Skip to main content
Erschienen in: Journal of Ovarian Research 1/2015

Open Access 01.12.2015 | Research

MiRNA-149 modulates chemosensitivity of ovarian cancer A2780 cells to paclitaxel by targeting MyD88

verfasst von: Yueping Zhan, Fenfen Xiang, Rong Wu, Jian Xu, Zhenhua Ni, Jiemin Jiang, Xiangdong Kang

Erschienen in: Journal of Ovarian Research | Ausgabe 1/2015

Abstract

Background

The low effectiveness of anticancer drugs remains a major unresolved obstacle to successful chemotherapy. Recently, much evidence on the roles of miRNAs in determining drug-sensitivity/resistance has been emerging. The relationship between miRNA-149 expression and paclitaxel chemoresistance in human ovarian cancer cells remains largely unknown.

Methods

This study investigated the relationship between miRNA-149 expression and the sensitivity of ovarian cancer A2780 cells to paclitaxel treatment. To achieve the down-regulation of miRNA-149 gene expression in A2780 cell line, the cells were infected with lentivirus carrying inhibitor of miRNA-149. Western blot and qRT-PCR were used to detect relevant protein levels and the expressions of mRNAs of interest. Cell proliferation was measured by CCK-8 assay. Flow cytometry was used to measure cell cycle and apoptosis. Transwell migration assay was used to observe the change of migration of transfected cells.

Results

Down-regulation of miRNA-149 decreased the sensitivity of ovarian cancer A2780 cells to paclitaxel. After paclitaxel treatment, decreased apoptosis and G2 phase ratio, increased cell migration, increased level of Bcl-2, and decreased level of Bax were found in miRNA-149-down-regulated A2780 cells. MiRNA-149 down-regulation resulted in increased expression of MyD88 in A2780 cells. Down-regulation of miRNA-149 in A2780 cells increased MyD88 expression and decreased their sensitivity to paclitaxel treatment.

Conclusion

Our findings suggest that miRNA-149 mediates the susceptibility of paclitaxel by regulating MyD88 expression in ovarian cancer cells.
Hinweise
Yueping Zhan and Fenfen Xiang contributed equally to this work.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

YZ participated in the design of the study, carried out the molecular genetic studies, and drafted the manuscript. FX participated in the design of the study and performed the statistical analysis. RW involved in revising the manuscript critically. JX carried out the immunoassays. ZN participated in the sequence alignment. JJ participated in cell culture. XK conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Introduction

Ovarian cancer is a common tumor and the most lethal malignancy of the female reproductive organs. A combination of carboplatin and paclitaxel has been widely used as chemotherapy for ovarian cancer patients. Although the patients initially respond successfully to paclitaxel-based chemotherapy, in most cases, they eventually become insensitive to the chemotherapy [1]. Several mechanisms have been demonstrated regarding chemoresistance to paclitaxel, such as over-expression of the multidrug transporter P-glycoprotein [2], selective expression of beta-tubulin isotypes [3], down-regulation of bcl-2 [4], or aberrant cell signaling [5]. Nevertheless, the overall molecular mechanisms of paclitaxel resistance have yet to be clarified.
MicroRNAs (miRNAs) are a family of short non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. Hundreds of miRNAs have been found in the human genome and play critical roles in regulating cell signaling pathways such as the transforming growth factor-beta, Wnt, Notch and epidermal growth factor pathways by repressing the expression of different mRNAs expression or through co-regulation with transcription factors [69]. Consequently, dysfunction of miRNAs and their target genes can lead to a variety of disorders. Therefore studying the role of miRNAs will provide a better understanding of the molecular events involved in diverse biological processes, and contribute to the identification of new targets in tumor prevention and treatment.
MiRNA-149 directly targets the 3’-UTR of MyD88 mRNA and post-transcriptionally regulates MyD88 protein expression. MiRNA-149 may be a key modulator in the TLR/MyD88 signaling pathway in macrophages through negative regulation of MyD88-dependent Toll-like receptor signaling [10]. In our previous study, the expression of MyD88 was closely associated with paclitaxel resistance in lung cancer A549 cells [11].
The relationship between miRNA-149 expression and paclitaxel chemoresistance in human ovarian cancer cells remains largely unknown. In this study, we investigated whether miRNA-149 modulates cellular sensitivity to paclitaxel by regulating the expression of MyD88 in ovarian cancer A2780 cells.

Materials and methods

Cell line and maintenance

The A2780 cell line was obtained from the Institute of Cell Biology (Shanghai, China). The cells were maintained in RPMI 1640 medium (Gibco-BRL, Carlsbad, CA, USA) supplemented with 10 % fetal bovine serum (FBS), 100 U/ml penicillin and 100 U/ml streptomycin at 37 °C in a humidified incubator with 5 % CO2. The cells were demonstrated to be free of mycoplasma.

