Skip to main content
Erschienen in: Inflammation 1/2013

01.02.2013

Minocycline Treatment and Bone Marrow Mononuclear Cell Transplantation After Endothelin-1 Induced Striatal Ischemia

verfasst von: Marcelo M. Cardoso, Edna C. S. Franco, Celice C. de Souza, Michelle C. da Silva, Amauri Gouveia, Walace Gomes-Leal

Erschienen in: Inflammation | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Abstract

We explored whether the modulation of microglia activation with minocycline is beneficial to the therapeutic actions of bone marrow mononuclear cells (BMMCs) transplanted after experimental stroke. Male Wistar adult rats were divided in four experimental groups: ischemic control saline treated (G1, N = 6), ischemic minocycline treated (G2, N = 5), ischemic BMMC treated (G3, N = 5), and ischemic minocycline/BMMC treated (G4, N = 6). There was a significant reduction in the number of ED1+ cells in G3 animals (51.31 ± 2.41, P < 0.05), but this effect was more prominent following concomitant treatment with minocycline (G4 = 29.78 ± 1.56). There was conspicuous neuronal preservation in the brains of G4 animals (87.97 ± 4.27) compared with control group (G1 = 47.61 ± 2.25, P < 0.05). The behavioral tests showed better functional recovery in animals of G2, G3, and G4, compared with G1 and baseline (P < 0.05). The results suggest that a proper modulation of microglia activity may contribute to a more permissive ischemic environment contributing to increased neuroprotection and functional recovery following striatal ischemia.
Literatur
1.
Zurück zum Zitat Perry, V.H., J.A. Nicoll, and C. Holmes. 2010. Microglia in neurodegenerative disease. Nature Reviews Neurology 6: 193–201.PubMedCrossRef Perry, V.H., J.A. Nicoll, and C. Holmes. 2010. Microglia in neurodegenerative disease. Nature Reviews Neurology 6: 193–201.PubMedCrossRef
2.
Zurück zum Zitat Lalancette-Hebert, M., G. Gowing, A. Simard, Y.C. Weng, and J. Kriz. 2007. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. Journal of Neuroscience 27: 2596–2605.PubMedCrossRef Lalancette-Hebert, M., G. Gowing, A. Simard, Y.C. Weng, and J. Kriz. 2007. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. Journal of Neuroscience 27: 2596–2605.PubMedCrossRef
3.
Zurück zum Zitat Neumann, J., S. Sauerzweig, R. Ronicke, F. Gunzer, K. Dinkel, O. Ullrich, et al. 2008. Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege. Journal of Neuroscience 28: 5965–5975.PubMedCrossRef Neumann, J., S. Sauerzweig, R. Ronicke, F. Gunzer, K. Dinkel, O. Ullrich, et al. 2008. Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege. Journal of Neuroscience 28: 5965–5975.PubMedCrossRef
4.
Zurück zum Zitat Thored, P., U. Heldmann, W. Gomes-Leal, R. Gisler, V. Darsalia, J. Taneera, et al. 2009. Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia 57: 835–849.PubMedCrossRef Thored, P., U. Heldmann, W. Gomes-Leal, R. Gisler, V. Darsalia, J. Taneera, et al. 2009. Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia 57: 835–849.PubMedCrossRef
5.
Zurück zum Zitat Yrjanheikki, J., T. Tikka, R. Keinanen, G. Goldsteins, P.H. Chan, and J. Koistinaho. 1999. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proceedings of the National Academy of Sciences of the United States of America 96: 13496–13500.PubMedCrossRef Yrjanheikki, J., T. Tikka, R. Keinanen, G. Goldsteins, P.H. Chan, and J. Koistinaho. 1999. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proceedings of the National Academy of Sciences of the United States of America 96: 13496–13500.PubMedCrossRef
6.
Zurück zum Zitat Hamby, A.M., S.W. Suh, T.M. Kauppinen, and R.A. Swanson. 2007. Use of a poly(ADP-ribose) polymerase inhibitor to suppress inflammation and neuronal death after cerebral ischemia-reperfusion. Stroke 38: 632–636.PubMedCrossRef Hamby, A.M., S.W. Suh, T.M. Kauppinen, and R.A. Swanson. 2007. Use of a poly(ADP-ribose) polymerase inhibitor to suppress inflammation and neuronal death after cerebral ischemia-reperfusion. Stroke 38: 632–636.PubMedCrossRef
7.
