Skip to main content
Erschienen in: Acta Neuropathologica 4/2009

01.04.2009 | Original Paper

Microvessel length density, total length, and length per neuron in five subcortical regions in schizophrenia

verfasst von: Pawel Kreczmanski, Helmut Heinsen, Valentina Mantua, Fritz Woltersdorf, Thorsten Masson, Norbert Ulfig, Rainald Schmidt-Kastner, Hubert Korr, Harry W. M. Steinbusch, Patrick R. Hof, Christoph Schmitz

Erschienen in: Acta Neuropathologica | Ausgabe 4/2009

Einloggen, um Zugang zu erhalten

Abstract

Recent studies (Prabakaran et al. in Mol Psychiat 9:684–697, 2004; Hanson and Gottesman in BMC Med Genet 6:7, 2005; Harris et al. in PLoS ONE 3:e3964, 2008) have suggested that microvascular abnormalities occur in the brains of patients with schizophrenia. To assess the integrity of the microvasculature in subcortical brain regions in schizophrenia, we investigated the microvessel length density, total microvessel length, and microvessel length per neuron using design-based stereologic methods in the caudate nucleus, putamen, nucleus accumbens, mediodorsal nucleus of the thalamus, and lateral nucleus of the amygdala in both hemispheres of 13 postmortem brains from male patients with schizophrenia and 13 age-matched male controls. A general linear model multivariate analysis of variance with diagnosis and hemisphere as fixed factors and illness duration (patients with schizophrenia) or age (controls), postmortem interval and fixation time as covariates showed no statistically significant differences in the brains from the patients with schizophrenia compared to the controls. These data extend our earlier findings in prefrontal cortex area 9 and anterior cingulate cortex area 24 from the same brains (Kreczmanski et al. in Acta Neuropathol 109:510–518, 2005), that alterations in microvessel length density, total length, and particularly length per neuron cannot be considered characteristic features of schizophrenia. As such, compromised brain metabolism and occurrence of oxidative stress in the brains of patients with schizophrenia are likely caused by other mechanisms such as functional disruption in the coupling of cerebral blood flow to neuronal metabolic needs.
Literatur
1.
Zurück zum Zitat Andreasen NC, Rezai K, Alliger R et al (1992) Hypofrontality in neuroleptic-naive patients and in patients with chronic schizophrenia. Assessment with xenon 133 single-photon emission computed tomography and the Tower of London. Arch Gen Psychiatry 49:943–958PubMed Andreasen NC, Rezai K, Alliger R et al (1992) Hypofrontality in neuroleptic-naive patients and in patients with chronic schizophrenia. Assessment with xenon 133 single-photon emission computed tomography and the Tower of London. Arch Gen Psychiatry 49:943–958PubMed
2.
Zurück zum Zitat Arnold SE, Trojanowski JQ (1996) Recent advances in defining the neuropathology of schizophrenia. Acta Neuropathol 92:217–231PubMedCrossRef Arnold SE, Trojanowski JQ (1996) Recent advances in defining the neuropathology of schizophrenia. Acta Neuropathol 92:217–231PubMedCrossRef
3.
Zurück zum Zitat Baborie A, Kuschinksy W (2006) Lack of relationship between cellular density and either capillary density or metabolic rate in different regions of the brain. Neurosci Lett 404:20–22PubMedCrossRef Baborie A, Kuschinksy W (2006) Lack of relationship between cellular density and either capillary density or metabolic rate in different regions of the brain. Neurosci Lett 404:20–22PubMedCrossRef
4.
Zurück zum Zitat Barch DM, Mathews JR, Buckner RL et al (2003) Hemodynamic responses in visual, motor, and somatosensory cortices in schizophrenia. Neuroimage 20:1884–1893PubMedCrossRef Barch DM, Mathews JR, Buckner RL et al (2003) Hemodynamic responses in visual, motor, and somatosensory cortices in schizophrenia. Neuroimage 20:1884–1893PubMedCrossRef
5.
