1894.
2.
Zurück zum Zitat Dudgeon LS, Clarke C. A contribution to the microscopical histology of malaria. Lancet. 1917;190:153–6.CrossRef Dudgeon LS, Clarke C. A contribution to the microscopical histology of malaria. Lancet. 1917;190:153–6.CrossRef
3.
Zurück zum Zitat Spitz S. The pathology of acute falciparum malaria. Mil Surg. 1946;99:555–72.PubMed Spitz S. The pathology of acute falciparum malaria. Mil Surg. 1946;99:555–72.PubMed
4.
Zurück zum Zitat MacPherson GG, Warrell MJ, White NJ, Looareesuwan S, Warrell DA. Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am J Pathol. 1985;119:385–401.PubMedPubMedCentral MacPherson GG, Warrell MJ, White NJ, Looareesuwan S, Warrell DA. Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am J Pathol. 1985;119:385–401.PubMedPubMedCentral
5.
Zurück zum Zitat Turner GD, Morrison H, Jones M, Davis TM, Looareesuwan S, Buley ID, et al. An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am J Pathol. 1994;145:1057–69.PubMedPubMedCentral Turner GD, Morrison H, Jones M, Davis TM, Looareesuwan S, Buley ID, et al. An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am J Pathol. 1994;145:1057–69.PubMedPubMedCentral
6.
Zurück zum Zitat Yeo TW, Lampah DA, Gitawati R, Tjitra E, Kenangalem E, McNeil YR, et al. Impaired nitric oxide bioavailability and L-arginine reversible endothelial dysfunction in adults with falciparum malaria. J Exp Med. 2007;204:2693–704.CrossRefPubMedPubMedCentral Yeo TW, Lampah DA, Gitawati R, Tjitra E, Kenangalem E, McNeil YR, et al. Impaired nitric oxide bioavailability and L-arginine reversible endothelial dysfunction in adults with falciparum malaria. J Exp Med. 2007;204:2693–704.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Yeo TW, Lampah DA, Gitawati R, Tjitra E, Kenangalem E, Piera K, et al. Angiopoietin-2 is associated with decreased endothelial nitric oxide and poor clinical outcome in severe falciparum malaria. Proc Natl Acad Sci U S A. 2008;105:17097–102.CrossRefPubMedPubMedCentral Yeo TW, Lampah DA, Gitawati R, Tjitra E, Kenangalem E, Piera K, et al. Angiopoietin-2 is associated with decreased endothelial nitric oxide and poor clinical outcome in severe falciparum malaria. Proc Natl Acad Sci U S A. 2008;105:17097–102.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Yeo TW, Lampah DA, Kenangalem E, Tjitra E, Price RN, Anstey NM. Impaired skeletal muscle microvascular function and increased skeletal muscle oxygen consumption in severe falciparum malaria. J Infect Dis. 2013;207:528–36.CrossRefPubMed Yeo TW, Lampah DA, Kenangalem E, Tjitra E, Price RN, Anstey NM. Impaired skeletal muscle microvascular function and increased skeletal muscle oxygen consumption in severe falciparum malaria. J Infect Dis. 2013;207:528–36.CrossRefPubMed
9.
Zurück zum Zitat Prapansilp P, Medana I, Mai NT, Day NP, Phu NH, Yeo TW, et al. A clinicopathological correlation of the expression of the angiopoietin-Tie-2 receptor pathway in the brain of adults with Plasmodium falciparum malaria. Malar J. 2013;12:50.CrossRefPubMedPubMedCentral Prapansilp P, Medana I, Mai NT, Day NP, Phu NH, Yeo TW, et al. A clinicopathological correlation of the expression of the angiopoietin-Tie-2 receptor pathway in the brain of adults with Plasmodium falciparum malaria. Malar J. 2013;12:50.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Conroy AL, Glover SJ, Hawkes M, Erdman LK, Seydel KB, Taylor TE, et al. Angiopoietin-2 levels are associated with retinopathy and predict mortality in Malawian children with cerebral malaria: a retrospective case-control study. Crit Care Med. 2012;40:952–9.CrossRefPubMedPubMedCentral Conroy AL, Glover SJ, Hawkes M, Erdman LK, Seydel KB, Taylor TE, et al. Angiopoietin-2 levels are associated with retinopathy and predict mortality in Malawian children with cerebral malaria: a retrospective case-control study. Crit Care Med. 2012;40:952–9.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Turner GD, Ly VC, Nguyen TH, Tran TH, Nguyen HP, Bethell D, et al. Systemic endothelial activation occurs in both mild and severe malaria. Correlating dermal microvascular endothelial cell phenotype and soluble cell adhesion molecules with disease severity. Am J Pathol. 1998;152:1477–87.PubMedPubMedCentral Turner GD, Ly VC, Nguyen TH, Tran TH, Nguyen HP, Bethell D, et al. Systemic endothelial activation occurs in both mild and severe malaria. Correlating dermal microvascular endothelial cell phenotype and soluble cell adhesion molecules with disease severity. Am J Pathol. 1998;152:1477–87.PubMedPubMedCentral
12.
