Skip to main content
Erschienen in: Journal of Bone and Mineral Metabolism 6/2017

21.11.2016 | Original Article

MiR-5100 promotes osteogenic differentiation by targeting Tob2

verfasst von: Huaxin Wang, Yazhou Cui, Jing Luan, Xiaoyan Zhou, Chengzhi Li, Haiying Li, Liang Shi, Jinxiang Han

Erschienen in: Journal of Bone and Mineral Metabolism | Ausgabe 6/2017

Einloggen, um Zugang zu erhalten

Abstract

MicroRNAs have emerged as pivotal regulators in various physiological and pathological processes, including osteogenesis. Here we discuss the contribution of miR-5100 to osteoblast differentiation and mineralization. We found that miR-5100 was upregulated during osteoblast differentiation in ST2 and MC3T3-E1 cells. Next, we verified that miR-5100 can promote osteogenic differentiation with gain-of-function and loss-of-function experiments. Target prediction analysis and experimental validation demonstrated that Tob2, which acts as a negative regulator of osteogenesis, was negatively regulated by miR-5100. Furthermore, we confirmed that the important bone-related transcription factor osterix, which can be degraded by binding to Tob2, was influenced by miR-5100 during osteoblast differentiation. Collectively, our results revealed a new molecular mechanism that fine-tunes osteoblast differentiation through miR-5100/Tob2/osterix networks.
Literatur
2.
Zurück zum Zitat Chua JH, Armugam A, Jeyaseelan K (2009) MicroRNAs: biogenesis, function and applications. Curr Opin Mol Ther 11:189–199PubMed Chua JH, Armugam A, Jeyaseelan K (2009) MicroRNAs: biogenesis, function and applications. Curr Opin Mol Ther 11:189–199PubMed
3.
Zurück zum Zitat Foshay KM, Ian GG (2007) Small RNAs, big potential: the role of MicroRNAs in stem cell function. Curr Stem Cell Res Ther 2:264–271CrossRefPubMed Foshay KM, Ian GG (2007) Small RNAs, big potential: the role of MicroRNAs in stem cell function. Curr Stem Cell Res Ther 2:264–271CrossRefPubMed
5.
Zurück zum Zitat Oliver H (2008) Gene regulation by transcription factors and microRNAs. Science 319:1785–1786CrossRef Oliver H (2008) Gene regulation by transcription factors and microRNAs. Science 319:1785–1786CrossRef
6.
Zurück zum Zitat Hanna TK, Lea BH, Li C, Sakari K, Moustapha K (2011) Micro-RNAs: targets for enhancing osteoblast differentiation and bone formation. Eur J Endocrinol 166:359–371 Hanna TK, Lea BH, Li C, Sakari K, Moustapha K (2011) Micro-RNAs: targets for enhancing osteoblast differentiation and bone formation. Eur J Endocrinol 166:359–371
7.
Zurück zum Zitat Yangjin B, Tao Y, Huan-Chang Z, Campeau PM, Yuqing C, Terry B, Dawson BC, Elda M, Jianning T, Lee BH (2012) MiRNA-34c regulates Notch signaling during bone development. Hum Mol Genet 21:2991–3000CrossRef Yangjin B, Tao Y, Huan-Chang Z, Campeau PM, Yuqing C, Terry B, Dawson BC, Elda M, Jianning T, Lee BH (2012) MiRNA-34c regulates Notch signaling during bone development. Hum Mol Genet 21:2991–3000CrossRef
8.
Zurück zum Zitat Chen L, Holmstrom K, Qiu W, Ditzel N, Shi K, Hokland L, Kassem M (2014) MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells. Stem Cells 32:902–912CrossRefPubMed Chen L, Holmstrom K, Qiu W, Ditzel N, Shi K, Hokland L, Kassem M (2014) MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells. Stem Cells 32:902–912CrossRefPubMed
9.
Zurück zum Zitat Jia J, Tian Q, Ling S, Liu Y, Yang S, Shao Z (2013) MiR-145 suppresses osteogenic differentiation by targeting Sp7. FEBS Lett 587:3027–3031CrossRefPubMed Jia J, Tian Q, Ling S, Liu Y, Yang S, Shao Z (2013) MiR-145 suppresses osteogenic differentiation by targeting Sp7. FEBS Lett 587:3027–3031CrossRefPubMed
10.