Construction of miRNA-149 inhibitor and MyD88 lentiviral vectors

MiRNA-149 inhibitor (5’-GGGAGUGAAGACACGGAGCCAGA-3’) was inserted into the LV3-pGLV-H1-GFP/puro lentiviral vector, and siRNA (5’-UUCUCCGAACGUGUCACGUdTdT-3’) was used as a negative control. MyD88 whole cDNA synthesized by GenePharma (GenePharma, Shanghai, China) was subcloned into the LV5-pGLV-EF1a-GFP/Puro Lentiviral plasmid vector. Lentiviruses expressing inhibitor against miRNA-149, MyD88, and the controls were produced by co-transfection of 293 T cells using polybrene (GenePharma, Shanghai, China) according to standard protocols. A2780 (5 × 104) cells were infected with lentivirus at a MOI (multiplicity of infection, pfu number/cell) of approximately 100 for 24 h. Cells were then transferred into complete medium.

RNA isolation and reverse transcription polymerase chain reaction (RT-PCR)

Small RNAs were purified from differently treated A2780 cells using an RNA purification kit (TIANGEN Biotech, Beijing, China). Total RNA was extracted with Trizol reagent according to the protocol described by the supplier (TakaRa, Dalian, China). First-strand cDNA was synthesized from 1 μg of total RNA in a 20-μl reaction mixture using the PrimeScript RT reagent kit (TakaRa, Dalian, China). Quantitative real-time PCR-based gene expression analysis was performed on a real-time PCR instrument (7300, Step One Plus, Applied Biosystems, USA) using a standard SYBR-Green PCR kit. The parameters used for all PCR reactions were as follows: One cycle of 95 °C for 2 min, followed by 40 cycles of 95 °C for 15 s, and 60 °C for 30 s. Specific primer sets were used for RT-PCR of the U6 control, miR-149, β-actin control, and MyD88. The relative expression of each target gene was calculated using the 2-ΔΔct method.

Analysis of apoptosis

The percentage of apoptotic cells was quantitated using the Annexin V-PE Kit (Becton-Dickinson) according to the manufacturer's instructions. Stained cells were analyzed by flow cytometry during the first 30 min of staining. ≥10,000 cells were measured using a FACScan instrument (Becton-Dickinson) and the data were analyzed using FlowJo software (Tree Star Inc.).

Cytotoxicity assay

Cell viability was assessed using the Cell Counting Kit 8 (CCK-8) (Dojindo Laboratories, Kumamoto, Japan) assay. 6 × 104 A2780 cells (100 μl) were seeded into 96-well plates. After 24 h of incubation, paclitaxel (Sigma) was added at concentrations of 0 μM, 0.1 μM, 0.2 μM, 0.3 μM, 0.4 μM and 0.5 μM (each concertration were done repeat five experiments); the cells were then incubated for 48 h. After 48 h, 10 μl of CCK-8 solution was added to each well, followed by 4 h of incubation at 37 °C. The OD values were read at dual wave lengths of 450 nm and 630 nm to determine cell viability using a microplate reader (Thermo Fisher Labsystems).

Analysis of cell cycle

Cells (2 × 106) were pelleted by spinning for 5 min at 1000 rpm and 4 °C and resuspended in 1 ml of cold PBS. After fixation by adding 4 ml of absolute ethanol, the cells were centrifuged and resuspended in 1 ml of PBS. Then, 100 μl of 200 μg/ml DNase-free RNaseA was added to the cell suspension and incubated for 30 min at 37 °C. The cells were stained with 100 μl of 1 mg/ml propidium iodide (light sensitive) and incubated for 5–10 min at room temperature before analysis.

Western blot

The protein concentration of each sample was determined by BCA Protein Assay Kit (Beyotime, Jiangsu, China). Equal amounts of protein were loaded and separated discontinuously on 12 % sodium dodecyl sulfate-polyacrylamide gels (SDS-PAGE), and subsequently transferred onto a PVDF membrane (Amersham Pharmacia, UK). The membrane was then incubated in TBST blocking solution (Tris-buffered saline including 0.1 % Tween-20) containing 5 % skim milk for 2 h at room temperature, followed by separate incubation with primary antibodies against Bax, MyD88, Bcl-2 (Cell Signaling, USA) and β-actin (Beyotime, Jiangsu, China) overnight at 4 °C. After washing, the membrane was incubated with HRP-conjugated anti-mouse, anti-rabbit, or anti-goat secondary antibodies for 2 h. After several washes, the immunoblot was detected with enhanced chemi-luminescence reagent (Pierce Biotechnology, USA) according to the manufacturer's instructions.

