Skip to main content
Erschienen in: Inflammation 5/2019

02.05.2019 | ORIGINAL ARTICLE

MiR-217 Inhibits M2-Like Macrophage Polarization by Suppressing Secretion of Interleukin-6 in Ovarian Cancer

verfasst von: Bin Jiang, Shu-Juan Zhu, Song-Shu Xiao, Min Xue

Erschienen in: Inflammation | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Abstract

Ovarian cancer is one of the most deadly cancers with rapid proliferation and poor prognosis among patients. Therapies focusing on regulation of tumor immunity and microenvironments are developing. MiR-217 was dysregulated in cancer progress and plays important roles in tumorigenesis and metastasis. However, the role of miR-217 in regulation of macrophage polarization and its underlying molecular mechanism remain unclear. The expression of miR-217 in ovarian cancerous tissues and cell lines were assessed by qRT-PCR. And we detected the staining of CD86 and CD206 via flow-cytometry and the levels of Arg-1 and CCR2 by western-blot in order to evaluate M2 macrophage polarization. The targeting regulation of miR-217 on pro-inflammatory factor IL-6 was assessed by dual-luciferase reporter assay and western-blot. ELISA assay was used to evaluate the secretion of IL-6 and IL-10 of cells. MiR-217 was found to be downregulated in ovarian cancerous tissues and cell lines. This downregulation correlated with an increased expression of the IL-6, Arg-1, CCR2, and CD206 gene. The overexpression of miR-217 in SKOV3 cells can inhibit the polarization of macrophages towards an M2-like phenotype. We also found that IL-6 was validated to induce M2 macrophage polarization and its secretion in SKOV-3 cells was inhibited by miR-217 directly. Moreover, we revealed that miR-217 suppressed M2 macrophage polarization partly thought JAK/STAT3 signal pathway. Taken together, these findings indicate that miR-217 inhibits tumor-induced M2 macrophage polarization through targeting of IL-6 and regulation JAK3/STAT3 signaling pathway, which may provide a potential therapeutic target for treating ovarian cancer.
Literatur
1.
Zurück zum Zitat Jemal, A., R. Siegel, E. Ward, Y. Hao, J. Xu, and M.J. Thun. 2009. Cancer statistics, 2009. CA: a Cancer Journal for Clinicians 59 (4): 225–249. Jemal, A., R. Siegel, E. Ward, Y. Hao, J. Xu, and M.J. Thun. 2009. Cancer statistics, 2009. CA: a Cancer Journal for Clinicians 59 (4): 225–249.
3.
Zurück zum Zitat Liu, Bei, J. Nash, Carolyn Runowicz, Helen Swede, Richard Stevens, and Zihai Li. 2010. Ovarian cancer immunotherapy: opportunities, progresses and challenges. Journal of Hematology& Oncology 3: 7.CrossRef Liu, Bei, J. Nash, Carolyn Runowicz, Helen Swede, Richard Stevens, and Zihai Li. 2010. Ovarian cancer immunotherapy: opportunities, progresses and challenges. Journal of Hematology& Oncology 3: 7.CrossRef
4.
Zurück zum Zitat Ehlen, T.G., et al. 2005. A pilot phase 2 study of oregovomab murine monoclonal antibody to CA125 as an immunotherapeutic agent for recurrent ovarian cancer. International Journal of Gynecological Cancer 15 (6): 1023–1034.CrossRefPubMed Ehlen, T.G., et al. 2005. A pilot phase 2 study of oregovomab murine monoclonal antibody to CA125 as an immunotherapeutic agent for recurrent ovarian cancer. International Journal of Gynecological Cancer 15 (6): 1023–1034.CrossRefPubMed
5.
Zurück zum Zitat Edwards, R.P., W. Gooding, B.C. Lembersky, K. Colonello, R. Hammond, C. Paradise, C.D. Kowal, A.J. Kunschner, M. Baldisseri, J.M. Kirkwood, and R.B. Herberman. 1997. Comparison of toxicity and survival following intraperitoneal recombinant interleukin-2 for persistent ovarian cancer after platinum: twenty-four-hour versus 7-day infusion. Journal of Clinical Oncology 15 (11): 3399–3407.CrossRefPubMed Edwards, R.P., W. Gooding, B.C. Lembersky, K. Colonello, R. Hammond, C. Paradise, C.D. Kowal, A.J. Kunschner, M. Baldisseri, J.M. Kirkwood, and R.B. Herberman. 1997. Comparison of toxicity and survival following intraperitoneal recombinant interleukin-2 for persistent ovarian cancer after platinum: twenty-four-hour versus 7-day infusion. Journal of Clinical Oncology 15 (11): 3399–3407.CrossRefPubMed
6.
