Skip to main content
Erschienen in:

07.12.2018

MiR-15b-5p is Involved in Doxorubicin-Induced Cardiotoxicity via Inhibiting Bmpr1a Signal in H9c2 Cardiomyocyte

verfasst von: Guo-xing Wan, Lan Cheng, Hai-lun Qin, Yun-zhang Zhang, Ling-yu Wang, Yong-gang Zhang

Erschienen in: Cardiovascular Toxicology | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

The wide use of anthracyclines represented by doxorubicin (DOX) has benefited cancer patients, yet the clinical application is limited due to its cardiotoxicity. Although numerous evidences have supported a role of microRNAs (miRNAs) in DOX-induced myocardial damage, the exact etiology and pathogenesis remain largely obscure. In this study, we focused on the role of miR-15b-5p in DOX-induced cardiotoxicity. We employed a public miRNA and gene microarray to screen differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) in rat cardiomyocytes, and 33 DEMs including miR-15b-5p and 237 DEGs including Bmpr1a and Gata4 were identified. The Gene ontology (GO) and pathway enrichment analysis of 237 DEGs indicated that the DEGs were mainly enriched in heart development and ALK pathway in cardiomyocyte which included the main receptor Bmpr1a and transcription factor Gata4. The up-regulated miR-15b-5p and down-regulated Bmpr1a and Gata4 mRNA expressions were further validated in H9c2 cardiomyocytes exposed to DOX. Moreover, the results showed overexpression of miR-15b-5p or inhibition of Bmpr1a may enhance the DOX-induced apoptosis, oxidative stress and mitochondria damage in H9c2 cardiomyocytes. The Bmpr1a was suggested as a potential target of miR-15b-5p by bioinformatics prediction. We further verified the negatively regulatory effect of miR-15b-5p on Bmpr1a signaling. Moreover, we also confirmed that overexpression of miR-15b-5p may exacerbate the DOX-induced apoptosis of H9c2 cardiomyocytes by affecting the protein expression ratio of Bcl-2/Bax and Akt activation, while this pro-apoptotic effect was able to be suppressed by Bmpr1a agonist. Collectively, the results suggest that miR-15b-5p is likely involved in doxorubicin-induced cardiotoxicity via inhibiting Bmpr1a signaling in H9c2 cardiomyocytes. Our study provides a novel insight for investigating DOX-induced cardiotoxicity.
Literatur
1.
Zurück zum Zitat Roca-Alonso, L., Castellano, L., Mills, A., Dabrowska, A. F., Sikkel, M. B., Pellegrino, L.,et al (2015). Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in beta-adrenergic signaling and enhances apoptosis. Cell Death & Disease, 6, e1754.CrossRef Roca-Alonso, L., Castellano, L., Mills, A., Dabrowska, A. F., Sikkel, M. B., Pellegrino, L.,et al (2015). Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in beta-adrenergic signaling and enhances apoptosis. Cell Death & Disease, 6, e1754.CrossRef
2.
Zurück zum Zitat Zhao, L., Qi, Y., Xu, L., Tao, X., Han, X., Yin, L.,et al (2018). MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress Via targeting Nrf2 and Sirt2. Redox Biology, 15, 284–296.CrossRefPubMed Zhao, L., Qi, Y., Xu, L., Tao, X., Han, X., Yin, L.,et al (2018). MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress Via targeting Nrf2 and Sirt2. Redox Biology, 15, 284–296.CrossRefPubMed
3.
Zurück zum Zitat Mukhopadhyay, P., Rajesh, M., Batkai, S., Kashiwaya, Y., Hasko, G., Liaudet, L.,et al (2009). Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. American Journal of Physiology Heart and Circulatory Physiology, 296, H1466–H1483.CrossRefPubMedPubMedCentral Mukhopadhyay, P., Rajesh, M., Batkai, S., Kashiwaya, Y., Hasko, G., Liaudet, L.,et al (2009). Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. American Journal of Physiology Heart and Circulatory Physiology, 296, H1466–H1483.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F.,et al (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine, 18, 1639–1642.CrossRefPubMed Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F.,et al (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine, 18, 1639–1642.CrossRefPubMed
5.
Zurück zum Zitat Pecoraro, M., Del, P. M., Marzocco, S., Sorrentino, R., Ciccarelli, M., Iaccarino, G.,et al (2016). Inflammatory Mediators in a short-time mouse model of doxorubicin-induced cardiotoxicity. Toxicology and Applied Pharmacology, 293, 44–52.CrossRefPubMed Pecoraro, M., Del, P. M., Marzocco, S., Sorrentino, R., Ciccarelli, M., Iaccarino, G.,et al (2016). Inflammatory Mediators in a short-time mouse model of doxorubicin-induced cardiotoxicity. Toxicology and Applied Pharmacology, 293, 44–52.CrossRefPubMed
6.
