Skip to main content
Erschienen in: NeuroMolecular Medicine 2/2019

08.04.2019 | Review Paper

MiR-34 and MiR-200: Regulator of Cell Fate Plasticity and Neural Development

verfasst von: Abhishek Jauhari, Sanjay Yadav

Erschienen in: NeuroMolecular Medicine | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Abstract

Studies from last two decades have established microRNAs (miRNAs) as the most influential regulator of gene expression, especially at the post-transcriptional stage. The family of small RNA molecules including miRNAs is highly conserved and expressed throughout the multicellular organism. MiRNAs regulate gene expression by binding to 3′ UTR of protein-coding mRNAs and initiating either decay or movement of mRNAs to stress granules. Tissues or cells, which go through cell fate transformation like stem cells, brain cells, iPSCs, or cancer cells show very dynamic expression profile of miRNAs. Inability to pass the developmental stages of Dicer (miRNA maturation enzyme) knockout animals has confirmed that expression of mature and functional miRNAs is essential for proper development of different organs and tissues. Studies from our laboratory and elsewhere have demonstrated the role of miR-200 and miR-34 families in neural development and have shown higher expression of both families in mature and differentiated neurons. In present review, we have provided a general overview of miRNAs and focused on the role of miR-34 and miR-200, two miRNA families, which have the capability to change the phenotype and fate of a cell in different tissues and situations.
Literatur
Zurück zum Zitat Aberdam, D., Candi, E., Knight, R. A., & Melino, G. (2008). miRNAs, ‘stemness’ and skin. Trends in Biochemical Sciences, 33(12), 583–591.CrossRefPubMed Aberdam, D., Candi, E., Knight, R. A., & Melino, G. (2008). miRNAs, ‘stemness’ and skin. Trends in Biochemical Sciences, 33(12), 583–591.CrossRefPubMed
Zurück zum Zitat Agostini, M., Tucci, P., Killick, R., Candi, E., Sayan, B. S., di val Cervo, P. R., et al. (2011). Neuronal differentiation by TAp73 is mediated by microRNA-34a regulation of synaptic protein targets. Proceedings of the National Academy of Sciences, 108(52), 21093–21098.CrossRef Agostini, M., Tucci, P., Killick, R., Candi, E., Sayan, B. S., di val Cervo, P. R., et al. (2011). Neuronal differentiation by TAp73 is mediated by microRNA-34a regulation of synaptic protein targets. Proceedings of the National Academy of Sciences, 108(52), 21093–21098.CrossRef
Zurück zum Zitat Alvarez-Garcia, I., & Miska, E. A. (2005). MicroRNA functions in animal development and human disease. Development, 132(21), 4653–4662.CrossRefPubMed Alvarez-Garcia, I., & Miska, E. A. (2005). MicroRNA functions in animal development and human disease. Development, 132(21), 4653–4662.CrossRefPubMed
Zurück zum Zitat Amaral, P. P., & Mattick, J. S. (2008). Noncoding RNA in development. Mammalian Genome, 19(7–8), 454–492.CrossRefPubMed Amaral, P. P., & Mattick, J. S. (2008). Noncoding RNA in development. Mammalian Genome, 19(7–8), 454–492.CrossRefPubMed
Zurück zum Zitat Ambros, V., Bartel, B., Bartel, D. P., Burge, C. B., Carrington, J. C., Chen, X., et al. (2003). A uniform system for microRNA annotation. RNA, 9(3), 277–279.CrossRefPubMedPubMedCentral Ambros, V., Bartel, B., Bartel, D. P., Burge, C. B., Carrington, J. C., Chen, X., et al. (2003). A uniform system for microRNA annotation. RNA, 9(3), 277–279.CrossRefPubMedPubMedCentral
Zurück zum Zitat Andersen, S. L. (2003). Trajectories of brain development: point of vulnerability or window of opportunity? Neuroscience and Biobehavioral Reviews, 27(1), 3–18.CrossRefPubMed Andersen, S. L. (2003). Trajectories of brain development: point of vulnerability or window of opportunity? Neuroscience and Biobehavioral Reviews, 27(1), 3–18.CrossRefPubMed
Zurück zum Zitat Aranha, M. M., Santos, D. M., Solá, S., Steer, C. J., & Rodrigues, C. (2011). miR-34a regulates mouse neural stem cell differentiation. PLoS ONE, 6(8), e21396.CrossRefPubMedPubMedCentral Aranha, M. M., Santos, D. M., Solá, S., Steer, C. J., & Rodrigues, C. (2011). miR-34a regulates mouse neural stem cell differentiation. PLoS ONE, 6(8), e21396.CrossRefPubMedPubMedCentral
Zurück zum Zitat Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.CrossRefPubMed Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.CrossRefPubMed
Zurück zum Zitat Bernstein, E., Kim, S. Y., Carmell, M. A., Murchison, E. P., Alcorn, H., Li, M. Z., et al. (2003). Dicer is essential for mouse development. Nature Genetics, 35(3), 215–217.CrossRefPubMed Bernstein, E., Kim, S. Y., Carmell, M. A., Murchison, E. P., Alcorn, H., Li, M. Z., et al. (2003). Dicer is essential for mouse development. Nature Genetics, 35(3), 215–217.CrossRefPubMed
Zurück zum Zitat Bhaskaran, M., & Mohan, M. (2014). MicroRNAs: History, biogenesis, and their evolving role in animal development and disease. Veterinary Pathology, 51(4), 759–774.CrossRefPubMed Bhaskaran, M., & Mohan, M. (2014). MicroRNAs: History, biogenesis, and their evolving role in animal development and disease. Veterinary Pathology, 51(4), 759–774.CrossRefPubMed
Zurück zum Zitat Brabletz, S., & Brabletz, T. (2010). The ZEB/miR-200 feedback loop—A motor of cellular plasticity in development and cancer? EMBO Reports, 11(9), 670–677.CrossRefPubMedPubMedCentral Brabletz, S., & Brabletz, T. (2010). The ZEB/miR-200 feedback loop—A motor of cellular plasticity in development and cancer? EMBO Reports, 11(9), 670–677.CrossRefPubMedPubMedCentral
Zurück zum Zitat Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., & Cohen, S. M. (2003). Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 113(1), 25–36.CrossRefPubMed Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., & Cohen, S. M. (2003). Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 113(1), 25–36.CrossRefPubMed
Zurück zum Zitat Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9(6), 582–589.CrossRefPubMedPubMedCentral Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9(6), 582–589.CrossRefPubMedPubMedCentral
