Skip to main content
Erschienen in: Tumor Biology 5/2016

28.01.2016 | Review

Missing link between microRNA and prostate cancer

verfasst von: Balraj Singh Gill, Jimi Marin Alex, Navgeet, Sanjeev Kumar

Erschienen in: Tumor Biology | Ausgabe 5/2016

Einloggen, um Zugang zu erhalten

Abstract

MicroRNAs are the non-coding RNAs which regulate endogenous gene expression in animal and plant cells. Alterations in the level of micro-ribonucleic acids (miRNAs) involving the deletions, overexpression, mutations, epigenetic silencing, or dysregulation of transcription factors that target specific miRNAs may culminate in various diseases including cancer. Recent findings demonstrate the role of miRNAs in prostate cancer. Numerous discoveries of miRNAs have marked the research and development surrounding prostate cancer management, diagnosis, and therapy which has made prediction easy, but the effective treatment strategy remains a mystery. This review seeks to draw a link between miRNA and prostate cancer through an understanding of the numerous signaling pathways that these miRNAs control, which may prove to be helpful in identifying therapeutically interesting molecular targets.
Literatur
2.
Zurück zum Zitat Anand SS, Gill BS. Breakthroughs in epigenetics. PharmaTutor. 2015;3(7):16–24. Anand SS, Gill BS. Breakthroughs in epigenetics. PharmaTutor. 2015;3(7):16–24.
3.
5.
Zurück zum Zitat Maziere P, Enright AJ. Prediction of microRNA targets. Drug Discov Today. 2007;12(11):452–8.PubMedCrossRef Maziere P, Enright AJ. Prediction of microRNA targets. Drug Discov Today. 2007;12(11):452–8.PubMedCrossRef
6.
Zurück zum Zitat Coppola V, De Maria R, Bonci D. MicroRNAs and prostate cancer. Endocr Relat Cancer. 2010;17(1):F1–F17.PubMedCrossRef Coppola V, De Maria R, Bonci D. MicroRNAs and prostate cancer. Endocr Relat Cancer. 2010;17(1):F1–F17.PubMedCrossRef
7.
Zurück zum Zitat Bartels CL, Tsongalis GJ. MicroRNAs: novel biomarkers for human cancer. Clin Chem. 2009;55(4):623–31.PubMedCrossRef Bartels CL, Tsongalis GJ. MicroRNAs: novel biomarkers for human cancer. Clin Chem. 2009;55(4):623–31.PubMedCrossRef
8.
Zurück zum Zitat Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell. 2009;138(2):245–56.PubMedPubMedCentralCrossRef Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell. 2009;138(2):245–56.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci. 2008;105(30):10513–8.PubMedPubMedCentralCrossRef Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci. 2008;105(30):10513–8.PubMedPubMedCentralCrossRef
11.
12.
Zurück zum Zitat Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′ UTR evolution. Cell. 2005;123(6):1133–46.PubMedCrossRef Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′ UTR evolution. Cell. 2005;123(6):1133–46.PubMedCrossRef
13.
Zurück zum Zitat Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol. 1999;216(2):671–80.PubMedCrossRef Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol. 1999;216(2):671–80.PubMedCrossRef
14.
Zurück zum Zitat Catto JW, Alcaraz A, Bjartell AS, De Vere White R, Evans CP, Fussel S, et al. MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur Urol. 2011;59(5):671–81.PubMedCrossRef Catto JW, Alcaraz A, Bjartell AS, De Vere White R, Evans CP, Fussel S, et al. MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur Urol. 2011;59(5):671–81.PubMedCrossRef
15.
Zurück zum Zitat Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8(8):467–77.PubMedPubMedCentralCrossRef Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8(8):467–77.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Sita-Lumsden A, Dart DA, Waxman J, Bevan C. Circulating microRNAs as potential new biomarkers for prostate cancer. Br J Cancer. 2013;108(10):1925–30.PubMedPubMedCentralCrossRef Sita-Lumsden A, Dart DA, Waxman J, Bevan C. Circulating microRNAs as potential new biomarkers for prostate cancer. Br J Cancer. 2013;108(10):1925–30.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Sekeres MA, Peterson B, Dodge RK, Mayer RJ, Moore JO, Lee EJ, et al. Differences in prognostic factors and outcomes in African Americans and whites with acute myeloid leukemia. Blood. 2004;103(11):4036–42.PubMedCrossRef Sekeres MA, Peterson B, Dodge RK, Mayer RJ, Moore JO, Lee EJ, et al. Differences in prognostic factors and outcomes in African Americans and whites with acute myeloid leukemia. Blood. 2004;103(11):4036–42.PubMedCrossRef
19.
Zurück zum Zitat Zovoilis A, Agbemenyah HY, Agis‐Balboa RC, Stilling RM, Edbauer D, Rao P, et al. microRNA‐34c is a novel target to treat dementias. EMBO J. 2011;30(20):4299–308.PubMedPubMedCentralCrossRef Zovoilis A, Agbemenyah HY, Agis‐Balboa RC, Stilling RM, Edbauer D, Rao P, et al. microRNA‐34c is a novel target to treat dementias. EMBO J. 2011;30(20):4299–308.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport. 2007;18(3):297–300.PubMedCrossRef Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport. 2007;18(3):297–300.PubMedCrossRef