Immunocytochemistry

Expression of MyD88 protein was determined using immunocytochemistry. In total, 1 × 105 cells were seeded into a Millicell EZ Slide (Millipore, Shanghai, China). After 24 h of incubation, cells were fixed on slides using 4 % paraformaldehyde. The cells were permeabilized for 10 min with 0.1 % Triton X-100 in PBS and blocked with blocking buffer (2 % BSA, 0.1 % Triton X-100) for 30 min at room temperature. After blocking, the cells were washed with PBS and incubated overnight with rabbit anti-human MyD88 antibodies (Sigma, Shanghai, China) at 4 °C. On the following day, the cells were washed three times with PBS, and then incubated with Cy3-labeled goat anti-rabbit IgG (H + L) (Beyotime, China) for 1 h followed by washing with PBS three times.

Cell migration assay

Cell migration were evaluated using the Transwell Permeable Support (Corning) according to the manufacturer’s instructions. Five 200-multiple microscopic fields were randomly selected to calculate the total count of the invaded or migrated cells. All assays were conducted three times.

Statistical analysis

For all analyses, the measurements obtained from the groups were expressed as the means ± SD for all data determined. Statistical analysis was performed using an unpaired Student's t-test followed by Tukey's test. P < 0.05 was considered statistically significant.

Results

Decreased sensitivity of A2780 cells to paclitaxel treatment after down-regulation of miRNA-149

We used a lentiviral vector expressing inhibitor against miRNA-149 to achieve down-regulation of miRNA-149 in ovarian cancer A2780 cells. Real-time PCR analysis showed that the expression of miRNA-149 in cells transduced with inhibitor to miRNA-149 was markedly lower than that of control A2780 cells (Fig. 1a). In the presence of paclitaxel, the proliferation of A2780 cells was significantly inhibited in the control (Fig. 1b), suggesting that down-regulation of miRNA-149 decreased the sensitivity of A2780 cells to paclitaxel treatment.

Down-regulation of miRNA-149 increases the expression of MyD88 in A2780 cells

Using miRanda (http://​www.​microrna.​org/​) and TargetScan (http://​www.​targetscan.​org/​) to analysis the miRNA-149 target sites of MyD88 (Fig. 2a). To assess whether miRNA-149 is involved in the regulation of MyD88 expression in A2780 cells, the expression of MyD88 was evaluated using both real-time PCR, western blot and immunocytochemistry. MiRNA-149 was capable of altering MyD88 expression at the mRNA level in these cells and consequently was able to up-regulate MyD88 mRNA expression by 1.67 fold as compared to the negtive control (Fig. 2b). Furthermore, the overexpression of MyD88 was verified by western blot and immunohistochemistry (Fig. 2c and d). Collectively, the data indicate that miRNA-149 has the potential to regulate MyD88 expression in ovarian cancer cells.

Decreased sensitivity of A2780 cells to paclitaxel treatment after over-expression of MyD88

To determine the effects of elevated MyD88 expression in ovarian cancer, MyD88 was over-expressed in ovarian cancer A2780 cells using a lentiviral vector. Over-expression was confirmed by real-time PCR (Fig. 3a). MyD88-overexpressing cells were refractory to growth inhibition by paclitaxel when compared to the control (Fig. 3b).

Effects of miRNA-149 down-regulation on the cell cycle of A2780 cells

It is well known that paclitaxel arrests the cell cycle at the G2 phase. To analyze the impact of miRNA-149 expression on paclitaxel’s interference with the cell cycle in A2780 cells, DNA flow cytometric analysis was performed to determine the effect of paclitaxel on the cell cycle of A2780 cells with different expression levels of miRNA-149. A G2 phase increase was found in A2780 cells with miRNA-149 down-regulation and NC cells after treatment with paclitaxel (Fig. 4a and b). The G2 phase fold change was significantly decreased in cells with miRNA-149 down-regulation (Fig. 4c).

Regulation of apoptosis by miRNA-149 down-regulation in A2780 cells

Cells were treated with paclitaxel for 48 h prior to the measurement of apoptotic cells with Annexin V. As shown in Fig. 5a and b, a significant decrease in the percentage of apoptotic cells was observed in A2780 cells with miRNA-149 down-regulation (P < 0.01). Down-regulation of miRNA-149 decreased the expression of Bax in A2780 cells and increased the expression of Bcl-2 (Fig. 5c and d). These results suggest that miRNA-149 may be associated with the cell apoptosis induced by paclitaxel in A2780 cells.

Down-regulation of miRNA-149 promotes the migration of A2780 cells

As shown in Fig. 6a, A2780 cells migrated faster when miRNA-149 was down-regulated, as indicated by the number of migrated cells within a fixed time (Fig. 6b). These data suggest that down-regulation of miRNA-149 may promote the migration of A2780 cells.