Zurück zum Zitat Basu S, Nagy JA, Pal S et al (2001) The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat Med 7:569–574PubMedCrossRef Basu S, Nagy JA, Pal S et al (2001) The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat Med 7:569–574PubMedCrossRef
6.
Zurück zum Zitat Beckmann H, Lauer M (1997) The human striatum in schizophrenia. II. Increased number of striatal neurons in schizophrenics. Psychiatry Res 68:99–109PubMedCrossRef Beckmann H, Lauer M (1997) The human striatum in schizophrenia. II. Increased number of striatal neurons in schizophrenics. Psychiatry Res 68:99–109PubMedCrossRef
7.
Zurück zum Zitat Berman KF, Zec RF, Weinberger DR (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. II. Role of neuroleptic treatment, attention, and mental effort. Arch Gen Psychiatry 43:126–135PubMed Berman KF, Zec RF, Weinberger DR (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. II. Role of neuroleptic treatment, attention, and mental effort. Arch Gen Psychiatry 43:126–135PubMed
8.
Zurück zum Zitat Bogerts B (1984) Zur Neuropathologie der Schizophrenien. Fortschr Neurol Psychiatr 52:428–437PubMedCrossRef Bogerts B (1984) Zur Neuropathologie der Schizophrenien. Fortschr Neurol Psychiatr 52:428–437PubMedCrossRef
9.
Zurück zum Zitat Braak H, Braak E (1983) Neuronal types in the basolateral amygdaloid nuclei of man. Brain Res Bull 11:349–365PubMedCrossRef Braak H, Braak E (1983) Neuronal types in the basolateral amygdaloid nuclei of man. Brain Res Bull 11:349–365PubMedCrossRef
10.
Zurück zum Zitat Brambilla P, Cerini R, Fabene PF et al (2007) Assessment of cerebral blood volume in schizophrenia: a magnetic resonance imaging study. J Psychiatr Res 41:502–510PubMedCrossRef Brambilla P, Cerini R, Fabene PF et al (2007) Assessment of cerebral blood volume in schizophrenia: a magnetic resonance imaging study. J Psychiatr Res 41:502–510PubMedCrossRef
11.
Zurück zum Zitat Brockhaus H (1942) Zur feineren Anatomie des Septum und des Striatum. J Psychol Neurol 5:1–56CrossRef Brockhaus H (1942) Zur feineren Anatomie des Septum und des Striatum. J Psychol Neurol 5:1–56CrossRef
12.
Zurück zum Zitat Byne W, Buchsbaum MS, Mattiace LA et al (2002) Postmortem assessment of thalamic nuclear volumes in subjects with schizophrenia. Am J Psychiatry 159:59–65PubMedCrossRef Byne W, Buchsbaum MS, Mattiace LA et al (2002) Postmortem assessment of thalamic nuclear volumes in subjects with schizophrenia. Am J Psychiatry 159:59–65PubMedCrossRef
13.
Zurück zum Zitat Calhoun ME, Mouton PR (2000) Length measurement: new developments in neurostereology and 3D imagery. J Chem Neuroanat 21:257–265CrossRef Calhoun ME, Mouton PR (2000) Length measurement: new developments in neurostereology and 3D imagery. J Chem Neuroanat 21:257–265CrossRef
14.
Zurück zum Zitat Casanova MF, de Zeeuw L, Switala A et al (2005) Mean cell spacing abnormalities in the neocortex of patients with schizophrenia. Psychiatry Res 133:1–12PubMedCrossRef Casanova MF, de Zeeuw L, Switala A et al (2005) Mean cell spacing abnormalities in the neocortex of patients with schizophrenia. Psychiatry Res 133:1–12PubMedCrossRef
15.
Zurück zum Zitat Catafau AM, Parellada E, Lomena FJ et al (1994) Prefrontal and temporal blood flow in schizophrenia: resting and activation Technetium-99 m-HMPAO-SPECT patterns in young neuroleptic-naive patients with acute disease. J Nucl Med 35:935–941PubMed Catafau AM, Parellada E, Lomena FJ et al (1994) Prefrontal and temporal blood flow in schizophrenia: resting and activation Technetium-99 m-HMPAO-SPECT patterns in young neuroleptic-naive patients with acute disease. J Nucl Med 35:935–941PubMed
16.