Zurück zum Zitat Lee WL, Liles WC. Endothelial activation, dysfunction and permeability during severe infections. Curr Opin Hematol. 2011;18:191–6.CrossRefPubMed Lee WL, Liles WC. Endothelial activation, dysfunction and permeability during severe infections. Curr Opin Hematol. 2011;18:191–6.CrossRefPubMed
13.
Zurück zum Zitat Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 2007;115:1285–95.PubMed Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 2007;115:1285–95.PubMed
14.
Zurück zum Zitat Dondorp AM, Ince C, Charunwatthana P, Hanson J, van Kuijen A, Faiz MA, et al. Direct in vivo assessment of microcirculatory dysfunction in severe falciparum malaria. J Infect Dis. 2008;197:79–84.CrossRefPubMed Dondorp AM, Ince C, Charunwatthana P, Hanson J, van Kuijen A, Faiz MA, et al. Direct in vivo assessment of microcirculatory dysfunction in severe falciparum malaria. J Infect Dis. 2008;197:79–84.CrossRefPubMed
15.
Zurück zum Zitat Hanson J, Lam SW, Mahanta KC, Pattnaik R, Alam S, Mohanty S, et al. Relative contributions of macrovascular and microvascular dysfunction to disease severity in falciparum malaria. J Infect Dis. 2012;206:571–9.CrossRefPubMed Hanson J, Lam SW, Mahanta KC, Pattnaik R, Alam S, Mohanty S, et al. Relative contributions of macrovascular and microvascular dysfunction to disease severity in falciparum malaria. J Infect Dis. 2012;206:571–9.CrossRefPubMed
16.
Zurück zum Zitat Maude RJ, Silamut K, Plewes K, Charunwatthana P, Ho M, Abul Faiz M, et al. Randomized controlled trial of levamisole hydrochloride as adjunctive therapy in severe falciparum malaria with high parasitemia. J Infect Dis. 2014;209:120–9.CrossRefPubMed Maude RJ, Silamut K, Plewes K, Charunwatthana P, Ho M, Abul Faiz M, et al. Randomized controlled trial of levamisole hydrochloride as adjunctive therapy in severe falciparum malaria with high parasitemia. J Infect Dis. 2014;209:120–9.CrossRefPubMed
17.
Zurück zum Zitat Maude RJ, Hoque G, Hasan MU, Sayeed A, Akter S, Samad R, et al. Timing of enteral feeding in cerebral malaria in resource-poor settings: a randomized trial. PLoS One. 2011;6:e27273.CrossRefPubMedPubMedCentral Maude RJ, Hoque G, Hasan MU, Sayeed A, Akter S, Samad R, et al. Timing of enteral feeding in cerebral malaria in resource-poor settings: a randomized trial. PLoS One. 2011;6:e27273.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat World Health Organization. WHO guidelines for the treatment of malaria 2010. Geneva: World Health Organization; 2010. World Health Organization. WHO guidelines for the treatment of malaria 2010. Geneva: World Health Organization; 2010.
19.
Zurück zum Zitat World Health Organization. WHO guidelines for the treatment of malaria. Geneva: World Health Organization; 2006. World Health Organization. WHO guidelines for the treatment of malaria. Geneva: World Health Organization; 2006.
20.