Zurück zum Zitat Burmistrova, O., Goltsov, A., Abramova, L., Kaleda, V., Orlova, V., & Rogaev, E. (2007). MicroRNA in schizophrenia: genetic and expression analysis of miR-130b (22q11). Biochemistry (Moscow), 72(5), 578–582.CrossRef Burmistrova, O., Goltsov, A., Abramova, L., Kaleda, V., Orlova, V., & Rogaev, E. (2007). MicroRNA in schizophrenia: genetic and expression analysis of miR-130b (22q11). Biochemistry (Moscow), 72(5), 578–582.CrossRef
Zurück zum Zitat Cao, X., Pfaff, S. L., & Gage, F. H. (2007). A functional study of miR-124 in the developing neural tube. Genes & Development, 21(5), 531–536.CrossRef Cao, X., Pfaff, S. L., & Gage, F. H. (2007). A functional study of miR-124 in the developing neural tube. Genes & Development, 21(5), 531–536.CrossRef
Zurück zum Zitat Carleton, M., Cleary, M. A., & Linsley, P. S. (2007). MicroRNAs and cell cycle regulation. Cell Cycle, 6(17), 2127–2132.CrossRefPubMed Carleton, M., Cleary, M. A., & Linsley, P. S. (2007). MicroRNAs and cell cycle regulation. Cell Cycle, 6(17), 2127–2132.CrossRefPubMed
Zurück zum Zitat Chen, F., & Hu, S. J. (2012). Effect of microRNA-34a in cell cycle, differentiation, and apoptosis: A review. Journal of Biochemical and Molecular Toxicology, 26(2), 79–86.CrossRefPubMed Chen, F., & Hu, S. J. (2012). Effect of microRNA-34a in cell cycle, differentiation, and apoptosis: A review. Journal of Biochemical and Molecular Toxicology, 26(2), 79–86.CrossRefPubMed
Zurück zum Zitat Chen, K., & Rajewsky, N. (2007). The evolution of gene regulation by transcription factors and microRNAs. Nature Reviews Genetics, 8(2), 93–103.CrossRefPubMed Chen, K., & Rajewsky, N. (2007). The evolution of gene regulation by transcription factors and microRNAs. Nature Reviews Genetics, 8(2), 93–103.CrossRefPubMed
Zurück zum Zitat Cheng, L.-C., Pastrana, E., Tavazoie, M., & Doetsch, F. (2009). miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nature Neuroscience, 12(4), 399–408.CrossRefPubMedPubMedCentral Cheng, L.-C., Pastrana, E., Tavazoie, M., & Doetsch, F. (2009). miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nature Neuroscience, 12(4), 399–408.CrossRefPubMedPubMedCentral
Zurück zum Zitat Cheng, S., Zhang, C., Xu, C., Wang, L., Zou, X., & Chen, G. (2014). Age-dependent neuron loss is associated with impaired adult neurogenesis in forebrain neuron-specific Dicer conditional knockout mice. The international journal of biochemistry & cell biology, 57, 186–196.CrossRef Cheng, S., Zhang, C., Xu, C., Wang, L., Zou, X., & Chen, G. (2014). Age-dependent neuron loss is associated with impaired adult neurogenesis in forebrain neuron-specific Dicer conditional knockout mice. The international journal of biochemistry & cell biology, 57, 186–196.CrossRef
Zurück zum Zitat Chinwalla, A. T., Cook, L. L., Delehaunty, K. D., Fewell, G. A., Fulton, L. A., Fulton, R. S., et al. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature, 420(6915), 520–562.CrossRefPubMed Chinwalla, A. T., Cook, L. L., Delehaunty, K. D., Fewell, G. A., Fulton, L. A., Fulton, R. S., et al. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature, 420(6915), 520–562.CrossRefPubMed
Zurück zum Zitat Choi, Y. J., Lin, C.-P., Ho, J. J., He, X., Okada, N., Bu, P., et al. (2011). miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nature Cell Biology, 13(11), 1353.CrossRefPubMedPubMedCentral Choi, Y. J., Lin, C.-P., Ho, J. J., He, X., Okada, N., Bu, P., et al. (2011). miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nature Cell Biology, 13(11), 1353.CrossRefPubMedPubMedCentral
Zurück zum Zitat Choi, P. S., Zakhary, L., Choi, W.-Y., Caron, S., Alvarez-Saavedra, E., Miska, E. A., et al. (2008). Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron, 57(1), 41–55.CrossRefPubMedPubMedCentral Choi, P. S., Zakhary, L., Choi, W.-Y., Caron, S., Alvarez-Saavedra, E., Miska, E. A., et al. (2008). Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron, 57(1), 41–55.CrossRefPubMedPubMedCentral
Zurück zum Zitat Chua, H., Bhat-Nakshatri, P., Clare, S., Morimiya, A., Badve, S., & Nakshatri, H. (2007). NF-κB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene, 26(5), 711.CrossRefPubMed Chua, H., Bhat-Nakshatri, P., Clare, S., Morimiya, A., Badve, S., & Nakshatri, H. (2007). NF-κB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene, 26(5), 711.CrossRefPubMed
Zurück zum Zitat Cifuentes, D., Xue, H., Taylor, D. W., Patnode, H., Mishima, Y., Cheloufi, S., et al. (2010). A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science, 328(5986), 1694–1698.CrossRefPubMedPubMedCentral Cifuentes, D., Xue, H., Taylor, D. W., Patnode, H., Mishima, Y., Cheloufi, S., et al. (2010). A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science, 328(5986), 1694–1698.CrossRefPubMedPubMedCentral
Zurück zum Zitat Colantuoni, C., Lipska, B. K., Ye, T., Hyde, T. M., Tao, R., Leek, J. T., et al. (2011). Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature, 478(7370), 519–523.CrossRefPubMedPubMedCentral Colantuoni, C., Lipska, B. K., Ye, T., Hyde, T. M., Tao, R., Leek, J. T., et al. (2011). Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature, 478(7370), 519–523.CrossRefPubMedPubMedCentral
Zurück zum Zitat Coolen, M., & Bally-Cuif, L. (2009). MicroRNAs in brain development and physiology. Current Opinion in Neurobiology, 19(5), 461–470.CrossRefPubMed Coolen, M., & Bally-Cuif, L. (2009). MicroRNAs in brain development and physiology. Current Opinion in Neurobiology, 19(5), 461–470.CrossRefPubMed
Zurück zum Zitat Cui, Y., Xiao, Z., Han, J., Sun, J., Ding, W., Zhao, Y., et al. (2012). MiR-125b orchestrates cell proliferation, differentiation and migration in neural stem/progenitor cells by targeting Nestin. BMC Neuroscience, 13(1), 1.CrossRef Cui, Y., Xiao, Z., Han, J., Sun, J., Ding, W., Zhao, Y., et al. (2012). MiR-125b orchestrates cell proliferation, differentiation and migration in neural stem/progenitor cells by targeting Nestin. BMC Neuroscience, 13(1), 1.CrossRef
Zurück zum Zitat Datson, N. A., van der Perk, J., de Kloet, E. R., & Vreugdenhil, E. (2001). Expression profile of 30,000 genes in rat hippocampus using SAGE. Hippocampus, 11(4), 430–444.CrossRefPubMed Datson, N. A., van der Perk, J., de Kloet, E. R., & Vreugdenhil, E. (2001). Expression profile of 30,000 genes in rat hippocampus using SAGE. Hippocampus, 11(4), 430–444.CrossRefPubMed