Zurück zum Zitat Cohen BM, Yurgelun-Todd D, English CD et al (1995) Abnormalities of regional distribution of cerebral vasculature in schizophrenia detected by dynamic susceptibility contrast MRI. Am J Psychiatry 152:1801–1803PubMed Cohen BM, Yurgelun-Todd D, English CD et al (1995) Abnormalities of regional distribution of cerebral vasculature in schizophrenia detected by dynamic susceptibility contrast MRI. Am J Psychiatry 152:1801–1803PubMed
17.
Zurück zum Zitat Cullen TJ, Walker MA, Parkinson N et al (2003) A postmortem study of the mediodorsal nucleus of the thalamus in schizophrenia. Schizophr Res 60:157–166PubMedCrossRef Cullen TJ, Walker MA, Parkinson N et al (2003) A postmortem study of the mediodorsal nucleus of the thalamus in schizophrenia. Schizophr Res 60:157–166PubMedCrossRef
18.
Zurück zum Zitat Danos P, Schmidt A, Baumann B et al (2005) Volume and neuron number of the mediodorsal thalamic nucleus in schizophrenia: a replication study. Psychiatry Res 140:281–289PubMedCrossRef Danos P, Schmidt A, Baumann B et al (2005) Volume and neuron number of the mediodorsal thalamic nucleus in schizophrenia: a replication study. Psychiatry Res 140:281–289PubMedCrossRef
19.
Zurück zum Zitat Davis KL, Stewart DG, Friedman JI et al (2003) White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry 60:443–456PubMedCrossRef Davis KL, Stewart DG, Friedman JI et al (2003) White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry 60:443–456PubMedCrossRef
20.
Zurück zum Zitat Dewulf A (1971) Anatomy of the normal human thalamus: topometry and standardized nomenclature. Elsevier, Amsterdam Dewulf A (1971) Anatomy of the normal human thalamus: topometry and standardized nomenclature. Elsevier, Amsterdam
21.
Zurück zum Zitat Dorph-Petersen KA, Pierri JN, Sun Z et al (2004) Stereological analysis of the mediodorsal thalamic nucleus in schizophrenia: volume, neuron number, and cell types. J Comp Neurol 472:449–462PubMedCrossRef Dorph-Petersen KA, Pierri JN, Sun Z et al (2004) Stereological analysis of the mediodorsal thalamic nucleus in schizophrenia: volume, neuron number, and cell types. J Comp Neurol 472:449–462PubMedCrossRef
22.
Zurück zum Zitat Farkas E, Donka G, de Vos RA et al (2004) Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol 108:57–64PubMedCrossRef Farkas E, Donka G, de Vos RA et al (2004) Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol 108:57–64PubMedCrossRef
23.
Zurück zum Zitat Franzen G, Ingvar DH (1975) Absence of activation in frontal structures during psychological testing of chronic schizophrenics. J Neurol Neurosurg Psychiatry 38:1027–1032PubMedCrossRef Franzen G, Ingvar DH (1975) Absence of activation in frontal structures during psychological testing of chronic schizophrenics. J Neurol Neurosurg Psychiatry 38:1027–1032PubMedCrossRef
24.
25.
Zurück zum Zitat Hakak Y, Walker JR, Li C et al (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 98:4746–4751PubMedCrossRef Hakak Y, Walker JR, Li C et al (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 98:4746–4751PubMedCrossRef
26.
Zurück zum Zitat Hanson DR, Gottesman II (2005) Theories of schizophrenia: a genetic-inflammatory-vascular synthesis. BMC Med Genet 6:7PubMedCrossRef Hanson DR, Gottesman II (2005) Theories of schizophrenia: a genetic-inflammatory-vascular synthesis. BMC Med Genet 6:7PubMedCrossRef
27.