Zurück zum Zitat Severe falciparum malaria. World Health Organization, Communicable Diseases Cluster. Trans R Soc Trop Med Hyg. 2000;94 Suppl 1:S1–90. Severe falciparum malaria. World Health Organization, Communicable Diseases Cluster. Trans R Soc Trop Med Hyg. 2000;94 Suppl 1:S1–90.
21.
Zurück zum Zitat Dondorp AM, Desakorn V, Pongtavornpinyo W, Sahassananda D, Silamut K, Chotivanich K, et al. Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Med. 2005;2:e204.CrossRefPubMedPubMedCentral Dondorp AM, Desakorn V, Pongtavornpinyo W, Sahassananda D, Silamut K, Chotivanich K, et al. Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Med. 2005;2:e204.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Jones CE, Darcy CJ, Woodberry T, Anstey NM, McNeil YR. HPLC analysis of asymmetric dimethylarginine, symmetric dimethylarginine, homoarginine and arginine in small plasma volumes using a Gemini-NX column at high pH. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878:8–12.CrossRefPubMed Jones CE, Darcy CJ, Woodberry T, Anstey NM, McNeil YR. HPLC analysis of asymmetric dimethylarginine, symmetric dimethylarginine, homoarginine and arginine in small plasma volumes using a Gemini-NX column at high pH. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878:8–12.CrossRefPubMed
24.
Zurück zum Zitat Verdant C, De Backer D. How monitoring of the microcirculation may help us at the bedside. Curr Opin Crit Care. 2005;11:240–4.CrossRefPubMed Verdant C, De Backer D. How monitoring of the microcirculation may help us at the bedside. Curr Opin Crit Care. 2005;11:240–4.CrossRefPubMed
25.
Zurück zum Zitat De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL. Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J. 2004;147:91–9.CrossRefPubMed De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL. Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J. 2004;147:91–9.CrossRefPubMed
26.
Zurück zum Zitat De Backer D, Donadello K, Sakr Y, Ospina-Tascon G, Salgado D, Scolletta S, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med. 2013;41:791–9.CrossRefPubMed De Backer D, Donadello K, Sakr Y, Ospina-Tascon G, Salgado D, Scolletta S, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med. 2013;41:791–9.CrossRefPubMed
27.
Zurück zum Zitat De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98–104.CrossRefPubMed De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98–104.CrossRefPubMed
28.
Zurück zum Zitat Day NP, Phu NH, Mai NT, Chau TT, Loc PP, Chuong LV, et al. The pathophysiologic and prognostic significance of acidosis in severe adult malaria. Crit Care Med. 2000;28:1833–40.CrossRefPubMed Day NP, Phu NH, Mai NT, Chau TT, Loc PP, Chuong LV, et al. The pathophysiologic and prognostic significance of acidosis in severe adult malaria. Crit Care Med. 2000;28:1833–40.CrossRefPubMed
29.
Zurück zum Zitat James JH, Luchette FA, McCarter FD, Fischer JE. Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet. 1999;354:505–8.CrossRefPubMed James JH, Luchette FA, McCarter FD, Fischer JE. Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet. 1999;354:505–8.CrossRefPubMed
30.
Zurück zum Zitat Sein KK, Maeno Y, Thuc HV, Anh TK, Aikawa M. Differential sequestration of parasitized erythrocytes in the cerebrum and cerebellum in human cerebral malaria. Am J Trop Med Hyg. 1993;48:504–11.PubMed Sein KK, Maeno Y, Thuc HV, Anh TK, Aikawa M. Differential sequestration of parasitized erythrocytes in the cerebrum and cerebellum in human cerebral malaria. Am J Trop Med Hyg. 1993;48:504–11.PubMed
31.
Zurück zum Zitat Pongponratn E, Turner GD, Day NP, Phu NH, Simpson JA, Stepniewska K, et al. An ultrastructural study of the brain in fatal Plasmodium falciparum malaria. Am J Trop Med Hyg. 2003;69:345–59.PubMed Pongponratn E, Turner GD, Day NP, Phu NH, Simpson JA, Stepniewska K, et al. An ultrastructural study of the brain in fatal Plasmodium falciparum malaria. Am J Trop Med Hyg. 2003;69:345–59.PubMed
32.