Zurück zum Zitat Davis, T. H., Cuellar, T. L., Koch, S. M., Barker, A. J., Harfe, B. D., McManus, M. T., et al. (2008). Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. The Journal of Neuroscience, 28(17), 4322–4330.CrossRefPubMedPubMedCentral Davis, T. H., Cuellar, T. L., Koch, S. M., Barker, A. J., Harfe, B. D., McManus, M. T., et al. (2008). Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. The Journal of Neuroscience, 28(17), 4322–4330.CrossRefPubMedPubMedCentral
Zurück zum Zitat de Antonellis, P., Medaglia, C., Cusanelli, E., Andolfo, I., Liguori, L., De Vita, G., et al. (2011). MiR-34a targeting of Notch ligand delta-like 1 impairs CD15/CD133 tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS ONE, 6(9), e24584.CrossRefPubMedPubMedCentral de Antonellis, P., Medaglia, C., Cusanelli, E., Andolfo, I., Liguori, L., De Vita, G., et al. (2011). MiR-34a targeting of Notch ligand delta-like 1 impairs CD15/CD133 tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS ONE, 6(9), e24584.CrossRefPubMedPubMedCentral
Zurück zum Zitat Du, Z.-W., Ma, L.-X., Phillips, C., & Zhang, S.-C. (2013). miR-200 and miR-96 families repress neural induction from human embryonic stem cells. Development, 140(12), 2611–2618.CrossRefPubMedPubMedCentral Du, Z.-W., Ma, L.-X., Phillips, C., & Zhang, S.-C. (2013). miR-200 and miR-96 families repress neural induction from human embryonic stem cells. Development, 140(12), 2611–2618.CrossRefPubMedPubMedCentral
Zurück zum Zitat Friedman, R. C., Farh, K. K.-H., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92–105.CrossRefPubMedPubMedCentral Friedman, R. C., Farh, K. K.-H., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92–105.CrossRefPubMedPubMedCentral
Zurück zum Zitat Gao, F.-B. (2008). Posttranscriptional control of neuronal development by microRNA networks. Trends in Neurosciences, 31(1), 20–26.CrossRefPubMed Gao, F.-B. (2008). Posttranscriptional control of neuronal development by microRNA networks. Trends in Neurosciences, 31(1), 20–26.CrossRefPubMed
Zurück zum Zitat Gioia, U., Di Carlo, V., Caramanica, P., Toselli, C., Cinquino, A., Marchioni, M., et al. (2014). Mir-23a and mir-125b regulate neural stem/progenitor cell proliferation by targeting Musashi1. RNA Biology, 11(9), 1105–1112.CrossRefPubMedPubMedCentral Gioia, U., Di Carlo, V., Caramanica, P., Toselli, C., Cinquino, A., Marchioni, M., et al. (2014). Mir-23a and mir-125b regulate neural stem/progenitor cell proliferation by targeting Musashi1. RNA Biology, 11(9), 1105–1112.CrossRefPubMedPubMedCentral
Zurück zum Zitat Giraldez, A. J., Cinalli, R. M., Glasner, M. E., Enright, A. J., Thomson, J. M., Baskerville, S., et al. (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308(5723), 833–838.CrossRefPubMed Giraldez, A. J., Cinalli, R. M., Glasner, M. E., Enright, A. J., Thomson, J. M., Baskerville, S., et al. (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308(5723), 833–838.CrossRefPubMed
Zurück zum Zitat Giusti, S. A., Vogl, A. M., Brockmann, M. M., Vercelli, C. A., Rein, M. L., Trümbach, D., et al. (2014). MicroRNA-9 controls dendritic development by targeting REST. Elife, 3, e02755.CrossRefPubMedCentral Giusti, S. A., Vogl, A. M., Brockmann, M. M., Vercelli, C. A., Rein, M. L., Trümbach, D., et al. (2014). MicroRNA-9 controls dendritic development by targeting REST. Elife, 3, e02755.CrossRefPubMedCentral
Zurück zum Zitat Gonzalez, G., & Behringer, R. R. (2009). Dicer is required for female reproductive tract development and fertility in the mouse. Molecular Reproduction and Development, 76(7), 678–688.CrossRefPubMedPubMedCentral Gonzalez, G., & Behringer, R. R. (2009). Dicer is required for female reproductive tract development and fertility in the mouse. Molecular Reproduction and Development, 76(7), 678–688.CrossRefPubMedPubMedCentral
Zurück zum Zitat Gregory, P. A., Bracken, C. P., Bert, A. G., & Goodall, G. J. (2008). MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle, 7(20), 3112–3117.CrossRefPubMed Gregory, P. A., Bracken, C. P., Bert, A. G., & Goodall, G. J. (2008). MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle, 7(20), 3112–3117.CrossRefPubMed
Zurück zum Zitat Gregory, P. A., Bracken, C. P., Smith, E., Bert, A. G., Wright, J. A., Roslan, S., et al. (2011). An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Molecular Biology of the Cell, 22(10), 1686–1698.CrossRefPubMedPubMedCentral Gregory, P. A., Bracken, C. P., Smith, E., Bert, A. G., Wright, J. A., Roslan, S., et al. (2011). An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Molecular Biology of the Cell, 22(10), 1686–1698.CrossRefPubMedPubMedCentral
Zurück zum Zitat Guroff, G. (1985). PC12 cells as a model of neuronal differentiation. In J. E. Bottenstein & G. Sato (Eds.), Cell culture in the neurosciences (pp. 245–272). Boston: Springer.CrossRef Guroff, G. (1985). PC12 cells as a model of neuronal differentiation. In J. E. Bottenstein & G. Sato (Eds.), Cell culture in the neurosciences (pp. 245–272). Boston: Springer.CrossRef
Zurück zum Zitat Gustincich, S., Sandelin, A., Plessy, C., Katayama, S., Simone, R., Lazarevic, D., et al. (2006). The complexity of the mammalian transcriptome. The Journal of Physiology, 575(2), 321–332.CrossRefPubMedPubMedCentral Gustincich, S., Sandelin, A., Plessy, C., Katayama, S., Simone, R., Lazarevic, D., et al. (2006). The complexity of the mammalian transcriptome. The Journal of Physiology, 575(2), 321–332.CrossRefPubMedPubMedCentral
Zurück zum Zitat Hamada, N., Fujita, Y., Kojima, T., Kitamoto, A., Akao, Y., Nozawa, Y., et al. (2012). MicroRNA expression profiling of NGF-treated PC12 cells revealed a critical role for miR-221 in neuronal differentiation. Neurochemistry International, 60(8), 743–750.CrossRefPubMed Hamada, N., Fujita, Y., Kojima, T., Kitamoto, A., Akao, Y., Nozawa, Y., et al. (2012). MicroRNA expression profiling of NGF-treated PC12 cells revealed a critical role for miR-221 in neuronal differentiation. Neurochemistry International, 60(8), 743–750.CrossRefPubMed