Zurück zum Zitat Burguillos, M.A., T. Deierborg, E. Kavanagh, A. Persson, N. Hajji, A. Garcia-Quintanilla, et al. 2011. Caspase signalling controls microglia activation and neurotoxicity. Nature 472: 319–324.PubMedCrossRef Burguillos, M.A., T. Deierborg, E. Kavanagh, A. Persson, N. Hajji, A. Garcia-Quintanilla, et al. 2011. Caspase signalling controls microglia activation and neurotoxicity. Nature 472: 319–324.PubMedCrossRef
8.
Zurück zum Zitat Block, M.L., L. Zecca, and J.S. Hong. 2007. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8: 57–69.PubMedCrossRef Block, M.L., L. Zecca, and J.S. Hong. 2007. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8: 57–69.PubMedCrossRef
9.
Zurück zum Zitat Lampl, Y., M. Boaz, R. Gilad, M. Lorberboym, R. Dabby, A. Rapoport, et al. 2007. Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology 69: 1404–1410.PubMedCrossRef Lampl, Y., M. Boaz, R. Gilad, M. Lorberboym, R. Dabby, A. Rapoport, et al. 2007. Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology 69: 1404–1410.PubMedCrossRef
10.
Zurück zum Zitat Schabitz, W.R., A. Schneider, and R. Laage. 2008. Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology 71: 1461. author reply 1461.PubMedCrossRef Schabitz, W.R., A. Schneider, and R. Laage. 2008. Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology 71: 1461. author reply 1461.PubMedCrossRef
11.
Zurück zum Zitat Fagan, S.C., J.L. Waller, F.T. Nichols, D.J. Edwards, L.C. Pettigrew, W.M. Clark, et al. 2010. Minocycline to improve neurologic outcome in stroke (MINOS): a dose-finding study. Stroke 41: 2283–2287.PubMedCrossRef Fagan, S.C., J.L. Waller, F.T. Nichols, D.J. Edwards, L.C. Pettigrew, W.M. Clark, et al. 2010. Minocycline to improve neurologic outcome in stroke (MINOS): a dose-finding study. Stroke 41: 2283–2287.PubMedCrossRef
12.
Zurück zum Zitat Weissman, I.L., D.J. Anderson, and F. Gage. 2001. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annual Review of Cell and Developmental Biology 17: 387–403.PubMedCrossRef Weissman, I.L., D.J. Anderson, and F. Gage. 2001. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annual Review of Cell and Developmental Biology 17: 387–403.PubMedCrossRef
13.
Zurück zum Zitat de Vasconcelos Dos Santos, A., J. da Costa Reis, B. Diaz Paredes, L. Moraes, Jasmin, A. Giraldi-Guimaraes, et al. 2010. Therapeutic window for treatment of cortical ischemia with bone marrow-derived cells in rats. Brain Research 1306: 149–158.PubMedCrossRef de Vasconcelos Dos Santos, A., J. da Costa Reis, B. Diaz Paredes, L. Moraes, Jasmin, A. Giraldi-Guimaraes, et al. 2010. Therapeutic window for treatment of cortical ischemia with bone marrow-derived cells in rats. Brain Research 1306: 149–158.PubMedCrossRef
14.
Zurück zum Zitat Iihoshi, S., O. Honmou, K. Houkin, K. Hashi, and J.D. Kocsis. 2004. A therapeutic window for intravenous administration of autologous bone marrow after cerebral ischemia in adult rats. Brain Research 1007: 1–9.PubMedCrossRef Iihoshi, S., O. Honmou, K. Houkin, K. Hashi, and J.D. Kocsis. 2004. A therapeutic window for intravenous administration of autologous bone marrow after cerebral ischemia in adult rats. Brain Research 1007: 1–9.PubMedCrossRef
15.
Zurück zum Zitat Brenneman, M., S. Sharma, M. Harting, R. Strong, C.S. Cox Jr., J. Aronowski, et al. 2010. Autologous bone marrow mononuclear cells enhance recovery after acute ischemic stroke in young and middle-aged rats. Journal of Cerebral Blood Flow and Metabolism 30: 140–149.PubMedCrossRef Brenneman, M., S. Sharma, M. Harting, R. Strong, C.S. Cox Jr., J. Aronowski, et al. 2010. Autologous bone marrow mononuclear cells enhance recovery after acute ischemic stroke in young and middle-aged rats. Journal of Cerebral Blood Flow and Metabolism 30: 140–149.PubMedCrossRef
16.