Zurück zum Zitat Ponsford MJ, Medana IM, Prapansilp P, Hien TT, Lee SJ, Dondorp AM, et al. Sequestration and microvascular congestion are associated with coma in human cerebral malaria. J Infect Dis. 2012;205:663–71.CrossRefPubMed Ponsford MJ, Medana IM, Prapansilp P, Hien TT, Lee SJ, Dondorp AM, et al. Sequestration and microvascular congestion are associated with coma in human cerebral malaria. J Infect Dis. 2012;205:663–71.CrossRefPubMed
33.
Zurück zum Zitat Silamut K, Phu NH, Whitty C, Turner GD, Louwrier K, Mai NT, et al. A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. Am J Pathol. 1999;155:395–410.CrossRefPubMedPubMedCentral Silamut K, Phu NH, Whitty C, Turner GD, Louwrier K, Mai NT, et al. A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. Am J Pathol. 1999;155:395–410.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat van Meurs M, Kumpers P, Ligtenberg JJ, Meertens JH, Molema G, Zijlstra JG. Bench-to-bedside review: Angiopoietin signalling in critical illness - a future target? Crit Care. 2009;13:207.CrossRefPubMedPubMedCentral van Meurs M, Kumpers P, Ligtenberg JJ, Meertens JH, Molema G, Zijlstra JG. Bench-to-bedside review: Angiopoietin signalling in critical illness - a future target? Crit Care. 2009;13:207.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat David S, Mukherjee A, Ghosh CC, Yano M, Khankin EV, Wenger JB, et al. Angiopoietin-2 may contribute to multiple organ dysfunction and death in sepsis. Crit Care Med. 2012;40:3034–41.CrossRefPubMedPubMedCentral David S, Mukherjee A, Ghosh CC, Yano M, Khankin EV, Wenger JB, et al. Angiopoietin-2 may contribute to multiple organ dysfunction and death in sepsis. Crit Care Med. 2012;40:3034–41.CrossRefPubMedPubMedCentral
38.
39.
Zurück zum Zitat Agrawal A, Matthay MA, Kangelaris KN, Stein J, Chu JC, Imp BM, et al. Plasma angiopoietin-2 predicts the onset of acute lung injury in critically ill patients. Am J Respir Crit Care Med. 2013;187:736–42.CrossRefPubMedPubMedCentral Agrawal A, Matthay MA, Kangelaris KN, Stein J, Chu JC, Imp BM, et al. Plasma angiopoietin-2 predicts the onset of acute lung injury in critically ill patients. Am J Respir Crit Care Med. 2013;187:736–42.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Lowenstein CJ, Morrell CN, Yamakuchi M. Regulation of Weibel-Palade body exocytosis. Trends Cardiovasc Med. 2005;15:302–8.CrossRefPubMed Lowenstein CJ, Morrell CN, Yamakuchi M. Regulation of Weibel-Palade body exocytosis. Trends Cardiovasc Med. 2005;15:302–8.CrossRefPubMed
41.
42.
Zurück zum Zitat Anstey NM, Weinberg JB, Hassanali MY, Mwaikambo ED, Manyenga D, Misukonis MA, et al. Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J Exp Med. 1996;184:557–67.CrossRefPubMed Anstey NM, Weinberg JB, Hassanali MY, Mwaikambo ED, Manyenga D, Misukonis MA, et al. Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J Exp Med. 1996;184:557–67.CrossRefPubMed
43.
Zurück zum Zitat Yeo TW, Lampah DA, Tjitra E, Gitawati R, Kenangalem E, Piera K, et al. Relationship of cell-free hemoglobin to impaired endothelial nitric oxide bioavailability and perfusion in severe falciparum malaria. J Infect Dis. 2009;200:1522–9.CrossRefPubMedPubMedCentral Yeo TW, Lampah DA, Tjitra E, Gitawati R, Kenangalem E, Piera K, et al. Relationship of cell-free hemoglobin to impaired endothelial nitric oxide bioavailability and perfusion in severe falciparum malaria. J Infect Dis. 2009;200:1522–9.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Yeo TW, Lampah DA, Tjitra E, Gitawati R, Darcy CJ, Jones C, et al. Increased asymmetric dimethylarginine in severe falciparum malaria: association with impaired nitric oxide bioavailability and fatal outcome. PLoS Pathog. 2010;6:e1000868.CrossRefPubMedPubMedCentral Yeo TW, Lampah DA, Tjitra E, Gitawati R, Darcy CJ, Jones C, et al. Increased asymmetric dimethylarginine in severe falciparum malaria: association with impaired nitric oxide bioavailability and fatal outcome. PLoS Pathog. 2010;6:e1000868.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Kim H, Higgins S, Liles WC, Kain KC. Endothelial activation and dysregulation in malaria: a potential target for novel therapeutics. Curr Opin Hematol. 2011;18:177–85.CrossRefPubMed Kim H, Higgins S, Liles WC, Kain KC. Endothelial activation and dysregulation in malaria: a potential target for novel therapeutics. Curr Opin Hematol. 2011;18:177–85.CrossRefPubMed
46.