Zurück zum Zitat Berd, D. 2001. Autologous, hapten-modified vaccine as a treatment for human cancers. Vaccine 19 (17): 2565–2570.CrossRefPubMed Berd, D. 2001. Autologous, hapten-modified vaccine as a treatment for human cancers. Vaccine 19 (17): 2565–2570.CrossRefPubMed
7.
Zurück zum Zitat Hernando, J., et al. 2002. Vaccination with autologous tumour antigen-pulsed dendritic cells in advanced gynaecological malignancies: clinical and immunological evaluation of a phase I trial. Cancer Immunology, Immunotherapy 51 (1): 45–52.CrossRefPubMed Hernando, J., et al. 2002. Vaccination with autologous tumour antigen-pulsed dendritic cells in advanced gynaecological malignancies: clinical and immunological evaluation of a phase I trial. Cancer Immunology, Immunotherapy 51 (1): 45–52.CrossRefPubMed
8.
Zurück zum Zitat Disis, M.L., V. Goodell, K. Schiffman, and K.L. Knutson. 2004. Humoral epitope-spreading following immunization with a HER-2/neu peptide based vaccine in cancer patients. Journal of Clinical Immunology 24 (5): 571–578.CrossRefPubMed Disis, M.L., V. Goodell, K. Schiffman, and K.L. Knutson. 2004. Humoral epitope-spreading following immunization with a HER-2/neu peptide based vaccine in cancer patients. Journal of Clinical Immunology 24 (5): 571–578.CrossRefPubMed
9.
Zurück zum Zitat Spill, F., D.S. Reynolds, R.D. Kamm, and M.H. Zaman. 2016. Impact of the physical microenvironment on tumor progression and metastasis. Current Opinion in Biotechnology 40: 41–48.CrossRefPubMedPubMedCentral Spill, F., D.S. Reynolds, R.D. Kamm, and M.H. Zaman. 2016. Impact of the physical microenvironment on tumor progression and metastasis. Current Opinion in Biotechnology 40: 41–48.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Santoiemma, P.P., and D.J. Powell. 2015. Tumor infiltrating lymphocytes in ovarian cancer. Cancer Biology & Therapy 16 (6): 807–820.CrossRef Santoiemma, P.P., and D.J. Powell. 2015. Tumor infiltrating lymphocytes in ovarian cancer. Cancer Biology & Therapy 16 (6): 807–820.CrossRef
11.
Zurück zum Zitat Eggermont, A., C. Robert, J.C. Soria, and L. Zitvogel. 2014. Harnessing the immune system to provide long-term survival in patients with melanoma and other solid tumors. OncoImmunology 3 (1): e27560.CrossRefPubMedPubMedCentral Eggermont, A., C. Robert, J.C. Soria, and L. Zitvogel. 2014. Harnessing the immune system to provide long-term survival in patients with melanoma and other solid tumors. OncoImmunology 3 (1): e27560.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Mantovani, A., et al. 2002. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology 23 (11): 549–555.CrossRefPubMed Mantovani, A., et al. 2002. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology 23 (11): 549–555.CrossRefPubMed
13.
Zurück zum Zitat Freedman, R.S., et al. 2000. Clinical and biological effects of intraperitoneal injections of recombinant interferon-γ and recombinant interleukin 2 with or without tumor-infiltrating lymphocytes in patients with ovarian or peritoneal carcinoma. Clinical Cancer Research 6 (6): 2268.PubMed Freedman, R.S., et al. 2000. Clinical and biological effects of intraperitoneal injections of recombinant interferon-γ and recombinant interleukin 2 with or without tumor-infiltrating lymphocytes in patients with ovarian or peritoneal carcinoma. Clinical Cancer Research 6 (6): 2268.PubMed
14.