Zurück zum Zitat Harris LW, Wayland M, Lan M et al (2008) The cerebral microvasculature in schizophrenia: a laser capture microdissection study. PLoS ONE 3:e3964PubMedCrossRef Harris LW, Wayland M, Lan M et al (2008) The cerebral microvasculature in schizophrenia: a laser capture microdissection study. PLoS ONE 3:e3964PubMedCrossRef
28.
Zurück zum Zitat Harrison PJ (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122:593–624PubMedCrossRef Harrison PJ (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122:593–624PubMedCrossRef
29.
Zurück zum Zitat Harrison PJ, Owen MJ (2003) Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 361:417–419PubMedCrossRef Harrison PJ, Owen MJ (2003) Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 361:417–419PubMedCrossRef
30.
Zurück zum Zitat Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40–68PubMedCrossRef Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40–68PubMedCrossRef
31.
Zurück zum Zitat Heinsen H, Heinsen YL (1991) Serial thick, frozen, gallocyanin stained sections of human central nervous system. J Histotechnol 14:167–173 Heinsen H, Heinsen YL (1991) Serial thick, frozen, gallocyanin stained sections of human central nervous system. J Histotechnol 14:167–173
32.
Zurück zum Zitat Heinsen H, Rub U, Bauer M et al (1999) Nerve cell loss in the thalamic mediodorsal nucleus in Huntington’s disease. Acta Neuropathol 97:613–622PubMedCrossRef Heinsen H, Rub U, Bauer M et al (1999) Nerve cell loss in the thalamic mediodorsal nucleus in Huntington’s disease. Acta Neuropathol 97:613–622PubMedCrossRef
33.
Zurück zum Zitat Hill K, Mann L, Laws KR et al (2004) Hypofrontality in schizophrenia: a meta-analysis of functional imaging studies. Acta Psychiatr Scand 110:243–256PubMedCrossRef Hill K, Mann L, Laws KR et al (2004) Hypofrontality in schizophrenia: a meta-analysis of functional imaging studies. Acta Psychiatr Scand 110:243–256PubMedCrossRef
34.
Zurück zum Zitat Hirai T, Jones EG (1989) A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Rev 14:1–34PubMedCrossRef Hirai T, Jones EG (1989) A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Rev 14:1–34PubMedCrossRef
35.
Zurück zum Zitat Hof PR, Haroutunian V, Copland C et al (2002) Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia. Neurochem Res 27:1193–1200PubMedCrossRef Hof PR, Haroutunian V, Copland C et al (2002) Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia. Neurochem Res 27:1193–1200PubMedCrossRef
36.
Zurück zum Zitat Hof PR, Haroutunian V, Friedrich VL Jr et al (2003) Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry 53:1075–1085PubMedCrossRef Hof PR, Haroutunian V, Friedrich VL Jr et al (2003) Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry 53:1075–1085PubMedCrossRef
37.
Zurück zum Zitat Holt DJ, Herman MM, Hyde TM et al (1999) Evidence for a deficit in cholinergic interneurons in the striatum in schizophrenia. Neuroscience 94:21–31PubMedCrossRef Holt DJ, Herman MM, Hyde TM et al (1999) Evidence for a deficit in cholinergic interneurons in the striatum in schizophrenia. Neuroscience 94:21–31PubMedCrossRef
38.
Zurück zum Zitat Ingvar DH, Franzen G (1974) Distribution of cerebral activity in chronic schizophrenia. Lancet 2:1484–1486PubMedCrossRef Ingvar DH, Franzen G (1974) Distribution of cerebral activity in chronic schizophrenia. Lancet 2:1484–1486PubMedCrossRef
39.
Zurück zum Zitat Iwamoto K, Bundo M, Kato T (2005) Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 14:241–253PubMedCrossRef Iwamoto K, Bundo M, Kato T (2005) Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 14:241–253PubMedCrossRef
40.
Zurück zum Zitat Jones EG (1997) A description of the human thalamus. In: Steriade M, Jones EG, McCormick DA (eds) Thalamus, vol II. Experimental and clinical aspects. Elsevier Science, Oxford, pp 425–500 Jones EG (1997) A description of the human thalamus. In: Steriade M, Jones EG, McCormick DA (eds) Thalamus, vol II. Experimental and clinical aspects. Elsevier Science, Oxford, pp 425–500
42.