Zurück zum Zitat Taylor, P.L. 2011. Responsibility rewarded: ethics, engagement, and scientific autonomy in the labyrinth of the minotaur. Neuron 70: 577–581.PubMedCrossRef Taylor, P.L. 2011. Responsibility rewarded: ethics, engagement, and scientific autonomy in the labyrinth of the minotaur. Neuron 70: 577–581.PubMedCrossRef
17.
Zurück zum Zitat Ideguchi, M., M. Shinoyama, M. Gomi, H. Hayashi, N. Hashimoto, and J. Takahashi. 2008. Immune or inflammatory response by the host brain suppresses neuronal differentiation of transplanted ES cell-derived neural precursor cells. Journal of Neuroscience Research 86: 1936–1943.PubMedCrossRef Ideguchi, M., M. Shinoyama, M. Gomi, H. Hayashi, N. Hashimoto, and J. Takahashi. 2008. Immune or inflammatory response by the host brain suppresses neuronal differentiation of transplanted ES cell-derived neural precursor cells. Journal of Neuroscience Research 86: 1936–1943.PubMedCrossRef
18.
Zurück zum Zitat Buja, L.M., and D. Vela. 2010. Immunologic and inflammatory reactions to exogenous stem cells implications for experimental studies and clinical trials for myocardial repair. Journal of the American College of Cardiology 56: 1693–1700.PubMedCrossRef Buja, L.M., and D. Vela. 2010. Immunologic and inflammatory reactions to exogenous stem cells implications for experimental studies and clinical trials for myocardial repair. Journal of the American College of Cardiology 56: 1693–1700.PubMedCrossRef
19.
Zurück zum Zitat Rota Nodari, L., D. Ferrari, F. Giani, M. Bossi, V. Rodriguez-Menendez, G. Tredici, et al. 2010. Long-term survival of human neural stem cells in the ischemic rat brain upon transient immunosuppression. PLoS One 5. e14035. Rota Nodari, L., D. Ferrari, F. Giani, M. Bossi, V. Rodriguez-Menendez, G. Tredici, et al. 2010. Long-term survival of human neural stem cells in the ischemic rat brain upon transient immunosuppression. PLoS One 5. e14035.
20.
Zurück zum Zitat Keimpema, E., M.R. Fokkens, Z. Nagy, V. Agoston, P.G. Luiten, C. Nyakas, et al. 2009. Early transient presence of implanted bone marrow stem cells reduces lesion size after cerebral ischaemia in adult rats. Neuropathology and Applied Neurobiology 35: 89–102.PubMedCrossRef Keimpema, E., M.R. Fokkens, Z. Nagy, V. Agoston, P.G. Luiten, C. Nyakas, et al. 2009. Early transient presence of implanted bone marrow stem cells reduces lesion size after cerebral ischaemia in adult rats. Neuropathology and Applied Neurobiology 35: 89–102.PubMedCrossRef
21.
Zurück zum Zitat Michel-Monigadon, D., V. Nerriere-Daguin, X. Leveque, M. Plat, E. Venturi, P. Brachet, et al. 2010. Minocycline promotes long-term survival of neuronal transplant in the brain by inhibiting late microglial activation and T-cell recruitment. Transplantation 89: 816–823.PubMedCrossRef Michel-Monigadon, D., V. Nerriere-Daguin, X. Leveque, M. Plat, E. Venturi, P. Brachet, et al. 2010. Minocycline promotes long-term survival of neuronal transplant in the brain by inhibiting late microglial activation and T-cell recruitment. Transplantation 89: 816–823.PubMedCrossRef
22.
Zurück zum Zitat Morioka, T., A.N. Kalehua, and W.J. Streit. 1993. Characterization of microglial reaction after middle cerebral artery occlusion in rat brain. The Journal of Comparative Neurology 327: 123–132.PubMedCrossRef Morioka, T., A.N. Kalehua, and W.J. Streit. 1993. Characterization of microglial reaction after middle cerebral artery occlusion in rat brain. The Journal of Comparative Neurology 327: 123–132.PubMedCrossRef
23.