Zurück zum Zitat Wang, J. X., Zhang, X. J., Feng, C., Sun, T., Wang, K., Wang, Y.,et al (2015). MicroRNA-532-3p regulates mitochondrial fission through targeting apoptosis repressor with caspase recruitment domain in doxorubicin cardiotoxicity. Cell Death & Disease, 6, e1677.CrossRef Wang, J. X., Zhang, X. J., Feng, C., Sun, T., Wang, K., Wang, Y.,et al (2015). MicroRNA-532-3p regulates mitochondrial fission through targeting apoptosis repressor with caspase recruitment domain in doxorubicin cardiotoxicity. Cell Death & Disease, 6, e1677.CrossRef
7.
Zurück zum Zitat Liu, L. F., Liang, Z., Lv, Z. R., Liu, X. H., Bai, J., Chen, J.,et al (2012). MicroRNA-15a/b are up-regulated in response to myocardial ischemia/reperfusion injury. Journal of Geriatric Cardiology, 9, 28–32.CrossRefPubMed Liu, L. F., Liang, Z., Lv, Z. R., Liu, X. H., Bai, J., Chen, J.,et al (2012). MicroRNA-15a/b are up-regulated in response to myocardial ischemia/reperfusion injury. Journal of Geriatric Cardiology, 9, 28–32.CrossRefPubMed
8.
Zurück zum Zitat Liu, L., Zhang, G., Liang, Z., Liu, X., Li, T., Fan, J.,et al (2014). MicroRNA-15b enhances hypoxia/reoxygenation-induced apoptosis of cardiomyocytes via a mitochondrial apoptotic pathway. Apoptosis, 19, 19–29.CrossRefPubMed Liu, L., Zhang, G., Liang, Z., Liu, X., Li, T., Fan, J.,et al (2014). MicroRNA-15b enhances hypoxia/reoxygenation-induced apoptosis of cardiomyocytes via a mitochondrial apoptotic pathway. Apoptosis, 19, 19–29.CrossRefPubMed
9.
Zurück zum Zitat Roy, S., Banerjee, J., Gnyawali, S. C., Khanna, S., He, G., Pfeiffer, D.,et al (2013). Suppression of induced microrna-15b prevents rapid loss of cardiac function in a dicer depleted model of cardiac dysfunction. PLoS ONE, 8, e66789.CrossRefPubMedPubMedCentral Roy, S., Banerjee, J., Gnyawali, S. C., Khanna, S., He, G., Pfeiffer, D.,et al (2013). Suppression of induced microrna-15b prevents rapid loss of cardiac function in a dicer depleted model of cardiac dysfunction. PLoS ONE, 8, e66789.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Nishi, H., Ono, K., Iwanaga, Y., Horie, T., Nagao, K., Takemura, G.,et al (2010). MicroRNA-15b modulates cellular ATP levels and degenerates mitochondria via Arl2 in neonatal rat cardiac myocytes. Journal of Biological Chemistry, 285, 4920–4930.CrossRefPubMed Nishi, H., Ono, K., Iwanaga, Y., Horie, T., Nagao, K., Takemura, G.,et al (2010). MicroRNA-15b modulates cellular ATP levels and degenerates mitochondria via Arl2 in neonatal rat cardiac myocytes. Journal of Biological Chemistry, 285, 4920–4930.CrossRefPubMed
11.
Zurück zum Zitat Jain, S., Wei, J., Mitrani, L. R., & Bishopric, N. H. (2012). Auto-acetylation stabilizes P300 in cardiac myocytes during acute oxidative stress, promoting STAT3 accumulation and cell survival. Breast Cancer Research and Treat, 135, 103–114.CrossRef Jain, S., Wei, J., Mitrani, L. R., & Bishopric, N. H. (2012). Auto-acetylation stabilizes P300 in cardiac myocytes during acute oxidative stress, promoting STAT3 accumulation and cell survival. Breast Cancer Research and Treat, 135, 103–114.CrossRef
12.
Zurück zum Zitat Wan, G., Ji, L., Xia, W., Cheng, L., & Zhang, Y. (2018). Screening genes associated with elevated neutrophiltolymphocyte ratio in chronic heart failure. Molecular Medicine Reports, 18, 1415–1422.PubMedPubMedCentral Wan, G., Ji, L., Xia, W., Cheng, L., & Zhang, Y. (2018). Screening genes associated with elevated neutrophiltolymphocyte ratio in chronic heart failure. Molecular Medicine Reports, 18, 1415–1422.PubMedPubMedCentral
13.