Discussion

An increasing number of studies suggests that miRNAs play important roles in diverse biological processes, such as development, cell proliferation, apoptosis, fat metabolism, and oncogenesis [12]. Over the years, attention has focused on the role of miRNAs in reversing drug resistance and regulating the sensitivity of cancer cells to chemotherapeutants [13, 14]. Dysregulated expression of various miRNAs has been found in ovarian carcinoma. Dysregulation of the microRNA let-7e and down-regulation of miR-30c, miR-130a, and miR-335 indicate direct involvement of some miRNAs in the development of chemoresistance [15]. Down-regulation of miR-21 promotes apoptosis and chemosensitivity in ovarian cancer [16]. MiRNA-370 [17], miRNA-93 [18], and miRNA-100 [19] are related to the chemosensitivity of ovarian cancer.
Aberrant expression of miR-149 has been reported in many cancers including colorectal cancer [20], nasopharyngeal carcinoma [21], clear-cell renal cell carcinoma [22], prostate cancer [23], and gastric cancer [24]. Li et al. [25] found that over-expression of miR-149 inhibited glioblastoma cell proliferation and migration. As a methylation-sensitive miRNA, miR-149 plays an important role as a tumor suppressor in colorectal cancer with prognostic and therapeutic implications [26]. However, the relationship between miRNA-149 expression and the sensitivity to paclitaxel in ovarian cancer remains unknown. Our results show that down-regulation of miRNA-149 decreases the sensitivity of A2780 cells to paclitaxel treatment.
MyD88 is a key molecular cohesion molecule in the Toll-like receptor (TLR) signaling pathway. Elevated MyD88 expression has been found in parenchymal cells in various types of cancer [2729]. Expression of MyD88 was elevated in more than 70 % of patients with EOC and has been considered as an indicator of tumor metastasis and paclitaxel chemoresistance, in addition to a factor for significantly poor prognosis [30, 31]. Overexpression of MyD88 decreases the sensitivity to paclitaxel in ovarian cancer and hepatocellular carcinoma cells [32, 33].
In the present study, expression of miRNA-149 in A2780 cells was decreased by specific inhibitor using lentiviral vectors. miRNA-149 down-regulation resulted in increased expression of MyD88 in A2780 cells. The results are consistent with previous results that over-expression of miR-149 in RAW264.7 cells was associated with decreased MyD88 at the protein level [10]. In the presence of paclitaxel, the proliferation of A2780 cells was significantly inhibited in the control group, suggesting that miRNA-149 down-regulation may decrease the sensitivity of A2780 ovarian cancer cells to paclitaxel treatment. Furthermore, the sensitivity to paclitaxel was decreased in MyD88 over-expressing A2780 cells.
Paclitaxel is an effective anti-cancer drug against a variety of cancers. Paclitaxel reduces the dynamicity of the mitotic spindle, causing G2/M cell cycle arrest [34]. In our study, we analyzed the cell cycle of A2780 cells with miRNA-149 down-regulation after treatment with paclitaxel for 48 h. The G2/M phase transition was decreased significantly in A2780 cells in the transduced group compared to the control group. The reduction in the number of cells at G2 phase and the accumulation of cells at the G0/G1 phase suggest that miRNA-149 is associated with paclitaxel chemosensitivity.
Depending on the cell type and drug, cells undergo apoptosis during mitotic arrest or abnormal mitosis [35]. Paclitaxel directly induces apoptosis of several types of tumor cells through a variety of mechanisms, such as phosphorylation of Bcl-2, activation of caspase-3 and caspase-9, and the mitogen-activated protein kinase signal transduction pathway [3638]. In the present study, flow cytometric assays were used to detect the apoptosis of A2780 cells after down-regulation of miRNA-149. We found that down-regulation of miRNA-149 decreased the apoptosis induced by paclitaxel when compared to the control group. Furthermore, we showed that down-regulation of miRNA-149 in A2780 cells enhanced the expression of the anti-apoptotic protein Bcl-2 and inhibited the expression of the pro-apoptotic protein bax, which may have led to paclitaxel resistance. Our previous study demonstrated that [11] MyD88 was involved in anti-apoptosis and drug resistance through the alteration of bax and bcl-2 levels.
In this study, we have shown that reduced expression of miRNA-149 enhanced the migration of A2780 cells. Chan et al. showed that down-regulation of microRNA-149 suppressed cell migration/invasion and metastasis in breast cancer by targeting migration and invasion-related genes [39]. Taken together, our findings suggest that miR-149 facilitates the migration of ovarian cancer cells through regulation of MyD88.

Conclusions

Our data demonstrate that miRNA-149 is associated with the cellular response to paclitaxel through regulation of MyD88 in ovarian cancer cells. These findings provide novel insights into the role of miR-149 in the chemosensitivity of human ovarian cancer and indicate that miR-149 could be a putative drug target for therapeutic intervention.