Zurück zum Zitat Freedman, R.S., M. Deavers, J. Liu, and E. Wang. 2004. Peritoneal inflammation - a microenvironment for epithelial ovarian cancer (EOC). Journal of Translational Medicine 2 (1): 23.CrossRefPubMedPubMedCentral Freedman, R.S., M. Deavers, J. Liu, and E. Wang. 2004. Peritoneal inflammation - a microenvironment for epithelial ovarian cancer (EOC). Journal of Translational Medicine 2 (1): 23.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Kipps, E., D.S.P. Tan, and S.B. Kaye. 2013. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nature Reviews Cancer 13: 273–282.CrossRefPubMedPubMedCentral Kipps, E., D.S.P. Tan, and S.B. Kaye. 2013. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nature Reviews Cancer 13: 273–282.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Pogge von Strandmann, E., et al. 2017. Host cell interactions in ovarian cancer: pathways to therapy failure. Trends in Cancer 3 (2): 137–148.CrossRefPubMed Pogge von Strandmann, E., et al. 2017. Host cell interactions in ovarian cancer: pathways to therapy failure. Trends in Cancer 3 (2): 137–148.CrossRefPubMed
17.
Zurück zum Zitat Huang, S., et al. 2002. Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. Journal of the National Cancer Institute 94: 1134–1142.CrossRefPubMed Huang, S., et al. 2002. Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. Journal of the National Cancer Institute 94: 1134–1142.CrossRefPubMed
18.
Zurück zum Zitat Ke, X., et al. 2016. Tumor-associated macrophages promote invasion via Toll-like receptors signaling in patients with ovarian cancer. International Immunopharmacology 40 (Supplement C): 184–195.CrossRefPubMed Ke, X., et al. 2016. Tumor-associated macrophages promote invasion via Toll-like receptors signaling in patients with ovarian cancer. International Immunopharmacology 40 (Supplement C): 184–195.CrossRefPubMed
19.
Zurück zum Zitat Duluc, D., Y. Delneste, F. Tan, M.P. Moles, L. Grimaud, J. Lenoir, L. Preisser, I. Anegon, L. Catala, N. Ifrah, P. Descamps, E. Gamelin, H. Gascan, M. Hebbar, and P. Jeannin. 2007. Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood 110 (13): 4319–4330.CrossRefPubMed Duluc, D., Y. Delneste, F. Tan, M.P. Moles, L. Grimaud, J. Lenoir, L. Preisser, I. Anegon, L. Catala, N. Ifrah, P. Descamps, E. Gamelin, H. Gascan, M. Hebbar, and P. Jeannin. 2007. Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood 110 (13): 4319–4330.CrossRefPubMed
20.
Zurück zum Zitat He, L., and G.J. Hannon. 2004. MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews. Genetics 5: 522–531.CrossRefPubMed He, L., and G.J. Hannon. 2004. MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews. Genetics 5: 522–531.CrossRefPubMed
21.
Zurück zum Zitat Tong, A.W., and J. Nemunaitis. 2008. Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? Cancer Gene Therapy 15: 341–355.CrossRefPubMed Tong, A.W., and J. Nemunaitis. 2008. Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? Cancer Gene Therapy 15: 341–355.CrossRefPubMed
22.
Zurück zum Zitat He, D., J. Wang, C. Zhang, B. Shan, X. Deng, B. Li, Y. Zhou, W. Chen, J. Hong, Y. Gao, Z. Chen, and C. Duan. 2015. Down-regulation of miR-675-5p contributes to tumor progression and development by targeting pro-tumorigenic GPR55 in non-small cell lung cancer. Molecular Cancer 14: 73.CrossRefPubMedPubMedCentral He, D., J. Wang, C. Zhang, B. Shan, X. Deng, B. Li, Y. Zhou, W. Chen, J. Hong, Y. Gao, Z. Chen, and C. Duan. 2015. Down-regulation of miR-675-5p contributes to tumor progression and development by targeting pro-tumorigenic GPR55 in non-small cell lung cancer. Molecular Cancer 14: 73.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Chen, C.-Z. 2005. MicroRNAs as oncogenes and tumor suppressors. New England Journal of Medicine 353 (17): 1768–1771.CrossRefPubMed Chen, C.-Z. 2005. MicroRNAs as oncogenes and tumor suppressors. New England Journal of Medicine 353 (17): 1768–1771.CrossRefPubMed
24.