Zurück zum Zitat He, X., & Rosenfeld, M. G. (1991). Mechanisms of complex transcriptional regulation: implications for brain development. Neuron, 7(2), 183–196.CrossRefPubMed He, X., & Rosenfeld, M. G. (1991). Mechanisms of complex transcriptional regulation: implications for brain development. Neuron, 7(2), 183–196.CrossRefPubMed
Zurück zum Zitat Hermeking, H. (2010). The miR-34 family in cancer and apoptosis. Cell Death and Differentiation, 17(2), 193–199.CrossRefPubMed Hermeking, H. (2010). The miR-34 family in cancer and apoptosis. Cell Death and Differentiation, 17(2), 193–199.CrossRefPubMed
Zurück zum Zitat Hohjoh, H., & Fukushima, T. (2007a). Expression profile analysis of microRNA (miRNA) in mouse central nervous system using a new miRNA detection system that examines hybridization signals at every step of washing. Gene, 391(1), 39–44.CrossRefPubMed Hohjoh, H., & Fukushima, T. (2007a). Expression profile analysis of microRNA (miRNA) in mouse central nervous system using a new miRNA detection system that examines hybridization signals at every step of washing. Gene, 391(1), 39–44.CrossRefPubMed
Zurück zum Zitat Hohjoh, H., & Fukushima, T. (2007b). Marked change in microRNA expression during neuronal differentiation of human teratocarcinoma NTera2D1 and mouse embryonal carcinoma P19 cells. Biochemical and Biophysical Research Communications, 362(2), 360–367.CrossRefPubMed Hohjoh, H., & Fukushima, T. (2007b). Marked change in microRNA expression during neuronal differentiation of human teratocarcinoma NTera2D1 and mouse embryonal carcinoma P19 cells. Biochemical and Biophysical Research Communications, 362(2), 360–367.CrossRefPubMed
Zurück zum Zitat Hosseinahli, N., Aghapour, M., Duijf, P. H., & Baradaran, B. (2018). Treating cancer with microRNA replacement therapy: A literature review. Journal of cellular Physiology, 233, 5574–5588.CrossRefPubMed Hosseinahli, N., Aghapour, M., Duijf, P. H., & Baradaran, B. (2018). Treating cancer with microRNA replacement therapy: A literature review. Journal of cellular Physiology, 233, 5574–5588.CrossRefPubMed
Zurück zum Zitat Huang, T., Liu, Y., Huang, M., Zhao, X., & Cheng, L. (2010). Wnt1-cre-mediated conditional loss of Dicer results in malformation of the midbrain and cerebellum and failure of neural crest and dopaminergic differentiation in mice. Journal of Molecular Cell Biology, 2(3), 152–163.CrossRefPubMed Huang, T., Liu, Y., Huang, M., Zhao, X., & Cheng, L. (2010). Wnt1-cre-mediated conditional loss of Dicer results in malformation of the midbrain and cerebellum and failure of neural crest and dopaminergic differentiation in mice. Journal of Molecular Cell Biology, 2(3), 152–163.CrossRefPubMed
Zurück zum Zitat Huang, B., & Zhang, R. (2014). Regulatory non-coding RNAs: revolutionizing the RNA world. Molecular Biology Reports, 41(6), 3915–3923.CrossRefPubMed Huang, B., & Zhang, R. (2014). Regulatory non-coding RNAs: revolutionizing the RNA world. Molecular Biology Reports, 41(6), 3915–3923.CrossRefPubMed
Zurück zum Zitat Humphries, B., & Yang, C. (2015). The microRNA-200 family: Small molecules with novel roles in cancer development, progression and therapy. Oncotarget, 6(9), 6472–6498.CrossRefPubMedPubMedCentral Humphries, B., & Yang, C. (2015). The microRNA-200 family: Small molecules with novel roles in cancer development, progression and therapy. Oncotarget, 6(9), 6472–6498.CrossRefPubMedPubMedCentral
Zurück zum Zitat Ivey, K. N., Muth, A., Arnold, J., King, F. W., Yeh, R.-F., Fish, J. E., et al. (2008). MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell, 2(3), 219–229.CrossRefPubMedPubMedCentral Ivey, K. N., Muth, A., Arnold, J., King, F. W., Yeh, R.-F., Fish, J. E., et al. (2008). MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell, 2(3), 219–229.CrossRefPubMedPubMedCentral
Zurück zum Zitat Jauhari, A., Singh, T., Pandey, A., Singh, P., Singh, N., Srivastava, A. K., et al. (2017). Differentiation induces dramatic changes in miRNA profile, where loss of dicer diverts differentiating SH-SY5Y cells toward senescence. Molecular Neurobiology, 54(7), 4986–4995.CrossRefPubMed Jauhari, A., Singh, T., Pandey, A., Singh, P., Singh, N., Srivastava, A. K., et al. (2017). Differentiation induces dramatic changes in miRNA profile, where loss of dicer diverts differentiating SH-SY5Y cells toward senescence. Molecular Neurobiology, 54(7), 4986–4995.CrossRefPubMed
Zurück zum Zitat Jauhari, A., Singh, T., Singh, P., Parmar, D., & Yadav, S. (2018a). Regulation of miR-34 family in neuronal development. Molecular Neurobiology, 55(2), 936–945.CrossRefPubMed Jauhari, A., Singh, T., Singh, P., Parmar, D., & Yadav, S. (2018a). Regulation of miR-34 family in neuronal development. Molecular Neurobiology, 55(2), 936–945.CrossRefPubMed
Zurück zum Zitat Jiang, F., Ye, X., Liu, X., Fincher, L., McKearin, D., & Liu, Q. (2005). Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes & Development, 19(14), 1674–1679.CrossRef Jiang, F., Ye, X., Liu, X., Fincher, L., McKearin, D., & Liu, Q. (2005). Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes & Development, 19(14), 1674–1679.CrossRef
Zurück zum Zitat Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428.CrossRefPubMedPubMedCentral Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428.CrossRefPubMedPubMedCentral
Zurück zum Zitat Kang, H. J., Kawasawa, Y. I., Cheng, F., Zhu, Y., Xu, X., Li, M., et al. (2011). Spatio-temporal transcriptome of the human brain. Nature, 478(7370), 483–489.CrossRefPubMedPubMedCentral Kang, H. J., Kawasawa, Y. I., Cheng, F., Zhu, Y., Xu, X., Li, M., et al. (2011). Spatio-temporal transcriptome of the human brain. Nature, 478(7370), 483–489.CrossRefPubMedPubMedCentral
Zurück zum Zitat Kapranov, P., St Laurent, G., Raz, T., Ozsolak, F., Reynolds, C. P., Sorensen, P. H., et al. (2010). The majority of total nuclear-encoded non-ribosomal RNA in a human cell is’ dark matter’un-annotated RNA. BMC Biology, 8(1), 149.CrossRefPubMedPubMedCentral Kapranov, P., St Laurent, G., Raz, T., Ozsolak, F., Reynolds, C. P., Sorensen, P. H., et al. (2010). The majority of total nuclear-encoded non-ribosomal RNA in a human cell is’ dark matter’un-annotated RNA. BMC Biology, 8(1), 149.CrossRefPubMedPubMedCentral