Acknowledgements

This study was supported by grants from the Shanghai Municipal Health Bureau of China (no. 20134274) and Putuo Hospital, Shanghai University of Traditional Chinese Medicine (no. 2013GQ012I).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

YZ participated in the design of the study, carried out the molecular genetic studies, and drafted the manuscript. FX participated in the design of the study and performed the statistical analysis. RW involved in revising the manuscript critically. JX carried out the immunoassays. ZN participated in the sequence alignment. JJ participated in cell culture. XK conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.
Literatur
3.
Zurück zum Zitat Mozzetti S, Ferlini C, Concolino P, Filippetti F, Raspaglio G, Prislei S, et al. Class III beta-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin Cancer Res. 2005;11(1):298–305.PubMed Mozzetti S, Ferlini C, Concolino P, Filippetti F, Raspaglio G, Prislei S, et al. Class III beta-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin Cancer Res. 2005;11(1):298–305.PubMed
4.
Zurück zum Zitat Filippetti F, Martinelli E, Ferrandina G, Gallo D, Ranelletti FO, Scambia G, et al. Bcl-2 down-Regulation is a novel mechanism of paclitaxel resistance. Mol Pharmacol. 2003;64:51–8.PubMedCrossRef Filippetti F, Martinelli E, Ferrandina G, Gallo D, Ranelletti FO, Scambia G, et al. Bcl-2 down-Regulation is a novel mechanism of paclitaxel resistance. Mol Pharmacol. 2003;64:51–8.PubMedCrossRef
5.
Zurück zum Zitat Liu Z, Zhu G, Getzenberg RH, Veltri RW. The upregulation of PI3K/Akt and MAP kinase pathways is associated with resistance of microtubule-targeting drugs in prostate cancer. J Cell Biochem. 2015. doi:10.1002/jcb.25091.PubMedCentral Liu Z, Zhu G, Getzenberg RH, Veltri RW. The upregulation of PI3K/Akt and MAP kinase pathways is associated with resistance of microtubule-targeting drugs in prostate cancer. J Cell Biochem. 2015. doi:10.​1002/​jcb.​25091.PubMedCentral
8.
Zurück zum Zitat Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction. Nat Rev Mol Cell Biol. 2010;11:252–63.PubMedCrossRef Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction. Nat Rev Mol Cell Biol. 2010;11:252–63.PubMedCrossRef
9.
Zurück zum Zitat Cui Q, Yu Z, Purisima EO, Wang E. Microrna regulation and interspecific variation of gene expression. Trends Genet. 2007;23(8):372–5.PubMedCrossRef Cui Q, Yu Z, Purisima EO, Wang E. Microrna regulation and interspecific variation of gene expression. Trends Genet. 2007;23(8):372–5.PubMedCrossRef
10.
Zurück zum Zitat Xu G, Zhang Z, Xing Y, Wei J, Ge Z, Liu X, et al. Microrna-149 negatively regulates tlr-triggered inflammatory response in macrophages by targeting myd88. J Cell Biochem. 2014;115(5):919–27.PubMedCrossRef Xu G, Zhang Z, Xing Y, Wei J, Ge Z, Liu X, et al. Microrna-149 negatively regulates tlr-triggered inflammatory response in macrophages by targeting myd88. J Cell Biochem. 2014;115(5):919–27.PubMedCrossRef
11.
Zurück zum Zitat Xiang F, Wu R, Ni Z, Pan C, Zhan Y, Xu J, et al. MyD88 expression is associated with paclitaxel resistance in lung cancer A549 cells. Oncol Rep. 2014;32(5):1837–44.PubMed Xiang F, Wu R, Ni Z, Pan C, Zhan Y, Xu J, et al. MyD88 expression is associated with paclitaxel resistance in lung cancer A549 cells. Oncol Rep. 2014;32(5):1837–44.PubMed
12.
Zurück zum Zitat Ishihara T, Seki N, Inoguchi S, Yoshino H, Tatarano S, Yamada Y, et al. Expression of the tumor suppressive mirna-23b/27b cluster is a good prognostic marker in clear cell renal cell carcinoma. J Urol. 2014;192(6):1822–30.PubMedCrossRef Ishihara T, Seki N, Inoguchi S, Yoshino H, Tatarano S, Yamada Y, et al. Expression of the tumor suppressive mirna-23b/27b cluster is a good prognostic marker in clear cell renal cell carcinoma. J Urol. 2014;192(6):1822–30.PubMedCrossRef
13.