Zurück zum Zitat Su, J., Q. Wang, Y. Liu, and M. Zhong. 2014. miR-217 inhibits invasion of hepatocellular carcinoma cells through direct suppression of E2F3. Molecular and Cellular Biochemistry 392 (1–2): 289–296.CrossRefPubMed Su, J., Q. Wang, Y. Liu, and M. Zhong. 2014. miR-217 inhibits invasion of hepatocellular carcinoma cells through direct suppression of E2F3. Molecular and Cellular Biochemistry 392 (1–2): 289–296.CrossRefPubMed
25.
Zurück zum Zitat Li, J., D. Li, and W. Zhang. 2016. Tumor suppressor role of miR-217 in human epithelial ovarian cancer by targeting IGF1R. Oncology Reports 35 (3): 1671–1679.CrossRefPubMed Li, J., D. Li, and W. Zhang. 2016. Tumor suppressor role of miR-217 in human epithelial ovarian cancer by targeting IGF1R. Oncology Reports 35 (3): 1671–1679.CrossRefPubMed
27.
Zurück zum Zitat Zhao, C., W. Sun, P. Zhang, S. Ling, Y. Li, D. Zhao, J. Peng, A. Wang, Q. Li, J. Song, C. Wang, X. Xu, Z. Xu, G. Zhong, B. Han, Y.Z. Chang, and Y. Li. 2015. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biology 12 (3): 343–353.CrossRefPubMedPubMedCentral Zhao, C., W. Sun, P. Zhang, S. Ling, Y. Li, D. Zhao, J. Peng, A. Wang, Q. Li, J. Song, C. Wang, X. Xu, Z. Xu, G. Zhong, B. Han, Y.Z. Chang, and Y. Li. 2015. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biology 12 (3): 343–353.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Yin, H., X. Liang, A. Jogasuria, N.O. Davidson, and M. You. 2015. miR-217 regulates ethanol-induced hepatic inflammation by disrupting sirtuin 1-lipin-1 signaling. The American Journal of Pathology 185 (5): 1286–1296.CrossRefPubMedPubMedCentral Yin, H., X. Liang, A. Jogasuria, N.O. Davidson, and M. You. 2015. miR-217 regulates ethanol-induced hepatic inflammation by disrupting sirtuin 1-lipin-1 signaling. The American Journal of Pathology 185 (5): 1286–1296.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Wang, B., Z.L. Shen, K.W. Jiang, G. Zhao, C.Y. Wang, Y.C. Yan, Y. Yang, J.Z. Zhang, C. Shen, Z.D. Gao, Y.J. Ye, and S. Wang. 2015. MicroRNA-217 functions as a prognosis predictor and inhibits colorectal cancer cell proliferation and invasion via an AEG-1 dependent mechanism. BMC Cancer 15 (1): 437.CrossRefPubMedPubMedCentral Wang, B., Z.L. Shen, K.W. Jiang, G. Zhao, C.Y. Wang, Y.C. Yan, Y. Yang, J.Z. Zhang, C. Shen, Z.D. Gao, Y.J. Ye, and S. Wang. 2015. MicroRNA-217 functions as a prognosis predictor and inhibits colorectal cancer cell proliferation and invasion via an AEG-1 dependent mechanism. BMC Cancer 15 (1): 437.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Zhao, W.-G., S.N. Yu, Z.H. Lu, Y.H. Ma, Y.M. Gu, and J. Chen. 2010. The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis 31 (10): 1726–1733.CrossRefPubMed Zhao, W.-G., S.N. Yu, Z.H. Lu, Y.H. Ma, Y.M. Gu, and J. Chen. 2010. The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis 31 (10): 1726–1733.CrossRefPubMed
31.
Zurück zum Zitat Bai, M., et al. 2017. MiR-217 promotes cutaneous squamous cell carcinoma progression by targeting PTRF. American Journal of Translational Research 9 (2): 647–655.PubMedPubMedCentral Bai, M., et al. 2017. MiR-217 promotes cutaneous squamous cell carcinoma progression by targeting PTRF. American Journal of Translational Research 9 (2): 647–655.PubMedPubMedCentral
32.