Zurück zum Zitat Souza-Rodrigues, R.D., R.R. Lima, J. Guimaraes-Silva, A.M. Costa, C.D. Dos Santos, C.W. Picanço-Diniz, et al. 2008. Inflammatory response and white matter damage after microinjections of endothelin-1 into the rat striatum. Brain Research 1200C: 78–88.CrossRef Souza-Rodrigues, R.D., R.R. Lima, J. Guimaraes-Silva, A.M. Costa, C.D. Dos Santos, C.W. Picanço-Diniz, et al. 2008. Inflammatory response and white matter damage after microinjections of endothelin-1 into the rat striatum. Brain Research 1200C: 78–88.CrossRef
24.
Zurück zum Zitat Dos Santos, C.D., C.W. Picanço-Diniz, and W. Gomes-Leal. 2007. Differential patterns of inflammatory response, axonal damage and myelin impairment following excitotoxic or ischemic damage to the trigeminal spinal nucleus of adult rats. Brain Research 1172: 130–144.PubMedCrossRef Dos Santos, C.D., C.W. Picanço-Diniz, and W. Gomes-Leal. 2007. Differential patterns of inflammatory response, axonal damage and myelin impairment following excitotoxic or ischemic damage to the trigeminal spinal nucleus of adult rats. Brain Research 1172: 130–144.PubMedCrossRef
25.
Zurück zum Zitat Paxinos, G., C.R. Watson, and P.C. Emson. 1980. AChE-stained horizontal sections of the rat brain in stereotaxic coordinates. Journal of Neuroscience Methods 3: 129–149.PubMedCrossRef Paxinos, G., C.R. Watson, and P.C. Emson. 1980. AChE-stained horizontal sections of the rat brain in stereotaxic coordinates. Journal of Neuroscience Methods 3: 129–149.PubMedCrossRef
26.
Zurück zum Zitat Stirling, D.P., K. Khodarahmi, J. Liu, L.T. McPhail, C.B. McBride, J.D. Steeves, et al. 2004. Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. Journal of Neuroscience 24: 2182–2190.PubMedCrossRef Stirling, D.P., K. Khodarahmi, J. Liu, L.T. McPhail, C.B. McBride, J.D. Steeves, et al. 2004. Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. Journal of Neuroscience 24: 2182–2190.PubMedCrossRef
27.
Zurück zum Zitat Ekdahl, C.T., J.H. Claasen, S. Bonde, Z. Kokaia, and O. Lindvall. 2003. Inflammation is detrimental for neurogenesis in adult brain. Proceedings of the National Academy of Sciences of the United States of America 100: 13632–13637.PubMedCrossRef Ekdahl, C.T., J.H. Claasen, S. Bonde, Z. Kokaia, and O. Lindvall. 2003. Inflammation is detrimental for neurogenesis in adult brain. Proceedings of the National Academy of Sciences of the United States of America 100: 13632–13637.PubMedCrossRef
28.
Zurück zum Zitat Giraldi-Guimaraes, A., M. Rezende-Lima, F.P. Bruno, and R. Mendez-Otero. 2009. Treatment with bone marrow mononuclear cells induces functional recovery and decreases neurodegeneration after sensorimotor cortical ischemia in rats. Brain Research 9: 108–120.CrossRef Giraldi-Guimaraes, A., M. Rezende-Lima, F.P. Bruno, and R. Mendez-Otero. 2009. Treatment with bone marrow mononuclear cells induces functional recovery and decreases neurodegeneration after sensorimotor cortical ischemia in rats. Brain Research 9: 108–120.CrossRef
29.
Zurück zum Zitat Franco, E.C., M.M. Cardoso, A. Gouvêia, A. Pereira, and W. Gomes-Leal. 2012. Modulation of microglial activation enhances neuroprotection and functional recovery derived from bone marrow mononuclear cell transplantation after cortical ischemia. Neuroscience Research 73: 122–132.PubMedCrossRef Franco, E.C., M.M. Cardoso, A. Gouvêia, A. Pereira, and W. Gomes-Leal. 2012. Modulation of microglial activation enhances neuroprotection and functional recovery derived from bone marrow mononuclear cell transplantation after cortical ischemia. Neuroscience Research 73: 122–132.PubMedCrossRef
30.