Zurück zum Zitat Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W.,et al (2015). Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43, e47.CrossRefPubMedPubMedCentral Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W.,et al (2015). Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43, e47.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Yu, G., Wang, L. G., Han, Y., & He, Q. Y. (2012). ClusterProfiler: An R Package for comparing biological themes among gene clusters. Omics-A Journal of Integrative Biology, 16, 284–287.CrossRefPubMedPubMedCentral Yu, G., Wang, L. G., Han, Y., & He, Q. Y. (2012). ClusterProfiler: An R Package for comparing biological themes among gene clusters. Omics-A Journal of Integrative Biology, 16, 284–287.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Zhao, L., Tao, X., Qi, Y., Xu, L., Yin, L., & Peng, J. (2018). Protective effect of dioscin against doxorubicin-induced cardiotoxicity via adjusting microRNA-140-5p-mediated myocardial oxidative stress. Redox Biology, 16, 189–198.CrossRefPubMedPubMedCentral Zhao, L., Tao, X., Qi, Y., Xu, L., Yin, L., & Peng, J. (2018). Protective effect of dioscin against doxorubicin-induced cardiotoxicity via adjusting microRNA-140-5p-mediated myocardial oxidative stress. Redox Biology, 16, 189–198.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Zhang, A., Sheng, Y., & Zou, M. (2017). Antiproliferative activity of alisol B in MDA-MB-231 cells is mediated by apoptosis, dysregulation of mitochondrial functions, cell cycle arrest and generation of reactive oxygen species. Biomedicine & Pharmacotherapy, 87, 110–117.CrossRef Zhang, A., Sheng, Y., & Zou, M. (2017). Antiproliferative activity of alisol B in MDA-MB-231 cells is mediated by apoptosis, dysregulation of mitochondrial functions, cell cycle arrest and generation of reactive oxygen species. Biomedicine & Pharmacotherapy, 87, 110–117.CrossRef
17.
Zurück zum Zitat Holmgren, G., Synnergren, J., Andersson, C. X., Lindahl, A., & Sartipy, P. (2016). MicroRNAs as potential biomarkers for doxorubicin-induced cardiotoxicity. Toxicology in Vitro, 34, 26–34.CrossRefPubMed Holmgren, G., Synnergren, J., Andersson, C. X., Lindahl, A., & Sartipy, P. (2016). MicroRNAs as potential biomarkers for doxorubicin-induced cardiotoxicity. Toxicology in Vitro, 34, 26–34.CrossRefPubMed
18.
Zurück zum Zitat Chaudhari, U., Nemade, H., Gaspar, J. A., Hescheler, J., Hengstler, J. G., & Sachinidis, A. (2016). MicroRNAs as early toxicity signatures of doxorubicin in human-induced pluripotent stem cell-derived cardiomyocytes. Archives of Toxicology, 90, 3087–3098.CrossRefPubMedPubMedCentral Chaudhari, U., Nemade, H., Gaspar, J. A., Hescheler, J., Hengstler, J. G., & Sachinidis, A. (2016). MicroRNAs as early toxicity signatures of doxorubicin in human-induced pluripotent stem cell-derived cardiomyocytes. Archives of Toxicology, 90, 3087–3098.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Ruggeri, C., Gioffre, S., Achilli, F., Colombo, G. I., & D’Alessandra, Y. (2018). Role of microRNAs in doxorubicin-induced cardiotoxicity: An overview of preclinical models and cancer patients. Heart Failure Reviews, 23, 109–122.CrossRefPubMed Ruggeri, C., Gioffre, S., Achilli, F., Colombo, G. I., & D’Alessandra, Y. (2018). Role of microRNAs in doxorubicin-induced cardiotoxicity: An overview of preclinical models and cancer patients. Heart Failure Reviews, 23, 109–122.CrossRefPubMed
20.
Zurück zum Zitat Gaussin, V., Morley, G. E., Cox, L., Zwijsen, A., Vance, K. M., Emile, L.,et al (2005). Alk3/Bmpr1a receptor is required for development of the atrioventricular canal into valves and annulus fibrosus. Circulation Research, 97, 219–226.CrossRefPubMedPubMedCentral Gaussin, V., Morley, G. E., Cox, L., Zwijsen, A., Vance, K. M., Emile, L.,et al (2005). Alk3/Bmpr1a receptor is required for development of the atrioventricular canal into valves and annulus fibrosus. Circulation Research, 97, 219–226.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Breckpot, J., Tranchevent, L. C., Thienpont, B., Bauters, M., Troost, E., Gewillig, M.,et al (2012). BMPR1A is a candidate gene for congenital heart defects associated with the recurrent 10Q22q23 deletion syndrome. European Journal of Medical Genetics, 55, 12–16.CrossRefPubMed Breckpot, J., Tranchevent, L. C., Thienpont, B., Bauters, M., Troost, E., Gewillig, M.,et al (2012). BMPR1A is a candidate gene for congenital heart defects associated with the recurrent 10Q22q23 deletion syndrome. European Journal of Medical Genetics, 55, 12–16.CrossRefPubMed
22.