Zurück zum Zitat Zhang, Q., Y. Yuan, J. Cui, T. Xiao, and D. Jiang. 2015. MiR-217 promotes tumor proliferation in breast cancer via targeting DACH1. Journal of Cancer 6 (2): 184–191.CrossRefPubMedPubMedCentral Zhang, Q., Y. Yuan, J. Cui, T. Xiao, and D. Jiang. 2015. MiR-217 promotes tumor proliferation in breast cancer via targeting DACH1. Journal of Cancer 6 (2): 184–191.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Yang, Y., H. Liu, H. Zhang, Q. Ye, J. Wang, B. Yang, L. Mao, W. Zhu, R.K. Leak, B. Xiao, B. Lu, J. Chen, and X. Hu. 2017. ST2/IL-33-dependent microglial response limits acute ischemic brain injury. The Journal of Neuroscience 37 (18): 4692–4704.CrossRefPubMedPubMedCentral Yang, Y., H. Liu, H. Zhang, Q. Ye, J. Wang, B. Yang, L. Mao, W. Zhu, R.K. Leak, B. Xiao, B. Lu, J. Chen, and X. Hu. 2017. ST2/IL-33-dependent microglial response limits acute ischemic brain injury. The Journal of Neuroscience 37 (18): 4692–4704.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Zhang, Y., W. Sime, M. Juhas, and A. Sjölander. 2013. Crosstalk between colon cancer cells and macrophages via inflammatory mediators and CD47 promotes tumour cell migration. European Journal of Cancer 49 (15): 3320–3334.CrossRefPubMed Zhang, Y., W. Sime, M. Juhas, and A. Sjölander. 2013. Crosstalk between colon cancer cells and macrophages via inflammatory mediators and CD47 promotes tumour cell migration. European Journal of Cancer 49 (15): 3320–3334.CrossRefPubMed
35.
Zurück zum Zitat Genin, M., F. Clement, A. Fattaccioli, M. Raes, and C. Michiels. 2015. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer 15: 577.CrossRefPubMedPubMedCentral Genin, M., F. Clement, A. Fattaccioli, M. Raes, and C. Michiels. 2015. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer 15: 577.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Rahal, O.M., A.R. Wolfe, P.K. Mandal, R. Larson, S. Tin, C. Jimenez, D. Zhang, J. Horton, J.M. Reuben, J.S. McMurray, and W.A. Woodward. 2018. Blocking interleukin (IL)4- and IL13-mediated phosphorylation of STAT6 (Tyr641) decreases M2 polarization of macrophages and protects against macrophage-mediated radioresistance of inflammatory breast cancer. International Journal of Radiation Oncology, Biology, Physics 100 (4): 1034–1043.CrossRefPubMed Rahal, O.M., A.R. Wolfe, P.K. Mandal, R. Larson, S. Tin, C. Jimenez, D. Zhang, J. Horton, J.M. Reuben, J.S. McMurray, and W.A. Woodward. 2018. Blocking interleukin (IL)4- and IL13-mediated phosphorylation of STAT6 (Tyr641) decreases M2 polarization of macrophages and protects against macrophage-mediated radioresistance of inflammatory breast cancer. International Journal of Radiation Oncology, Biology, Physics 100 (4): 1034–1043.CrossRefPubMed
37.
Zurück zum Zitat Tedesco, S., et al. 2018. Convenience versus biological significance: are PMA-differentiated THP-1 cells a reliable substitute for blood-derived macrophages when studying in vitro polarization? Frontiers in Pharmacology 9: 71.CrossRefPubMedPubMedCentral Tedesco, S., et al. 2018. Convenience versus biological significance: are PMA-differentiated THP-1 cells a reliable substitute for blood-derived macrophages when studying in vitro polarization? Frontiers in Pharmacology 9: 71.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Zhang, J., C. Wang, and H. Xu. 2017. miR-217 suppresses proliferation and promotes apoptosis in cardiac myxoma by targeting Interleukin-6. Biochemical and Biophysical Research Communications 490 (3): 713–718.CrossRefPubMed Zhang, J., C. Wang, and H. Xu. 2017. miR-217 suppresses proliferation and promotes apoptosis in cardiac myxoma by targeting Interleukin-6. Biochemical and Biophysical Research Communications 490 (3): 713–718.CrossRefPubMed
39.