Zurück zum Zitat Sughrue, M.E., J. Mocco, R.J. Komotar, A. Mehra, A.L. D’Ambrosio, B.T. Grobelny, et al. 2006. An improved test of neurological dysfunction following transient focal cerebral ischemia in rats. Journal of Neuroscience Methods 151: 83–89.PubMedCrossRef Sughrue, M.E., J. Mocco, R.J. Komotar, A. Mehra, A.L. D’Ambrosio, B.T. Grobelny, et al. 2006. An improved test of neurological dysfunction following transient focal cerebral ischemia in rats. Journal of Neuroscience Methods 151: 83–89.PubMedCrossRef
31.
Zurück zum Zitat Mullen, R.J., C.R. Buck, and A.M. Smith. 1992. NeuN, a neuronal specific nuclear protein in vertebrates. Development 116: 201–211.PubMed Mullen, R.J., C.R. Buck, and A.M. Smith. 1992. NeuN, a neuronal specific nuclear protein in vertebrates. Development 116: 201–211.PubMed
32.
Zurück zum Zitat Dijkstra, C.D., E.A. Dopp, P. Joling, and G. Kraal. 1985. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in rat recognized by monoclonal antibodies ED1, ED2 and ED3. Advances in Experimental Medicine and Biology 186: 409–419.PubMed Dijkstra, C.D., E.A. Dopp, P. Joling, and G. Kraal. 1985. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in rat recognized by monoclonal antibodies ED1, ED2 and ED3. Advances in Experimental Medicine and Biology 186: 409–419.PubMed
33.
Zurück zum Zitat Gomes-Leal, W., D.J. Corkill, M.A. Freire, C.W. Picanco-Diniz, and V.H. Perry. 2004. Astrocytosis, microglia activation, oligodendrocyte degeneration, and pyknosis following acute spinal cord injury. Experimental Neurology 190: 456–467.PubMedCrossRef Gomes-Leal, W., D.J. Corkill, M.A. Freire, C.W. Picanco-Diniz, and V.H. Perry. 2004. Astrocytosis, microglia activation, oligodendrocyte degeneration, and pyknosis following acute spinal cord injury. Experimental Neurology 190: 456–467.PubMedCrossRef
34.
Zurück zum Zitat Bao, X., J. Wei, M. Feng, S. Lu, G. Li, W. Dou, et al. 2011. Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain Research 1367: 103–113.PubMedCrossRef Bao, X., J. Wei, M. Feng, S. Lu, G. Li, W. Dou, et al. 2011. Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain Research 1367: 103–113.PubMedCrossRef
35.
Zurück zum Zitat Parr, A.M., I. Kulbatski, T. Zahir, X. Wang, C. Yue, A. Keating, et al. 2008. Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience 155: 760–770.PubMedCrossRef Parr, A.M., I. Kulbatski, T. Zahir, X. Wang, C. Yue, A. Keating, et al. 2008. Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience 155: 760–770.PubMedCrossRef
36.
Zurück zum Zitat Zurita, M., and J. Vaquero. 2006. Bone marrow stromal cells can achieve cure of chronic paraplegic rats: functional and morphological outcome one year after transplantation. Neuroscience Letters 402: 51–56.PubMedCrossRef Zurita, M., and J. Vaquero. 2006. Bone marrow stromal cells can achieve cure of chronic paraplegic rats: functional and morphological outcome one year after transplantation. Neuroscience Letters 402: 51–56.PubMedCrossRef
37.
Zurück zum Zitat Chopp, M., Y. Li, and Z.G. Zhang. 2009. Mechanisms underlying improved recovery of neurological function after stroke in the rodent after treatment with neurorestorative cell-based therapies. Stroke 40: S143–S145.PubMedCrossRef Chopp, M., Y. Li, and Z.G. Zhang. 2009. Mechanisms underlying improved recovery of neurological function after stroke in the rodent after treatment with neurorestorative cell-based therapies. Stroke 40: S143–S145.PubMedCrossRef
38.
Zurück zum Zitat Schwarting, S., S. Litwak, W. Hao, M. Bahr, J. Weise, and H. Neumann. 2008. Hematopoietic stem cells reduce postischemic inflammation and ameliorate ischemic brain injury. Stroke 39: 2867–2875.PubMedCrossRef Schwarting, S., S. Litwak, W. Hao, M. Bahr, J. Weise, and H. Neumann. 2008. Hematopoietic stem cells reduce postischemic inflammation and ameliorate ischemic brain injury. Stroke 39: 2867–2875.PubMedCrossRef
39.