Zurück zum Zitat Karp, X., & Ambros, V. (2005). Encountering microRNAs in cell fate signaling. Science, 310(5752), 1288–1289.CrossRefPubMed Karp, X., & Ambros, V. (2005). Encountering microRNAs in cell fate signaling. Science, 310(5752), 1288–1289.CrossRefPubMed
Zurück zum Zitat Kawasaki, H., & Taira, K. (2003). Hes1 is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells. Nature, 423(6942), 838–842.CrossRefPubMed Kawasaki, H., & Taira, K. (2003). Hes1 is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells. Nature, 423(6942), 838–842.CrossRefPubMed
Zurück zum Zitat Kawase-Koga, Y., Low, R., Otaegi, G., Pollock, A., Deng, H., Eisenhaber, F., et al. (2010). RNAase-III enzyme Dicer maintains signaling pathways for differentiation and survival in mouse cortical neural stem cells. Journal of Cell Science, 123(4), 586–594.CrossRefPubMedPubMedCentral Kawase-Koga, Y., Low, R., Otaegi, G., Pollock, A., Deng, H., Eisenhaber, F., et al. (2010). RNAase-III enzyme Dicer maintains signaling pathways for differentiation and survival in mouse cortical neural stem cells. Journal of Cell Science, 123(4), 586–594.CrossRefPubMedPubMedCentral
Zurück zum Zitat Kawase-Koga, Y., Otaegi, G., & Sun, T. (2009). Different timings of Dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system. Developmental Dynamics, 238(11), 2800–2812.CrossRefPubMedPubMedCentral Kawase-Koga, Y., Otaegi, G., & Sun, T. (2009). Different timings of Dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system. Developmental Dynamics, 238(11), 2800–2812.CrossRefPubMedPubMedCentral
Zurück zum Zitat Kiecker, C., & Lumsden, A. (2005). Compartments and their boundaries in vertebrate brain development. Nature Reviews Neuroscience, 6(7), 553.CrossRefPubMed Kiecker, C., & Lumsden, A. (2005). Compartments and their boundaries in vertebrate brain development. Nature Reviews Neuroscience, 6(7), 553.CrossRefPubMed
Zurück zum Zitat Kim, V. N. (2005). MicroRNA biogenesis: Coordinated cropping and dicing. Nature Reviews Molecular Cell Biology, 6(5), 376–385.CrossRefPubMed Kim, V. N. (2005). MicroRNA biogenesis: Coordinated cropping and dicing. Nature Reviews Molecular Cell Biology, 6(5), 376–385.CrossRefPubMed
Zurück zum Zitat Kloosterman, W. P., Wienholds, E., de Bruijn, E., Kauppinen, S., & Plasterk, R. H. (2006). In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nature Methods, 3(1), 27–29.CrossRefPubMed Kloosterman, W. P., Wienholds, E., de Bruijn, E., Kauppinen, S., & Plasterk, R. H. (2006). In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nature Methods, 3(1), 27–29.CrossRefPubMed
Zurück zum Zitat Kole, A. J., Swahari, V., Hammond, S. M., & Deshmukh, M. (2011). miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes & Development, 25(2), 125–130.CrossRef Kole, A. J., Swahari, V., Hammond, S. M., & Deshmukh, M. (2011). miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes & Development, 25(2), 125–130.CrossRef
Zurück zum Zitat Krek, A., Grün, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., et al. (2005). Combinatorial microRNA target predictions. Nature Genetics, 37(5), 495–500.CrossRefPubMed Krek, A., Grün, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., et al. (2005). Combinatorial microRNA target predictions. Nature Genetics, 37(5), 495–500.CrossRefPubMed
Zurück zum Zitat Krichevsky, A. M., King, K. S., Donahue, C. P., Khrapko, K., & Kosik, K. S. (2003). A microRNA array reveals extensive regulation of microRNAs during brain development. RNA, 9(10), 1274–1281.CrossRefPubMedPubMedCentral Krichevsky, A. M., King, K. S., Donahue, C. P., Khrapko, K., & Kosik, K. S. (2003). A microRNA array reveals extensive regulation of microRNAs during brain development. RNA, 9(10), 1274–1281.CrossRefPubMedPubMedCentral
Zurück zum Zitat Krichevsky, A. M., Sonntag, K. C., Isacson, O., & Kosik, K. S. (2006). Specific microRNAs modulate embryonic stem cell–derived neurogenesis. Stem Cells, 24(4), 857–864.CrossRefPubMed Krichevsky, A. M., Sonntag, K. C., Isacson, O., & Kosik, K. S. (2006). Specific microRNAs modulate embryonic stem cell–derived neurogenesis. Stem Cells, 24(4), 857–864.CrossRefPubMed
Zurück zum Zitat Le, M. T., Xie, H., Zhou, B., Chia, P. H., Rizk, P., Um, M., et al. (2009). MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Molecular and Cellular Biology, 29(19), 5290–5305.CrossRefPubMedPubMedCentral Le, M. T., Xie, H., Zhou, B., Chia, P. H., Rizk, P., Um, M., et al. (2009). MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Molecular and Cellular Biology, 29(19), 5290–5305.CrossRefPubMedPubMedCentral
Zurück zum Zitat Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854.CrossRefPubMed Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854.CrossRefPubMed
Zurück zum Zitat Liu, N., Landreh, M., Cao, K., Abe, M., Hendriks, G.-J., Kennerdell, J. R., et al. (2012). The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature, 482(7386), 519–523.CrossRefPubMedPubMedCentral Liu, N., Landreh, M., Cao, K., Abe, M., Hendriks, G.-J., Kennerdell, J. R., et al. (2012). The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature, 482(7386), 519–523.CrossRefPubMedPubMedCentral
Zurück zum Zitat Loring, J., Wen, X., Lee, J., Seilhamer, J., & Somogyi, R. (2001). A gene expression profile of Alzheimer’s disease. DNA and Cell Biology, 20(11), 683–695.CrossRefPubMed Loring, J., Wen, X., Lee, J., Seilhamer, J., & Somogyi, R. (2001). A gene expression profile of Alzheimer’s disease. DNA and Cell Biology, 20(11), 683–695.CrossRefPubMed
Zurück zum Zitat Lu, M., Jolly, M. K., Levine, H., Onuchic, J. N., & Ben-Jacob, E. (2013). MicroRNA-based regulation of epithelial–hybrid–mesenchymal fate determination. Proceedings of the National Academy of Sciences, 110(45), 18144–18149.CrossRef Lu, M., Jolly, M. K., Levine, H., Onuchic, J. N., & Ben-Jacob, E. (2013). MicroRNA-based regulation of epithelial–hybrid–mesenchymal fate determination. Proceedings of the National Academy of Sciences, 110(45), 18144–18149.CrossRef
Zurück zum Zitat Luxenhofer, G., Helmbrecht, M. S., Langhoff, J., Giusti, S. A., Refojo, D., & Huber, A. B. (2014). MicroRNA-9 promotes the switch from early-born to late-born motor neuron populations by regulating Onecut transcription factor expression. Developmental Biology, 386(2), 358–370.CrossRefPubMed Luxenhofer, G., Helmbrecht, M. S., Langhoff, J., Giusti, S. A., Refojo, D., & Huber, A. B. (2014). MicroRNA-9 promotes the switch from early-born to late-born motor neuron populations by regulating Onecut transcription factor expression. Developmental Biology, 386(2), 358–370.CrossRefPubMed