43.
Zurück zum Zitat Khaitovich P, Lockstone HE, Wayland MT et al (2008) Metabolic changes in schizophrenia and human brain evolution. Genome Biol 9:R124PubMedCrossRef Khaitovich P, Lockstone HE, Wayland MT et al (2008) Metabolic changes in schizophrenia and human brain evolution. Genome Biol 9:R124PubMedCrossRef
44.
Zurück zum Zitat Kim HJ, Koh PO, Kang SS et al (2001) The localization of dopamine D2 receptor mRNA in the human placenta and the anti-angiogenic effect of apomorphine in the chorioallantoic membrane. Life Sci 68:1031–1040PubMedCrossRef Kim HJ, Koh PO, Kang SS et al (2001) The localization of dopamine D2 receptor mRNA in the human placenta and the anti-angiogenic effect of apomorphine in the chorioallantoic membrane. Life Sci 68:1031–1040PubMedCrossRef
45.
Zurück zum Zitat Kreczmanski P, Schmidt-Kastner R, Heinsen H et al (2005) Stereological studies of capillary length density in the frontal cortex of schizophrenics. Acta Neuropathol 109:510–518PubMedCrossRef Kreczmanski P, Schmidt-Kastner R, Heinsen H et al (2005) Stereological studies of capillary length density in the frontal cortex of schizophrenics. Acta Neuropathol 109:510–518PubMedCrossRef
46.
Zurück zum Zitat Kreczmanski P, Heinsen H, Mantua V et al (2007) Volume, neuron density, and total neuron number in five subcortical regions in schizophrenia. Brain 130:678–692PubMedCrossRef Kreczmanski P, Heinsen H, Mantua V et al (2007) Volume, neuron density, and total neuron number in five subcortical regions in schizophrenia. Brain 130:678–692PubMedCrossRef
47.
Zurück zum Zitat Krimer LS, Muly EC 3rd, Williams GV et al (1998) Dopaminergic regulation of cerebral cortical microcirculation. Nat Neurosci 1:286–289PubMedCrossRef Krimer LS, Muly EC 3rd, Williams GV et al (1998) Dopaminergic regulation of cerebral cortical microcirculation. Nat Neurosci 1:286–289PubMedCrossRef
48.
Zurück zum Zitat Lauer M, Heinsen H (1996) Cytoarchitectonics of the human nucleus accumbens. J Hirnforsch 37:243–254PubMed Lauer M, Heinsen H (1996) Cytoarchitectonics of the human nucleus accumbens. J Hirnforsch 37:243–254PubMed
49.
Zurück zum Zitat Lauer M, Beckmann H (1997) The human striatum in schizophrenia. I. Increase in overall relative striatal volume in schizophrenics. Psychiatry Res 68:87–98PubMedCrossRef Lauer M, Beckmann H (1997) The human striatum in schizophrenia. I. Increase in overall relative striatal volume in schizophrenics. Psychiatry Res 68:87–98PubMedCrossRef
50.
Zurück zum Zitat Lauer M, Senitz D, Beckmann H (2001) Increased volume of the nucleus accumbens in schizophrenia. J Neural Transm 108:645–660PubMedCrossRef Lauer M, Senitz D, Beckmann H (2001) Increased volume of the nucleus accumbens in schizophrenia. J Neural Transm 108:645–660PubMedCrossRef
51.
Zurück zum Zitat Lewis DA, Lewitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25:409–432PubMedCrossRef Lewis DA, Lewitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25:409–432PubMedCrossRef
52.
Zurück zum Zitat Li JZ, Vawter MP, Walsh DM et al (2004) Systematic changes in gene expression in postmortem human brains associated with tissue pH and terminal medical conditions. Hum Mol Genet 13:609–616PubMedCrossRef Li JZ, Vawter MP, Walsh DM et al (2004) Systematic changes in gene expression in postmortem human brains associated with tissue pH and terminal medical conditions. Hum Mol Genet 13:609–616PubMedCrossRef
53.