Zurück zum Zitat Ma MT, He M, Wang Y, Jiao XY, Zhao L, Bai XF, et al. Mir-487a resensitizes mitoxantrone (mx)-resistant breast cancer cells (mcf-7/mx) to mx by targeting breast cancer resistance protein (bcrp/abcg2). Cancer Lett. 2013;339(1):107–15.PubMedCrossRef Ma MT, He M, Wang Y, Jiao XY, Zhao L, Bai XF, et al. Mir-487a resensitizes mitoxantrone (mx)-resistant breast cancer cells (mcf-7/mx) to mx by targeting breast cancer resistance protein (bcrp/abcg2). Cancer Lett. 2013;339(1):107–15.PubMedCrossRef
14.
Zurück zum Zitat To KK, Zhan Z, Litman T, Bates SE. Regulation of abcg2 expression at the 3' untranslated region of its mrna through modulation of transcript stability and protein translation by a putative microrna in the s1 colon cancer cell line. Mol Cell Biol. 2008;28(17):5147–61.PubMedCentralPubMedCrossRef To KK, Zhan Z, Litman T, Bates SE. Regulation of abcg2 expression at the 3' untranslated region of its mrna through modulation of transcript stability and protein translation by a putative microrna in the s1 colon cancer cell line. Mol Cell Biol. 2008;28(17):5147–61.PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G, Ferlini C. Role of micrornas in drug-resistant ovarian cancer cells. Gynecol Oncol. 2008;111(3):478–86.PubMedCrossRef Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G, Ferlini C. Role of micrornas in drug-resistant ovarian cancer cells. Gynecol Oncol. 2008;111(3):478–86.PubMedCrossRef
16.
Zurück zum Zitat Chan JK, Blansit K, Kiet T, Sherman A, Wong G, Earle C, et al. The inhibition of miR-21 promotes apoptosis and chemosensitivity in ovarian cancer. Gynecol Oncol. 2014;132(3):739–44.PubMedCrossRef Chan JK, Blansit K, Kiet T, Sherman A, Wong G, Earle C, et al. The inhibition of miR-21 promotes apoptosis and chemosensitivity in ovarian cancer. Gynecol Oncol. 2014;132(3):739–44.PubMedCrossRef
17.
Zurück zum Zitat Chen XP, Chen YG, Lan JY, Shen ZJ. MicroRNA-370 suppresses proliferation and promotes endometrioid ovarian cancer chemosensitivity to cDDP by negatively regulating ENG. Cancer Lett. 2014;353(2):201–10.PubMedCrossRef Chen XP, Chen YG, Lan JY, Shen ZJ. MicroRNA-370 suppresses proliferation and promotes endometrioid ovarian cancer chemosensitivity to cDDP by negatively regulating ENG. Cancer Lett. 2014;353(2):201–10.PubMedCrossRef
18.
Zurück zum Zitat Fu X, Tian J, Zhang L, Chen Y, Hao Q. Involvement of microrna-93, a new regulator of pten/akt signaling pathway, in regulation of chemotherapeutic drug cisplatin chemosensitivity in ovarian cancer cells. FEBS Lett. 2012;586(9):1279–86.PubMedCrossRef Fu X, Tian J, Zhang L, Chen Y, Hao Q. Involvement of microrna-93, a new regulator of pten/akt signaling pathway, in regulation of chemotherapeutic drug cisplatin chemosensitivity in ovarian cancer cells. FEBS Lett. 2012;586(9):1279–86.PubMedCrossRef
19.
Zurück zum Zitat Peng DX, Luo M, Qiu LW, He YL, Wang XF. Prognostic implications of microRNA-100 and its functional roles in human epithelial ovarian cancer. Oncol Rep. 2012;27(4):1238–44.PubMedCentralPubMed Peng DX, Luo M, Qiu LW, He YL, Wang XF. Prognostic implications of microRNA-100 and its functional roles in human epithelial ovarian cancer. Oncol Rep. 2012;27(4):1238–44.PubMedCentralPubMed
20.
Zurück zum Zitat Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, et al. Differential expression of micrornas in plasma of patients with colorectal cancer: A potential marker for colorectal cancer screening. Gut. 2009;58(10):1375–81.PubMedCrossRef Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, et al. Differential expression of micrornas in plasma of patients with colorectal cancer: A potential marker for colorectal cancer screening. Gut. 2009;58(10):1375–81.PubMedCrossRef
21.