Zurück zum Zitat Makeyev, E. V., Zhang, J., Carrasco, M. A., & Maniatis, T. (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Molecular Cell, 27(3), 435–448.CrossRefPubMedPubMedCentral Makeyev, E. V., Zhang, J., Carrasco, M. A., & Maniatis, T. (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Molecular Cell, 27(3), 435–448.CrossRefPubMedPubMedCentral
Zurück zum Zitat Mattick, J. S., & Makunin, I. V. (2006). Non-coding RNA. Human Molecular Genetics, 15((suppl_1)), R17–R29.CrossRefPubMed Mattick, J. S., & Makunin, I. V. (2006). Non-coding RNA. Human Molecular Genetics, 15((suppl_1)), R17–R29.CrossRefPubMed
Zurück zum Zitat Miyoshi, N., Ishii, H., Nagano, H., Haraguchi, N., Dewi, D. L., Kano, Y., et al. (2011). Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell, 8(6), 633–638.CrossRefPubMed Miyoshi, N., Ishii, H., Nagano, H., Haraguchi, N., Dewi, D. L., Kano, Y., et al. (2011). Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell, 8(6), 633–638.CrossRefPubMed
Zurück zum Zitat Motti, D., Bixby, J. L., & Lemmon, V. P. (2012). MicroRNAs and neuronal development. Seminars in Fetal and Neonatal Medicine, 17(6), 347–352.CrossRefPubMed Motti, D., Bixby, J. L., & Lemmon, V. P. (2012). MicroRNAs and neuronal development. Seminars in Fetal and Neonatal Medicine, 17(6), 347–352.CrossRefPubMed
Zurück zum Zitat Muljo, S. A., Kanellopoulou, C., & Aravind, L. (2010). MicroRNA targeting in mammalian genomes: genes and mechanisms. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2(2), 148–161.PubMed Muljo, S. A., Kanellopoulou, C., & Aravind, L. (2010). MicroRNA targeting in mammalian genomes: genes and mechanisms. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2(2), 148–161.PubMed
Zurück zum Zitat Narendra, D., Tanaka, A., Suen, D.-F., & Youle, R. J. (2009). Parkin-induced mitophagy in the pathogenesis of Parkinson disease. Autophagy, 5(5), 706–708.CrossRefPubMed Narendra, D., Tanaka, A., Suen, D.-F., & Youle, R. J. (2009). Parkin-induced mitophagy in the pathogenesis of Parkinson disease. Autophagy, 5(5), 706–708.CrossRefPubMed
Zurück zum Zitat O’Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V., & Mendell, J. T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 435(7043), 839–843.CrossRefPubMed O’Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V., & Mendell, J. T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 435(7043), 839–843.CrossRefPubMed
Zurück zum Zitat Otto, T., Candido, S. V., Pilarz, M. S., Sicinska, E., Bronson, R. T., Bowden, M., et al. (2017). Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit. Proceedings of the National Academy of Sciences, 114(40), 10660–10665.CrossRef Otto, T., Candido, S. V., Pilarz, M. S., Sicinska, E., Bronson, R. T., Bowden, M., et al. (2017). Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit. Proceedings of the National Academy of Sciences, 114(40), 10660–10665.CrossRef
Zurück zum Zitat Pandey, A., Jauhari, A., Singh, T., Singh, P., Singh, N., Srivastava, A. K., et al. (2015a). Transactivation of P53 by cypermethrin induced miR-200 and apoptosis in neuronal cells. Toxicology Research, 4(6), 1578–1586.CrossRef Pandey, A., Jauhari, A., Singh, T., Singh, P., Singh, N., Srivastava, A. K., et al. (2015a). Transactivation of P53 by cypermethrin induced miR-200 and apoptosis in neuronal cells. Toxicology Research, 4(6), 1578–1586.CrossRef
Zurück zum Zitat Pandey, A., Singh, P., Jauhari, A., Singh, T., Khan, F., Pant, A. B., et al. (2015b). Critical role of the miR-200 family in regulating differentiation and proliferation of neurons. Journal of Neurochemistry, 133(5), 640–652.CrossRefPubMed Pandey, A., Singh, P., Jauhari, A., Singh, T., Khan, F., Pant, A. B., et al. (2015b). Critical role of the miR-200 family in regulating differentiation and proliferation of neurons. Journal of Neurochemistry, 133(5), 640–652.CrossRefPubMed
Zurück zum Zitat Peng, C., Li, N., Ng, Y.-K., Zhang, J., Meier, F., Theis, F. J., et al. (2012). A unilateral negative feedback loop between miR-200 microRNAs and Sox2/E2F3 controls neural progenitor cell-cycle exit and differentiation. The Journal of Neuroscience, 32(38), 13292–13308.CrossRefPubMedPubMedCentral Peng, C., Li, N., Ng, Y.-K., Zhang, J., Meier, F., Theis, F. J., et al. (2012). A unilateral negative feedback loop between miR-200 microRNAs and Sox2/E2F3 controls neural progenitor cell-cycle exit and differentiation. The Journal of Neuroscience, 32(38), 13292–13308.CrossRefPubMedPubMedCentral
Zurück zum Zitat Peng, D., Wang, H., Li, L., Ma, X., Chen, Y., Zhou, H., et al. (2018). miR-34c-5p promotes eradication of acute myeloid leukemia stem cells by inducing senescence through selective RAB27B targeting to inhibit exosome shedding. Leukemia, 32, 1180.CrossRefPubMed Peng, D., Wang, H., Li, L., Ma, X., Chen, Y., Zhou, H., et al. (2018). miR-34c-5p promotes eradication of acute myeloid leukemia stem cells by inducing senescence through selective RAB27B targeting to inhibit exosome shedding. Leukemia, 32, 1180.CrossRefPubMed
Zurück zum Zitat Petri, R., Malmevik, J., Fasching, L., Åkerblom, M., & Jakobsson, J. (2014). miRNAs in brain development. Experimental Cell Research, 321(1), 84–89.CrossRefPubMed Petri, R., Malmevik, J., Fasching, L., Åkerblom, M., & Jakobsson, J. (2014). miRNAs in brain development. Experimental Cell Research, 321(1), 84–89.CrossRefPubMed
Zurück zum Zitat Roese-Koerner, B., Stappert, L., Berger, T., Braun, N. C., Veltel, M., Jungverdorben, J., et al. (2016). Reciprocal regulation between bifunctional miR-9/9∗ and its transcriptional modulator notch in human neural stem cell self-renewal and differentiation. Stem Cell Reports, 7(2), 207–219.CrossRefPubMedPubMedCentral Roese-Koerner, B., Stappert, L., Berger, T., Braun, N. C., Veltel, M., Jungverdorben, J., et al. (2016). Reciprocal regulation between bifunctional miR-9/9∗ and its transcriptional modulator notch in human neural stem cell self-renewal and differentiation. Stem Cell Reports, 7(2), 207–219.CrossRefPubMedPubMedCentral