Zurück zum Zitat Sarnowska, A., H. Braun, S. Sauerzweig, and K.G. Reymann. 2009. The neuroprotective effect of bone marrow stem cells is not dependent on direct cell contact with hypoxic injured tissue. Experimental Neurology 215: 317–327.PubMedCrossRef Sarnowska, A., H. Braun, S. Sauerzweig, and K.G. Reymann. 2009. The neuroprotective effect of bone marrow stem cells is not dependent on direct cell contact with hypoxic injured tissue. Experimental Neurology 215: 317–327.PubMedCrossRef
40.
Zurück zum Zitat Hayakawa, K., K. Mishima, M. Nozako, M. Hazekawa, S. Mishima, M. Fujioka, et al. 2008. Delayed treatment with minocycline ameliorates neurologic impairment through activated microglia expressing a high-mobility group box1-inhibiting mechanism. Stroke 39: 951–958.PubMedCrossRef Hayakawa, K., K. Mishima, M. Nozako, M. Hazekawa, S. Mishima, M. Fujioka, et al. 2008. Delayed treatment with minocycline ameliorates neurologic impairment through activated microglia expressing a high-mobility group box1-inhibiting mechanism. Stroke 39: 951–958.PubMedCrossRef
41.
Zurück zum Zitat Vendrame, M., C. Gemma, D. de Mesquita, L. Collier, P.C. Bickford, C.D. Sanberg, et al. 2005. Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells and Development 14: 595–604.PubMedCrossRef Vendrame, M., C. Gemma, D. de Mesquita, L. Collier, P.C. Bickford, C.D. Sanberg, et al. 2005. Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells and Development 14: 595–604.PubMedCrossRef
42.
Zurück zum Zitat Capone, C., S. Frigerio, S. Fumagalli, M. Gelati, M.C. Principato, C. Storini, et al. 2007. Neurosphere-derived cells exert a neuroprotective action by changing the ischemic microenvironment. PLoS One 4: 1–11. Capone, C., S. Frigerio, S. Fumagalli, M. Gelati, M.C. Principato, C. Storini, et al. 2007. Neurosphere-derived cells exert a neuroprotective action by changing the ischemic microenvironment. PLoS One 4: 1–11.
43.
Zurück zum Zitat Shechter, R., A. London, C. Varol, C. Raposo, M. Cusimano, G. Yovel, et al. 2009. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Medicine 6: 1–13.CrossRef Shechter, R., A. London, C. Varol, C. Raposo, M. Cusimano, G. Yovel, et al. 2009. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Medicine 6: 1–13.CrossRef
44.
Zurück zum Zitat Coyne, T.M., A.J. Marcus, D. Woodbury, and I.B. Black. 2006. Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. Stem Cells 24: 2483–2492.PubMedCrossRef Coyne, T.M., A.J. Marcus, D. Woodbury, and I.B. Black. 2006. Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. Stem Cells 24: 2483–2492.PubMedCrossRef
45.
Zurück zum Zitat Molcanyi, M., P. Riess, K. Bentz, M. Maegele, J. Hescheler, B. Schafke, et al. 2007. Trauma-associated inflammatory response impairs embryonic stem cell survival and integration after implantation into injured rat brain. Journal of Neurotrauma 24: 625–637.PubMedCrossRef Molcanyi, M., P. Riess, K. Bentz, M. Maegele, J. Hescheler, B. Schafke, et al. 2007. Trauma-associated inflammatory response impairs embryonic stem cell survival and integration after implantation into injured rat brain. Journal of Neurotrauma 24: 625–637.PubMedCrossRef
Metadaten
Titel
Minocycline Treatment and Bone Marrow Mononuclear Cell Transplantation After Endothelin-1 Induced Striatal Ischemia
verfasst von
Marcelo M. Cardoso
Edna C. S. Franco
Celice C. de Souza
Michelle C. da Silva
Amauri Gouveia
Walace Gomes-Leal
Publikationsdatum
01.02.2013
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2013
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-012-9535-5

Weitere Artikel der Ausgabe 1/2013

Inflammation 1/2013 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.