Zurück zum Zitat Malaspina D, Harkavy-Friedman J, Corcoran C et al (2004) Resting neural activity distinguishes subgroups of schizophrenia patients. Biol Psychiatry 56:931–937PubMedCrossRef Malaspina D, Harkavy-Friedman J, Corcoran C et al (2004) Resting neural activity distinguishes subgroups of schizophrenia patients. Biol Psychiatry 56:931–937PubMedCrossRef
54.
Zurück zum Zitat Meyer-Lindenberg A, Miletich RS, Kohn PD et al (2002) Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 5:267–271PubMedCrossRef Meyer-Lindenberg A, Miletich RS, Kohn PD et al (2002) Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 5:267–271PubMedCrossRef
55.
Zurück zum Zitat Middleton FA, Mirnics K, Pierri JN et al (2002) Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci 22:2718–2729PubMed Middleton FA, Mirnics K, Pierri JN et al (2002) Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci 22:2718–2729PubMed
56.
Zurück zum Zitat Mouton PR, Gokhale AM, Ward NL et al (2002) Stereological length estimation using spherical probes. J Microsc 206:54–64PubMedCrossRef Mouton PR, Gokhale AM, Ward NL et al (2002) Stereological length estimation using spherical probes. J Microsc 206:54–64PubMedCrossRef
58.
Zurück zum Zitat Pakkenberg B (1990) Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 47:1023–1028PubMed Pakkenberg B (1990) Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 47:1023–1028PubMed
59.
Zurück zum Zitat Popken GJ, Bunney WE, Potkin SG et al (2000) Subnucleus-specific loss of neurons in medial thalamus of schizophrenics. Proc Natl Acad Sci USA 97:9276–9280PubMedCrossRef Popken GJ, Bunney WE, Potkin SG et al (2000) Subnucleus-specific loss of neurons in medial thalamus of schizophrenics. Proc Natl Acad Sci USA 97:9276–9280PubMedCrossRef
60.
Zurück zum Zitat Prabakaran S, Swatton JE, Ryan MM et al (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9:684–697PubMedCrossRef Prabakaran S, Swatton JE, Ryan MM et al (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9:684–697PubMedCrossRef
61.
Zurück zum Zitat Schmidt-Kastner R, van Os J, WM Steinbusch H et al (2006) Gene regulation by hypoxia and the neurodevelopmental origin of schizophrenia. Schizophr Res 84:253–271 Schmidt-Kastner R, van Os J, WM Steinbusch H et al (2006) Gene regulation by hypoxia and the neurodevelopmental origin of schizophrenia. Schizophr Res 84:253–271
62.
63.
Zurück zum Zitat Schultz SK, O’Leary DS, Boles Ponto LL et al (2002) Age and regional cerebral blood flow in schizophrenia: age effects in anterior cingulate, frontal, and parietal cortex. J Neuropsychiatry Clin Neurosci 14:19–24PubMed Schultz SK, O’Leary DS, Boles Ponto LL et al (2002) Age and regional cerebral blood flow in schizophrenia: age effects in anterior cingulate, frontal, and parietal cortex. J Neuropsychiatry Clin Neurosci 14:19–24PubMed
64.
Zurück zum Zitat Schumann CM, Amaral DG (2005) Stereological estimation of the number of neurons in the human amygdaloid complex. J Comp Neurol 491:320–329PubMedCrossRef Schumann CM, Amaral DG (2005) Stereological estimation of the number of neurons in the human amygdaloid complex. J Comp Neurol 491:320–329PubMedCrossRef
65.
Zurück zum Zitat Siever LJ, Davis KL (2004) The pathophysiology of schizophrenia disorders: perspectives from the spectrum. Am J Psychiatry 161:398–413PubMedCrossRef Siever LJ, Davis KL (2004) The pathophysiology of schizophrenia disorders: perspectives from the spectrum. Am J Psychiatry 161:398–413PubMedCrossRef
66.