Zurück zum Zitat El-Bizri, N., Wang, L., Merklinger, S. L., Guignabert, C., Desai, T., Urashima, T.,et al (2008). Smooth muscle protein 22Alpha-mediated patchy deletion of Bmpr1a impairs cardiac contractility but protects against pulmonary vascular remodeling. Circulation Research, 102, 380–388.CrossRefPubMed El-Bizri, N., Wang, L., Merklinger, S. L., Guignabert, C., Desai, T., Urashima, T.,et al (2008). Smooth muscle protein 22Alpha-mediated patchy deletion of Bmpr1a impairs cardiac contractility but protects against pulmonary vascular remodeling. Circulation Research, 102, 380–388.CrossRefPubMed
23.
Zurück zum Zitat Kobayashi, S., Volden, P., Timm, D., Mao, K., Xu, X., & Liang, Q. (2010). Transcription factor GATA4 inhibits doxorubicin-induced autophagy and cardiomyocyte death. Journal of Biological Chemistry, 285, 793–804.CrossRefPubMed Kobayashi, S., Volden, P., Timm, D., Mao, K., Xu, X., & Liang, Q. (2010). Transcription factor GATA4 inhibits doxorubicin-induced autophagy and cardiomyocyte death. Journal of Biological Chemistry, 285, 793–804.CrossRefPubMed
24.
Zurück zum Zitat Kobayashi, S., Lackey, T., Huang, Y., Bisping, E., Pu, W. T., Boxer, L. M.,et al (2006). Transcription factor Gata4 regulates cardiac BCL2 gene expression in vitro and in vivo. Faseb Journal, 20, 800–802.CrossRefPubMed Kobayashi, S., Lackey, T., Huang, Y., Bisping, E., Pu, W. T., Boxer, L. M.,et al (2006). Transcription factor Gata4 regulates cardiac BCL2 gene expression in vitro and in vivo. Faseb Journal, 20, 800–802.CrossRefPubMed
25.
Zurück zum Zitat Wu, Y., Zhou, X., Huang, X., Xia, Q., Chen, Z., Zhang, X.,et al (2016). Pax8 plays a pivotal role in regulation of cardiomyocyte growth and senescence. Journal of Cellular and Molecular Medicine, 20, 644–654.CrossRefPubMedPubMedCentral Wu, Y., Zhou, X., Huang, X., Xia, Q., Chen, Z., Zhang, X.,et al (2016). Pax8 plays a pivotal role in regulation of cardiomyocyte growth and senescence. Journal of Cellular and Molecular Medicine, 20, 644–654.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Yang, D., Lai, D., Huang, X., Shi, X., Gao, Z., Huang, F.,et al (2012). The defects in development and apoptosis of cardiomyocytes in mice lacking the transcriptional factor Pax-8. International Journal of Cardiology, 154, 43–51.CrossRefPubMed Yang, D., Lai, D., Huang, X., Shi, X., Gao, Z., Huang, F.,et al (2012). The defects in development and apoptosis of cardiomyocytes in mice lacking the transcriptional factor Pax-8. International Journal of Cardiology, 154, 43–51.CrossRefPubMed
27.
Zurück zum Zitat Sui, X., Li, D., Qiu, H., Gaussin, V., & Depre, C. (2009). Activation of the bone morphogenetic protein receptor by H11kinase/Hsp22 promotes cardiac cell growth and survival. Circulation Research, 104, 887–895.CrossRefPubMed Sui, X., Li, D., Qiu, H., Gaussin, V., & Depre, C. (2009). Activation of the bone morphogenetic protein receptor by H11kinase/Hsp22 promotes cardiac cell growth and survival. Circulation Research, 104, 887–895.CrossRefPubMed
Metadaten
Titel
MiR-15b-5p is Involved in Doxorubicin-Induced Cardiotoxicity via Inhibiting Bmpr1a Signal in H9c2 Cardiomyocyte
verfasst von
Guo-xing Wan
Lan Cheng
Hai-lun Qin
Yun-zhang Zhang
Ling-yu Wang
Yong-gang Zhang
Publikationsdatum
07.12.2018
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 3/2019
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-018-9495-6