Zurück zum Zitat Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007;7:803–15.CrossRefPubMed Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007;7:803–15.CrossRefPubMed
47.
Zurück zum Zitat Yeo TW, Lampah DA, Tjitra E, Piera K, Gitawati R, Kenangalem E, et al. Greater endothelial activation, Weibel-Palade body release and host inflammatory response to Plasmodium vivax, compared with Plasmodium falciparum: a prospective study in Papua, Indonesia. J Infect Dis. 2010;202:109–12.CrossRefPubMedPubMedCentral Yeo TW, Lampah DA, Tjitra E, Piera K, Gitawati R, Kenangalem E, et al. Greater endothelial activation, Weibel-Palade body release and host inflammatory response to Plasmodium vivax, compared with Plasmodium falciparum: a prospective study in Papua, Indonesia. J Infect Dis. 2010;202:109–12.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Barber BE, William T, Grigg MJ, Parameswaran U, Piera KA, Price RN, et al. Parasite biomass-related inflammation, endothelial activation, microvascular dysfunction and disease severity in vivax malaria. PLoS Pathog. 2015;11:e1004558.CrossRefPubMedPubMedCentral Barber BE, William T, Grigg MJ, Parameswaran U, Piera KA, Price RN, et al. Parasite biomass-related inflammation, endothelial activation, microvascular dysfunction and disease severity in vivax malaria. PLoS Pathog. 2015;11:e1004558.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Lacerda MV, Fragoso SC, Alecrim MG, Alexandre MA, Magalhaes BM, Siqueira AM, et al. Postmortem characterization of patients with clinical diagnosis of Plasmodium vivax malaria: to what extent does this parasite kill? Clin Infect Dis. 2012;55:67–74.CrossRef Lacerda MV, Fragoso SC, Alecrim MG, Alexandre MA, Magalhaes BM, Siqueira AM, et al. Postmortem characterization of patients with clinical diagnosis of Plasmodium vivax malaria: to what extent does this parasite kill? Clin Infect Dis. 2012;55:67–74.CrossRef
50.
Zurück zum Zitat Severe malaria. Trop Med Int Health. 2014;19 Suppl 1:7–131. Severe malaria. Trop Med Int Health. 2014;19 Suppl 1:7–131.
Metadaten
Titel
Microvascular obstruction and endothelial activation are independently associated with the clinical manifestations of severe falciparum malaria in adults: an observational study
verfasst von
Josh Hanson
Sue J. Lee
Md Amir Hossain
Nicholas M. Anstey
Prakaykaew Charunwatthana
Richard J. Maude
Hugh W. F. Kingston
Saroj K. Mishra
Sanjib Mohanty
Katherine Plewes
Kim Piera
Mahtab U. Hassan
Aniruddha Ghose
M. Abul Faiz
Nicholas J. White
Nicholas P. J. Day
Arjen M. Dondorp
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
BMC Medicine / Ausgabe 1/2015
Elektronische ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-015-0365-9

Weitere Artikel der Ausgabe 1/2015

BMC Medicine 1/2015 Zur Ausgabe

Leitlinien kompakt für die Allgemeinmedizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Facharzt-Training Allgemeinmedizin

Die ideale Vorbereitung zur anstehenden Prüfung mit den ersten 24 von 100 klinischen Fallbeispielen verschiedener Themenfelder

Mehr erfahren

Update Allgemeinmedizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.