Zurück zum Zitat Roshan, R., Shridhar, S., Sarangdhar, M. A., Banik, A., Chawla, M., Garg, M., et al. (2014). Brain-specific knockdown of miR-29 results in neuronal cell death and ataxia in mice. RNA, 20(8), 1287–1297.CrossRefPubMedPubMedCentral Roshan, R., Shridhar, S., Sarangdhar, M. A., Banik, A., Chawla, M., Garg, M., et al. (2014). Brain-specific knockdown of miR-29 results in neuronal cell death and ataxia in mice. RNA, 20(8), 1287–1297.CrossRefPubMedPubMedCentral
Zurück zum Zitat Sandberg, R., Yasuda, R., Pankratz, D. G., Carter, T. A., Del Rio, J. A., Wodicka, L., et al. (2000). Regional and strain-specific gene expression mapping in the adult mouse brain. Proceedings of the National Academy of Sciences, 97(20), 11038–11043.CrossRef Sandberg, R., Yasuda, R., Pankratz, D. G., Carter, T. A., Del Rio, J. A., Wodicka, L., et al. (2000). Regional and strain-specific gene expression mapping in the adult mouse brain. Proceedings of the National Academy of Sciences, 97(20), 11038–11043.CrossRef
Zurück zum Zitat Santra, M., Chopp, M., Santra, S., Nallani, A., Vyas, S., Zhang, Z. G., et al. (2016). Thymosin beta 4 up-regulates miR-200a expression and induces differentiation and survival of rat brain progenitor cells. Journal of Neurochemistry, 136(1), 118–132.CrossRefPubMed Santra, M., Chopp, M., Santra, S., Nallani, A., Vyas, S., Zhang, Z. G., et al. (2016). Thymosin beta 4 up-regulates miR-200a expression and induces differentiation and survival of rat brain progenitor cells. Journal of Neurochemistry, 136(1), 118–132.CrossRefPubMed
Zurück zum Zitat Sayed, D., & Abdellatif, M. (2011). MicroRNAs in development and disease. Physiological Reviews, 91(3), 827–887.CrossRefPubMed Sayed, D., & Abdellatif, M. (2011). MicroRNAs in development and disease. Physiological Reviews, 91(3), 827–887.CrossRefPubMed
Zurück zum Zitat Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439(7074), 283–289.CrossRefPubMed Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439(7074), 283–289.CrossRefPubMed
Zurück zum Zitat Sempere, L. F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., & Ambros, V. (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biology, 5(3), R13.CrossRefPubMedPubMedCentral Sempere, L. F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., & Ambros, V. (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biology, 5(3), R13.CrossRefPubMedPubMedCentral
Zurück zum Zitat Shin, S., & Blenis, J. (2010). ERK2/Fra1/ZEB pathway induces epithelial-to-mesenchymal transition. Routledge: Taylor & Francis.CrossRef Shin, S., & Blenis, J. (2010). ERK2/Fra1/ZEB pathway induces epithelial-to-mesenchymal transition. Routledge: Taylor & Francis.CrossRef
Zurück zum Zitat Shin, J., Shin, Y., Oh, S., Yang, H., Yu, W., Lee, J., et al. (2014). MiR-29b controls fetal mouse neurogenesis by regulating ICAT-mediated Wnt/β-catenin signaling. Cell Death & Disease, 5(10), e1473.CrossRef Shin, J., Shin, Y., Oh, S., Yang, H., Yu, W., Lee, J., et al. (2014). MiR-29b controls fetal mouse neurogenesis by regulating ICAT-mediated Wnt/β-catenin signaling. Cell Death & Disease, 5(10), e1473.CrossRef
Zurück zum Zitat Siemens, H., Jackstadt, R., Hünten, S., Kaller, M., Menssen, A., Götz, U., et al. (2011). miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle, 10(24), 4256–4271.CrossRefPubMed Siemens, H., Jackstadt, R., Hünten, S., Kaller, M., Menssen, A., Götz, U., et al. (2011). miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle, 10(24), 4256–4271.CrossRefPubMed
Zurück zum Zitat Sim, S.-E., Lim, C.-S., Kim, J.-I., Seo, D., Chun, H., Yu, N.-K., et al. (2016). The brain-enriched MicroRNA miR-9-3p regulates synaptic plasticity and memory. The Journal of Neuroscience, 36(33), 8641–8652.CrossRefPubMedPubMedCentral Sim, S.-E., Lim, C.-S., Kim, J.-I., Seo, D., Chun, H., Yu, N.-K., et al. (2016). The brain-enriched MicroRNA miR-9-3p regulates synaptic plasticity and memory. The Journal of Neuroscience, 36(33), 8641–8652.CrossRefPubMedPubMedCentral
Zurück zum Zitat Singh, T., Jauhari, A., Pandey, A., Singh, P., B Pant, A., Parmar, D., et al. (2014). Regulatory triangle of neurodegeneration, adult neurogenesis and microRNAs. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 13(1), 96–103. Singh, T., Jauhari, A., Pandey, A., Singh, P., B Pant, A., Parmar, D., et al. (2014). Regulatory triangle of neurodegeneration, adult neurogenesis and microRNAs. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 13(1), 96–103.
Zurück zum Zitat Stefani, G., & Slack, F. J. (2008). Small non-coding RNAs in animal development. Nature Reviews Molecular Cell Biology, 9(3), 219.CrossRefPubMed Stefani, G., & Slack, F. J. (2008). Small non-coding RNAs in animal development. Nature Reviews Molecular Cell Biology, 9(3), 219.CrossRefPubMed
Zurück zum Zitat Tanzer, A., & Stadler, P. F. (2004). Molecular evolution of a microRNA cluster. Journal of Molecular Biology, 339(2), 327–335.CrossRefPubMed Tanzer, A., & Stadler, P. F. (2004). Molecular evolution of a microRNA cluster. Journal of Molecular Biology, 339(2), 327–335.CrossRefPubMed
Zurück zum Zitat Tau, G. Z., & Peterson, B. S. (2010). Normal development of brain circuits. Neuropsychopharmacology, 35(1), 147.CrossRefPubMed Tau, G. Z., & Peterson, B. S. (2010). Normal development of brain circuits. Neuropsychopharmacology, 35(1), 147.CrossRefPubMed
Zurück zum Zitat Terasawa, K., Ichimura, A., Sato, F., Shimizu, K., & Tsujimoto, G. (2009). Sustained activation of ERK1/2 by NGF induces microRNA-221 and 222 in PC12 cells. FEBS Journal, 276(12), 3269–3276.CrossRefPubMed Terasawa, K., Ichimura, A., Sato, F., Shimizu, K., & Tsujimoto, G. (2009). Sustained activation of ERK1/2 by NGF induces microRNA-221 and 222 in PC12 cells. FEBS Journal, 276(12), 3269–3276.CrossRefPubMed
Zurück zum Zitat Tremblay, R. G., Sikorska, M., Sandhu, J. K., Lanthier, P., Ribecco-Lutkiewicz, M., & Bani-Yaghoub, M. (2010). Differentiation of mouse Neuro 2A cells into dopamine neurons. Journal of Neuroscience Methods, 186(1), 60–67.CrossRefPubMed Tremblay, R. G., Sikorska, M., Sandhu, J. K., Lanthier, P., Ribecco-Lutkiewicz, M., & Bani-Yaghoub, M. (2010). Differentiation of mouse Neuro 2A cells into dopamine neurons. Journal of Neuroscience Methods, 186(1), 60–67.CrossRefPubMed