Zurück zum Zitat Sims KS, Williams RS (1990) The human amygdaloid complex: a cytologic and histochemical atlas using Nissl, myelin, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase staining. Neuroscience 36:449–472PubMedCrossRef Sims KS, Williams RS (1990) The human amygdaloid complex: a cytologic and histochemical atlas using Nissl, myelin, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase staining. Neuroscience 36:449–472PubMedCrossRef
67.
Zurück zum Zitat Sorvari H, Soininen H, Pitkanen A (1996) Calbindin-D28K-immunoreactive cells and fibres in the human amygdaloid complex. Neuroscience 75:421–443PubMedCrossRef Sorvari H, Soininen H, Pitkanen A (1996) Calbindin-D28K-immunoreactive cells and fibres in the human amygdaloid complex. Neuroscience 75:421–443PubMedCrossRef
68.
Zurück zum Zitat Teunis MA, Kavelaars A, Voest E (2002) Reduced tumor growth, experimental metastasis formation, and angiogenesis in rats with a hyperreactive dopaminergic system. FASEB J 16:1465–1467PubMed Teunis MA, Kavelaars A, Voest E (2002) Reduced tumor growth, experimental metastasis formation, and angiogenesis in rats with a hyperreactive dopaminergic system. FASEB J 16:1465–1467PubMed
69.
Zurück zum Zitat Tkachev D, Mimmack ML, Ryan MM et al (2003) Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362:798–805PubMedCrossRef Tkachev D, Mimmack ML, Ryan MM et al (2003) Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362:798–805PubMedCrossRef
70.
Zurück zum Zitat Tomita H, Vawter MP, Walsh DM et al (2004) Effect of agonal and postmortem factors on gene expression profile: quality control in microarray analyses of postmortem human brain. Biol Psychiatry 55:346–352PubMedCrossRef Tomita H, Vawter MP, Walsh DM et al (2004) Effect of agonal and postmortem factors on gene expression profile: quality control in microarray analyses of postmortem human brain. Biol Psychiatry 55:346–352PubMedCrossRef
71.
72.
Zurück zum Zitat Vawter MP, Tomita H, Meng F et al (2006) Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders. Mol Psychiatry 615:663–679CrossRef Vawter MP, Tomita H, Meng F et al (2006) Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders. Mol Psychiatry 615:663–679CrossRef
73.
Zurück zum Zitat Webster MJ, Knable MB, Johnston-Wilson N et al (2001) Immunohistochemical localization of phosphorylated glial fibrillary acidic protein in the prefrontal cortex and hippocampus from patients with schizophrenia, bipolar disorder, and depression. Brain Behav Immunol 15:388–400CrossRef Webster MJ, Knable MB, Johnston-Wilson N et al (2001) Immunohistochemical localization of phosphorylated glial fibrillary acidic protein in the prefrontal cortex and hippocampus from patients with schizophrenia, bipolar disorder, and depression. Brain Behav Immunol 15:388–400CrossRef
74.
Zurück zum Zitat Weinberger DR, Berman KF, Zec RF (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 43:114–124PubMed Weinberger DR, Berman KF, Zec RF (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 43:114–124PubMed
75.
Zurück zum Zitat Young KA, Manaye KF, Liang C et al (2000) Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia. Biol Psychiatry 47:944–953PubMedCrossRef Young KA, Manaye KF, Liang C et al (2000) Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia. Biol Psychiatry 47:944–953PubMedCrossRef
Metadaten
Titel
Microvessel length density, total length, and length per neuron in five subcortical regions in schizophrenia
verfasst von
Pawel Kreczmanski
Helmut Heinsen
Valentina Mantua
Fritz Woltersdorf
Thorsten Masson
Norbert Ulfig
Rainald Schmidt-Kastner
Hubert Korr
Harry W. M. Steinbusch
Patrick R. Hof
Christoph Schmitz
Publikationsdatum
01.04.2009
Verlag
Springer-Verlag
Erschienen in
Acta Neuropathologica / Ausgabe 4/2009
Print ISSN: 0001-6322
Elektronische ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-009-0482-7

Weitere Artikel der Ausgabe 4/2009

Acta Neuropathologica 4/2009 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.