Zurück zum Zitat Luo Z, Zhang L, Li Z, Li X, Li G, Yu H, et al. An in silico analysis of dynamic changes in microrna expression profiles in stepwise development of nasopharyngeal carcinoma. BMC Med Genomics. 2012;5:3.PubMedCentralPubMedCrossRef Luo Z, Zhang L, Li Z, Li X, Li G, Yu H, et al. An in silico analysis of dynamic changes in microrna expression profiles in stepwise development of nasopharyngeal carcinoma. BMC Med Genomics. 2012;5:3.PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Liu H, Brannon AR, Reddy AR, Alexe G, Seiler MW, Arreola A, et al. Identifying mrna targets of microrna dysregulated in cancer: With application to clear cell renal cell carcinoma. BMC Syst Biol. 2010;4:51.PubMedCentralPubMedCrossRef Liu H, Brannon AR, Reddy AR, Alexe G, Seiler MW, Arreola A, et al. Identifying mrna targets of microrna dysregulated in cancer: With application to clear cell renal cell carcinoma. BMC Syst Biol. 2010;4:51.PubMedCentralPubMedCrossRef
23.
Zurück zum Zitat Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F, et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer. 2010;126(5):1166–76.PubMed Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F, et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer. 2010;126(5):1166–76.PubMed
24.
Zurück zum Zitat Wang Y, Zheng X, Zhang Z, Zhou J, Zhao G, Yang J, et al. Microrna-149 inhibits proliferation and cell cycle progression through the targeting of zbtb2 in human gastric cancer. PLoS One. 2012;7(10):e41693.PubMedCentralPubMedCrossRef Wang Y, Zheng X, Zhang Z, Zhou J, Zhao G, Yang J, et al. Microrna-149 inhibits proliferation and cell cycle progression through the targeting of zbtb2 in human gastric cancer. PLoS One. 2012;7(10):e41693.PubMedCentralPubMedCrossRef
25.
Zurück zum Zitat Li D, Chen P, Li XY, Zhang LY, Xiong W, Zhou M, et al. Grade-specific expression profiles of mirnas/mrnas and docking study in human grade i-iii astrocytomas. OMICS. 2011;15(10):673–82.PubMedCrossRef Li D, Chen P, Li XY, Zhang LY, Xiong W, Zhou M, et al. Grade-specific expression profiles of mirnas/mrnas and docking study in human grade i-iii astrocytomas. OMICS. 2011;15(10):673–82.PubMedCrossRef
26.
Zurück zum Zitat Wang F, Ma YL, Zhang P, Shen TY, Shi CZ, Yang YZ, et al. Sp1 mediates the link between methylation of the tumour suppressor mir-149 and outcome in colorectal cancer. J Pathol. 2013;229(1):12–24.PubMedCrossRef Wang F, Ma YL, Zhang P, Shen TY, Shi CZ, Yang YZ, et al. Sp1 mediates the link between methylation of the tumour suppressor mir-149 and outcome in colorectal cancer. J Pathol. 2013;229(1):12–24.PubMedCrossRef
27.
Zurück zum Zitat Wang EL, Qian ZR, Nakasono M, Tanahashi T, Yoshimoto K, Bando Y, et al. High expression of toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer. 2010;102(5):908–15.PubMedCentralPubMedCrossRef Wang EL, Qian ZR, Nakasono M, Tanahashi T, Yoshimoto K, Bando Y, et al. High expression of toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer. 2010;102(5):908–15.PubMedCentralPubMedCrossRef
28.
Zurück zum Zitat Xiang WQ, Feng WF, Ke W, Sun Z, Chen Z, Liu W. Hepatitis b virus x protein stimulates il-6 expression in hepatocytes via a myd88-dependent pathway. J Hepatol. 2011;54(1):26–33.PubMedCrossRef Xiang WQ, Feng WF, Ke W, Sun Z, Chen Z, Liu W. Hepatitis b virus x protein stimulates il-6 expression in hepatocytes via a myd88-dependent pathway. J Hepatol. 2011;54(1):26–33.PubMedCrossRef
29.
Zurück zum Zitat Szajnik M, Szczepanski MJ, Czystowska M, Elishaev E, Mandapathil M, Nowak-Markwitz E, et al. Tlr4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene. 2009;28(49):4353–63.PubMedCentralPubMedCrossRef Szajnik M, Szczepanski MJ, Czystowska M, Elishaev E, Mandapathil M, Nowak-Markwitz E, et al. Tlr4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene. 2009;28(49):4353–63.PubMedCentralPubMedCrossRef
30.
Zurück zum Zitat Zhou M, McFarland-Mancini MM, Funk HM, Husseinzadeh N, Mounajjed T, Drew AF. Toll-like receptor expression in normal ovary and ovarian tumors. Cancer Immunol Immunother. 2009;58(9):1375–85.PubMedCrossRef Zhou M, McFarland-Mancini MM, Funk HM, Husseinzadeh N, Mounajjed T, Drew AF. Toll-like receptor expression in normal ovary and ovarian tumors. Cancer Immunol Immunother. 2009;58(9):1375–85.PubMedCrossRef
31.