Zurück zum Zitat Jeannin, P., D. Duluc, and Y. Delneste. 2011. IL-6 and leukemia-inhibitory factor are involved in the generation of tumor-associated macrophage: regulation by IFN-gamma. Immunotherapy 3 (4 Suppl): 23–26.CrossRefPubMed Jeannin, P., D. Duluc, and Y. Delneste. 2011. IL-6 and leukemia-inhibitory factor are involved in the generation of tumor-associated macrophage: regulation by IFN-gamma. Immunotherapy 3 (4 Suppl): 23–26.CrossRefPubMed
40.
Zurück zum Zitat Braune, J., U. Weyer, C. Hobusch, J. Mauer, J.C. Brüning, I. Bechmann, and M. Gericke. 2017. IL-6 regulates M2 polarization and local proliferation of adipose tissue macrophages in obesity. The Journal of Immunology 198 (7): 2927–2934.CrossRefPubMed Braune, J., U. Weyer, C. Hobusch, J. Mauer, J.C. Brüning, I. Bechmann, and M. Gericke. 2017. IL-6 regulates M2 polarization and local proliferation of adipose tissue macrophages in obesity. The Journal of Immunology 198 (7): 2927–2934.CrossRefPubMed
41.
Zurück zum Zitat Mori, T., T. Miyamoto, H. Yoshida, M. Asakawa, M. Kawasumi, T. Kobayashi, H. Morioka, K. Chiba, Y. Toyama, and A. Yoshimura. 2011. IL-1β and TNFα-initiated IL-6–STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. International Immunology 23 (11): 701–712.CrossRefPubMed Mori, T., T. Miyamoto, H. Yoshida, M. Asakawa, M. Kawasumi, T. Kobayashi, H. Morioka, K. Chiba, Y. Toyama, and A. Yoshimura. 2011. IL-1β and TNFα-initiated IL-6–STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. International Immunology 23 (11): 701–712.CrossRefPubMed
42.
Zurück zum Zitat Fu, X.L., W. Duan, C.Y. Su, F.Y. Mao, Y.P. Lv, Y.S. Teng, P.W. Yu, Y. Zhuang, and Y.L. Zhao. 2017. Interleukin 6 induces M2 macrophage differentiation by STAT3 activation that correlates with gastric cancer progression. Cancer Immunology, Immunotherapy 66 (12): 1597–1608.CrossRefPubMed Fu, X.L., W. Duan, C.Y. Su, F.Y. Mao, Y.P. Lv, Y.S. Teng, P.W. Yu, Y. Zhuang, and Y.L. Zhao. 2017. Interleukin 6 induces M2 macrophage differentiation by STAT3 activation that correlates with gastric cancer progression. Cancer Immunology, Immunotherapy 66 (12): 1597–1608.CrossRefPubMed
43.
Zurück zum Zitat Fernando, M.R., J.L. Reyes, J. Iannuzzi, G. Leung, and D.M. McKay. 2014. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages. PLoS One 9 (4): e94188.CrossRefPubMedPubMedCentral Fernando, M.R., J.L. Reyes, J. Iannuzzi, G. Leung, and D.M. McKay. 2014. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages. PLoS One 9 (4): e94188.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Wu, Q., X. Zhou, D. Huang, Y. JI, and F. Kang. 2017. IL-6 enhances osteocyte-mediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro. Cellular Physiology and Biochemistry 41 (4): 1360–1369.CrossRefPubMed Wu, Q., X. Zhou, D. Huang, Y. JI, and F. Kang. 2017. IL-6 enhances osteocyte-mediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro. Cellular Physiology and Biochemistry 41 (4): 1360–1369.CrossRefPubMed
Metadaten
Titel
MiR-217 Inhibits M2-Like Macrophage Polarization by Suppressing Secretion of Interleukin-6 in Ovarian Cancer
verfasst von
Bin Jiang
Shu-Juan Zhu
Song-Shu Xiao
Min Xue
Publikationsdatum
02.05.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01004-2

Weitere Artikel der Ausgabe 5/2019

Inflammation 5/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.