Zurück zum Zitat Fukuda T, Ochi H, Sunamura S, Haiden A, Bando W, Inose H, Okawa A, Asou Y, Shu T (2015) MicroRNA-145 regulates osteoblastic differentiation by targeting the transcription factor Cbfb. FEBS Lett 589:3302–3308CrossRefPubMed Fukuda T, Ochi H, Sunamura S, Haiden A, Bando W, Inose H, Okawa A, Asou Y, Shu T (2015) MicroRNA-145 regulates osteoblastic differentiation by targeting the transcription factor Cbfb. FEBS Lett 589:3302–3308CrossRefPubMed
11.
Zurück zum Zitat Seeliger C, Karpinski K, Haug AT, Vester H, Schmitt A, Bauer JS, van Griensven M (2014) Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J Bone Miner Res 29:1718–1728CrossRefPubMed Seeliger C, Karpinski K, Haug AT, Vester H, Schmitt A, Bauer JS, van Griensven M (2014) Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J Bone Miner Res 29:1718–1728CrossRefPubMed
13.
Zurück zum Zitat Clotilde T, Laurence Z, Sebastian A (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579 Clotilde T, Laurence Z, Sebastian A (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579
14.
Zurück zum Zitat Min G, Ronghu K, Tianyi C, Junyi Y, Xiongzheng M (2015) Identification and proteomic analysis of osteoblast-derived exosomes. Biochem Biophys Res Commun 467:27–32CrossRef Min G, Ronghu K, Tianyi C, Junyi Y, Xiongzheng M (2015) Identification and proteomic analysis of osteoblast-derived exosomes. Biochem Biophys Res Commun 467:27–32CrossRef
15.
Zurück zum Zitat Hadi V, Karin EM, Apostolos B, Margareta SS, Lee JJ, Tvall JOL (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659CrossRef Hadi V, Karin EM, Apostolos B, Margareta SS, Lee JJ, Tvall JOL (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659CrossRef
16.
Zurück zum Zitat Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S (2015) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13:17–24CrossRefPubMedPubMedCentral Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S (2015) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13:17–24CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Cui Y, Luan J, Li H, Zhou X, Han J (2016) Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Lett 590:185–192CrossRefPubMed Cui Y, Luan J, Li H, Zhou X, Han J (2016) Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Lett 590:185–192CrossRefPubMed
18.
Zurück zum Zitat Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74CrossRefPubMed Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74CrossRefPubMed
19.
Zurück zum Zitat Koike M, Shimokawa H, Kanno Z, Ohya K, Soma K (2005) Effects of mechanical strain on proliferation and differentiation of bone marrow stromal cell line ST2. J Bone Miner Metab 23:219–225CrossRefPubMed Koike M, Shimokawa H, Kanno Z, Ohya K, Soma K (2005) Effects of mechanical strain on proliferation and differentiation of bone marrow stromal cell line ST2. J Bone Miner Metab 23:219–225CrossRefPubMed
20.
Zurück zum Zitat Jiang Q, Li Q, Uitto J (2007) Aberrant mineralization of connective tissues in a mouse model of pseudoxanthoma elasticum: systemic and local regulatory factors. J Invest Dermatol 127:1392–1402CrossRefPubMed Jiang Q, Li Q, Uitto J (2007) Aberrant mineralization of connective tissues in a mouse model of pseudoxanthoma elasticum: systemic and local regulatory factors. J Invest Dermatol 127:1392–1402CrossRefPubMed
21.
Zurück zum Zitat Straalen JPV, Sanders E, Prummel MF, Sanders GTB (1991) Bone-alkaline phosphatase as indicator of bone formation. Clin Chim Acta 201:27–33CrossRefPubMed Straalen JPV, Sanders E, Prummel MF, Sanders GTB (1991) Bone-alkaline phosphatase as indicator of bone formation. Clin Chim Acta 201:27–33CrossRefPubMed
22.