Zurück zum Zitat Wang AC, Su QB, Wu FX, Zhang XL, Liu PS. Role of tlr4 for paclitaxel chemotherapy in human epithelial ovarian cancer cells. Eur J Clin Invest. 2009;39(2):157–64.PubMedCrossRef Wang AC, Su QB, Wu FX, Zhang XL, Liu PS. Role of tlr4 for paclitaxel chemotherapy in human epithelial ovarian cancer cells. Eur J Clin Invest. 2009;39(2):157–64.PubMedCrossRef
32.
Zurück zum Zitat Kelly MG, Alvero AB, Chen R, Silasi DA, Abrahams VM, Chan S, et al. Tlr-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res. 2006;66(7):3859–68.PubMedCrossRef Kelly MG, Alvero AB, Chen R, Silasi DA, Abrahams VM, Chan S, et al. Tlr-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res. 2006;66(7):3859–68.PubMedCrossRef
33.
Zurück zum Zitat Liang B, Chen R, Wang T, Cao L, Liu Y, Yin F, et al. Myeloid differentiation factor 88 promotes growth and metastasis of human hepatocellular carcinoma. Clin Cancer Res. 2013;19(11):2905–16.PubMedCrossRef Liang B, Chen R, Wang T, Cao L, Liu Y, Yin F, et al. Myeloid differentiation factor 88 promotes growth and metastasis of human hepatocellular carcinoma. Clin Cancer Res. 2013;19(11):2905–16.PubMedCrossRef
34.
Zurück zum Zitat Holleman A, Chung I, Olsen RR, Kwak B, Mizokami A, Saijo N, et al. Mir-135a contributes to paclitaxel resistance in tumor cells both in vitro and in vivo. Oncogene. 2011;30(43):4386–98.PubMedCentralPubMedCrossRef Holleman A, Chung I, Olsen RR, Kwak B, Mizokami A, Saijo N, et al. Mir-135a contributes to paclitaxel resistance in tumor cells both in vitro and in vivo. Oncogene. 2011;30(43):4386–98.PubMedCentralPubMedCrossRef
35.
Zurück zum Zitat Shi J, Orth JD, Mitchison T. Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5. Cancer Res. 2008;68(9):3269–76.PubMedCrossRef Shi J, Orth JD, Mitchison T. Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5. Cancer Res. 2008;68(9):3269–76.PubMedCrossRef
36.
Zurück zum Zitat Haldar S, Chintapalli J, Croce CM. Taxol induces bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res. 1996;56(6):1253–5.PubMed Haldar S, Chintapalli J, Croce CM. Taxol induces bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res. 1996;56(6):1253–5.PubMed
37.
Zurück zum Zitat Perkins C, Kim CN, Fang G, Bhalla KN. Overexpression of Apaf-1 promotes apoptosis of untreated and paclitaxel- or etoposide-treated HL-60 cells. Cancer Res. 1998;58(20):4561–6.PubMed Perkins C, Kim CN, Fang G, Bhalla KN. Overexpression of Apaf-1 promotes apoptosis of untreated and paclitaxel- or etoposide-treated HL-60 cells. Cancer Res. 1998;58(20):4561–6.PubMed
38.
Zurück zum Zitat Goncalves A, Braguer D, Carles G, Andre N, Prevot C, Briand C. Caspase-8 activation independent of CD95/CD95-L interaction during paclitaxel-induced apoptosis in human colon cancer cells (HT29-D4). Biochem Pharmacol. 2000;60(11):1579–84.PubMedCrossRef Goncalves A, Braguer D, Carles G, Andre N, Prevot C, Briand C. Caspase-8 activation independent of CD95/CD95-L interaction during paclitaxel-induced apoptosis in human colon cancer cells (HT29-D4). Biochem Pharmacol. 2000;60(11):1579–84.PubMedCrossRef
39.
Zurück zum Zitat Chan SH, Huang WC, Chang JW, Chang KJ, Kuo WH, Wang MY, et al. Microrna-149 targets git1 to suppress integrin signaling and breast cancer metastasis. Oncogene. 2014;33(36):4496–507.PubMedCentralPubMedCrossRef Chan SH, Huang WC, Chang JW, Chang KJ, Kuo WH, Wang MY, et al. Microrna-149 targets git1 to suppress integrin signaling and breast cancer metastasis. Oncogene. 2014;33(36):4496–507.PubMedCentralPubMedCrossRef
Metadaten
Titel
MiRNA-149 modulates chemosensitivity of ovarian cancer A2780 cells to paclitaxel by targeting MyD88
verfasst von
Yueping Zhan
Fenfen Xiang
Rong Wu
Jian Xu
Zhenhua Ni
Jiemin Jiang
Xiangdong Kang
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
Journal of Ovarian Research / Ausgabe 1/2015
Elektronische ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-015-0178-7

Weitere Artikel der Ausgabe 1/2015

Journal of Ovarian Research 1/2015 Zur Ausgabe

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.