Zurück zum Zitat Visvanathan, J., Lee, S., Lee, B., Lee, J. W., & Lee, S.-K. (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes & Development, 21(7), 744–749.CrossRef Visvanathan, J., Lee, S., Lee, B., Lee, J. W., & Lee, S.-K. (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes & Development, 21(7), 744–749.CrossRef
Zurück zum Zitat Wang, Z.-M., Du, W.-J., Piazza, G. A., & Xi, Y. (2013). MicroRNAs are involved in the self-renewal and differentiation of cancer stem cells. Acta Pharmacologica Sinica, 34(11), 1374.CrossRefPubMedPubMedCentral Wang, Z.-M., Du, W.-J., Piazza, G. A., & Xi, Y. (2013). MicroRNAs are involved in the self-renewal and differentiation of cancer stem cells. Acta Pharmacologica Sinica, 34(11), 1374.CrossRefPubMedPubMedCentral
Zurück zum Zitat Wheeler, B. M., Heimberg, A. M., Moy, V. N., Sperling, E. A., Holstein, T. W., Heber, S., et al. (2009). The deep evolution of metazoan microRNAs. Evolution & Development, 11(1), 50–68.CrossRef Wheeler, B. M., Heimberg, A. M., Moy, V. N., Sperling, E. A., Holstein, T. W., Heber, S., et al. (2009). The deep evolution of metazoan microRNAs. Evolution & Development, 11(1), 50–68.CrossRef
Zurück zum Zitat Wienholds, E., Kloosterman, W. P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., de Bruijn, E., et al. (2005). MicroRNA expression in zebrafish embryonic development. Science, 309(5732), 310–311.CrossRefPubMed Wienholds, E., Kloosterman, W. P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., de Bruijn, E., et al. (2005). MicroRNA expression in zebrafish embryonic development. Science, 309(5732), 310–311.CrossRefPubMed
Zurück zum Zitat Wienholds, E., Koudijs, M. J., van Eeden, F. J., Cuppen, E., & Plasterk, R. H. (2003). The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nature Genetics, 35(3), 217–218.CrossRefPubMed Wienholds, E., Koudijs, M. J., van Eeden, F. J., Cuppen, E., & Plasterk, R. H. (2003). The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nature Genetics, 35(3), 217–218.CrossRefPubMed
Zurück zum Zitat Wienholds, E., & Plasterk, R. H. (2005). MicroRNA function in animal development. FEBS Letters, 579(26), 5911–5922.CrossRefPubMed Wienholds, E., & Plasterk, R. H. (2005). MicroRNA function in animal development. FEBS Letters, 579(26), 5911–5922.CrossRefPubMed
Zurück zum Zitat Xie, H.-R., Hu, L.-S., & Li, G.-Y. (2010). SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. Chinese Medical Journal, 123(8), 1086–1092.PubMed Xie, H.-R., Hu, L.-S., & Li, G.-Y. (2010). SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. Chinese Medical Journal, 123(8), 1086–1092.PubMed
Zurück zum Zitat Xue, Q., Yu, C., Wang, Y., Liu, L., Zhang, K., Fang, C., et al. (2016). miR-9 and miR-124 synergistically affect regulation of dendritic branching via the AKT/GSK3β pathway by targeting Rap2a. Scientific Reports, 6, 26781.CrossRefPubMedPubMedCentral Xue, Q., Yu, C., Wang, Y., Liu, L., Zhang, K., Fang, C., et al. (2016). miR-9 and miR-124 synergistically affect regulation of dendritic branching via the AKT/GSK3β pathway by targeting Rap2a. Scientific Reports, 6, 26781.CrossRefPubMedPubMedCentral
Zurück zum Zitat Yadav, S., Pandey, A., Shukla, A., Talwelkar, S. S., Kumar, A., Pant, A. B., et al. (2011). miR-497 and miR-302b regulate ethanol-induced neuronal cell death through BCL2 protein and cyclin D2. Journal of Biological Chemistry, 286(43), 37347–37357.CrossRefPubMedPubMedCentral Yadav, S., Pandey, A., Shukla, A., Talwelkar, S. S., Kumar, A., Pant, A. B., et al. (2011). miR-497 and miR-302b regulate ethanol-induced neuronal cell death through BCL2 protein and cyclin D2. Journal of Biological Chemistry, 286(43), 37347–37357.CrossRefPubMedPubMedCentral
Zurück zum Zitat Yao, C.-X., Wei, Q.-X., Zhang, Y.-Y., Wang, W.-P., Xue, L.-X., Yang, F., et al. (2013). miR-200b targets GATA-4 during cell growth and differentiation. RNA Biology, 10(4), 465–480.CrossRefPubMedPubMedCentral Yao, C.-X., Wei, Q.-X., Zhang, Y.-Y., Wang, W.-P., Xue, L.-X., Yang, F., et al. (2013). miR-200b targets GATA-4 during cell growth and differentiation. RNA Biology, 10(4), 465–480.CrossRefPubMedPubMedCentral
Zurück zum Zitat Yu, J.-Y., Chung, K.-H., Deo, M., Thompson, R. C., & Turner, D. L. (2008). MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Experimental Cell Research, 314(14), 2618–2633.CrossRefPubMedPubMedCentral Yu, J.-Y., Chung, K.-H., Deo, M., Thompson, R. C., & Turner, D. L. (2008). MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Experimental Cell Research, 314(14), 2618–2633.CrossRefPubMedPubMedCentral
Zurück zum Zitat Zhang, G.-Y., Wang, J., Jia, Y.-J., Han, R., Li, P., & Zhu, D.-N. (2015). MicroRNA-9 promotes the neuronal differentiation of rat bone marrow mesenchymal stem cells by activating autophagy. Neural Regeneration Research, 10(2), 314.CrossRefPubMedPubMedCentral Zhang, G.-Y., Wang, J., Jia, Y.-J., Han, R., Li, P., & Zhu, D.-N. (2015). MicroRNA-9 promotes the neuronal differentiation of rat bone marrow mesenchymal stem cells by activating autophagy. Neural Regeneration Research, 10(2), 314.CrossRefPubMedPubMedCentral
Zurück zum Zitat Zou, Y., Huang, Y., Yang, J., Wu, J., & Luo, C. (2017). miR-34a is downregulated in human osteosarcoma stem-like cells and promotes invasion, tumorigenic ability and self-renewal capacity. Molecular Medicine Reports, 15(4), 1631–1637.CrossRefPubMedPubMedCentral Zou, Y., Huang, Y., Yang, J., Wu, J., & Luo, C. (2017). miR-34a is downregulated in human osteosarcoma stem-like cells and promotes invasion, tumorigenic ability and self-renewal capacity. Molecular Medicine Reports, 15(4), 1631–1637.CrossRefPubMedPubMedCentral
Metadaten
Titel
MiR-34 and MiR-200: Regulator of Cell Fate Plasticity and Neural Development
verfasst von
Abhishek Jauhari
Sanjay Yadav
Publikationsdatum
08.04.2019
Verlag
Springer US
Erschienen in
NeuroMolecular Medicine / Ausgabe 2/2019
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-019-08535-9

Weitere Artikel der Ausgabe 2/2019

NeuroMolecular Medicine 2/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.