Zurück zum Zitat Hu R, Liu W, Li H, Yang L, Chen C, Xia ZY, Guo LJ, Xie H, Zhou HD, Wu XP, Luo XH (2011) A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J Biol Chem 286:12328–12339CrossRefPubMedPubMedCentral Hu R, Liu W, Li H, Yang L, Chen C, Xia ZY, Guo LJ, Xie H, Zhou HD, Wu XP, Luo XH (2011) A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J Biol Chem 286:12328–12339CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Gamez B, Rodriguez-Carballo E, Bartrons R, Rosa JL, Ventura F (2013) MicroRNA-322 (miR-322) and its target protein Tob2 modulate osterix (Osx) mRNA stability. J Biol Chem 288:14264–14275CrossRefPubMedPubMedCentral Gamez B, Rodriguez-Carballo E, Bartrons R, Rosa JL, Ventura F (2013) MicroRNA-322 (miR-322) and its target protein Tob2 modulate osterix (Osx) mRNA stability. J Biol Chem 288:14264–14275CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Simons M, Raposo G (2009) Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581CrossRefPubMed Simons M, Raposo G (2009) Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581CrossRefPubMed
25.
Zurück zum Zitat Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan MLG, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z, Milosevic J, Tkacheva OA, Divito SJ, Jordan R, Lyons-Weiler J, Watkins SC, Morelli AE (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119:756–766CrossRefPubMedPubMedCentral Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan MLG, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z, Milosevic J, Tkacheva OA, Divito SJ, Jordan R, Lyons-Weiler J, Watkins SC, Morelli AE (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119:756–766CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Huang H, Yun J, Wang Y, Chen T, Yang L, He H, Lin Z, Liu T, Teng Y, Kamp DW (2015) MiR-5100 promotes tumor growth in lung cancer by targeting Rab6. Cancer Lett 362:15–24CrossRefPubMed Huang H, Yun J, Wang Y, Chen T, Yang L, He H, Lin Z, Liu T, Teng Y, Kamp DW (2015) MiR-5100 promotes tumor growth in lung cancer by targeting Rab6. Cancer Lett 362:15–24CrossRefPubMed
27.
Zurück zum Zitat Sebastiaan WG (2010) The mammalian anti-proliferative BTG/Tob protein family. J Cell Physiol 222:66–72CrossRef Sebastiaan WG (2010) The mammalian anti-proliferative BTG/Tob protein family. J Cell Physiol 222:66–72CrossRef
29.
Zurück zum Zitat Ikematsu N, Yoshida TJ, Ohsugi M, Onda M, Hirai M, Fujimoto J, Yamamoto T (1999) Tob2, a novel anti-proliferative Tob/BTG1 family member, associates with a component of the CCR4 transcriptional regulatory complex capable of binding cyclin-dependent kinases. Oncogene 18:7432–7441CrossRefPubMed Ikematsu N, Yoshida TJ, Ohsugi M, Onda M, Hirai M, Fujimoto J, Yamamoto T (1999) Tob2, a novel anti-proliferative Tob/BTG1 family member, associates with a component of the CCR4 transcriptional regulatory complex capable of binding cyclin-dependent kinases. Oncogene 18:7432–7441CrossRefPubMed
30.
Zurück zum Zitat Tzachanis D, Freeman GJ, Hirano N, Puijenbroek AAFLV, Delfs MW, Berezovskaya A, Nadler LM, Boussiotis VA (2001) Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells. Nat Immunol 2:1174–1182CrossRefPubMed Tzachanis D, Freeman GJ, Hirano N, Puijenbroek AAFLV, Delfs MW, Berezovskaya A, Nadler LM, Boussiotis VA (2001) Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells. Nat Immunol 2:1174–1182CrossRefPubMed
31.
Zurück zum Zitat Karsenty G (2008) Transcriptional control of skeletogenesis. Annu Rev Genomics Hum Genet 9:183–196CrossRefPubMed Karsenty G (2008) Transcriptional control of skeletogenesis. Annu Rev Genomics Hum Genet 9:183–196CrossRefPubMed
Metadaten
Titel
MiR-5100 promotes osteogenic differentiation by targeting Tob2
verfasst von
Huaxin Wang
Yazhou Cui
Jing Luan
Xiaoyan Zhou
Chengzhi Li
Haiying Li
Liang Shi
Jinxiang Han
Publikationsdatum
21.11.2016
Verlag
Springer Japan
Erschienen in
Journal of Bone and Mineral Metabolism / Ausgabe 6/2017
Print ISSN: 0914-8779
Elektronische ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-016-0799-y

Weitere Artikel der Ausgabe 6/2017

Journal of Bone and Mineral Metabolism 6/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.