21.
Zurück zum Zitat Hébert SS, Horré K, Nicolaï L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/β-secretase expression. Proc Natl Acad Sci. 2008;105(17):6415–20.PubMedPubMedCentralCrossRef Hébert SS, Horré K, Nicolaï L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/β-secretase expression. Proc Natl Acad Sci. 2008;105(17):6415–20.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Miñones-Moyano E, Porta S, Escaramís G, Rabionet R, Iraola S, Kagerbauer B, et al. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet. 2011;20(15):3067–78.PubMedCrossRef Miñones-Moyano E, Porta S, Escaramís G, Rabionet R, Iraola S, Kagerbauer B, et al. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet. 2011;20(15):3067–78.PubMedCrossRef
23.
Zurück zum Zitat Schröder FH, Roobol MJ. Defining the optimal prostate-specific antigen threshold for the diagnosis of prostate cancer. Curr Opin Urol. 2009;19(3):227–31.PubMedCrossRef Schröder FH, Roobol MJ. Defining the optimal prostate-specific antigen threshold for the diagnosis of prostate cancer. Curr Opin Urol. 2009;19(3):227–31.PubMedCrossRef
24.
Zurück zum Zitat Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci. 2002;99(24):15524–9.PubMedPubMedCentralCrossRef Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci. 2002;99(24):15524–9.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T. MicroRNA expression profiling in prostate cancer. Cancer Res. 2007;67(13):6130–5.PubMedCrossRef Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T. MicroRNA expression profiling in prostate cancer. Cancer Res. 2007;67(13):6130–5.PubMedCrossRef
26.
Zurück zum Zitat Wei J-J, Wu X, Peng Y, Shi G, Olca B, Yang X, et al. Regulation of HMGA1 expression by microRNA-296 affects prostate cancer growth and invasion. Clin Cancer Res. 2011;17(6):1297–305.PubMedCrossRef Wei J-J, Wu X, Peng Y, Shi G, Olca B, Yang X, et al. Regulation of HMGA1 expression by microRNA-296 affects prostate cancer growth and invasion. Clin Cancer Res. 2011;17(6):1297–305.PubMedCrossRef
27.
Zurück zum Zitat Hudson RS, Yi M, Esposito D, Watkins SK, Hurwitz AA, Yfantis HG, et al. MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer. Nucleic Acids Res. 2011:gkr1222. Hudson RS, Yi M, Esposito D, Watkins SK, Hurwitz AA, Yfantis HG, et al. MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer. Nucleic Acids Res. 2011:gkr1222.
28.
Zurück zum Zitat Xu L, Zhang Y, Wang H, Zhang G, Ding Y, Zhao L. Tumor suppressor miR-1 restrains epithelial-mesenchymal transition and metastasis of colorectal carcinoma via the MAPK and PI3K/AKT pathway. J Transl Med. 2014;12(1):244.PubMedPubMedCentralCrossRef Xu L, Zhang Y, Wang H, Zhang G, Ding Y, Zhao L. Tumor suppressor miR-1 restrains epithelial-mesenchymal transition and metastasis of colorectal carcinoma via the MAPK and PI3K/AKT pathway. J Transl Med. 2014;12(1):244.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Gaur S, Gallick G. Tumor suppressive miRNA-145 inhibits IGF-1 and cell viability in prostate cancer cells. Cancer Res. 2014;74(19 Supplement):4356.CrossRef Gaur S, Gallick G. Tumor suppressive miRNA-145 inhibits IGF-1 and cell viability in prostate cancer cells. Cancer Res. 2014;74(19 Supplement):4356.CrossRef
30.
Zurück zum Zitat Lee K-H, Chen Y-L, Yeh S, Hsiao M, Lin J, Goan Y, et al. MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene. 2009;28(38):3360–70.PubMedCrossRef Lee K-H, Chen Y-L, Yeh S, Hsiao M, Lin J, Goan Y, et al. MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene. 2009;28(38):3360–70.PubMedCrossRef
31.
Zurück zum Zitat Xu B, Wang N, Wang X, Tong N, Shao N, Tao J, et al. MiR‐146a suppresses tumor growth and progression by targeting EGFR pathway and in ap‐ERK‐dependent manner in castration‐resistant prostate cancer. Prostate. 2012;72(11):1171–8.PubMedCrossRef Xu B, Wang N, Wang X, Tong N, Shao N, Tao J, et al. MiR‐146a suppresses tumor growth and progression by targeting EGFR pathway and in ap‐ERK‐dependent manner in castration‐resistant prostate cancer. Prostate. 2012;72(11):1171–8.PubMedCrossRef
32.
Zurück zum Zitat Jurkin J, Schichl YM, Koeffel R, Bauer T, Richter S, Konradi S, et al. miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J Immunol. 2010;184(9):4955–65.PubMedCrossRef Jurkin J, Schichl YM, Koeffel R, Bauer T, Richter S, Konradi S, et al. miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J Immunol. 2010;184(9):4955–65.PubMedCrossRef
33.
Zurück zum Zitat Varambally S, Cao Q, Mani R-S, Shankar S, Wang X, Ateeq B, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008;322(5908):1695–9.PubMedPubMedCentralCrossRef Varambally S, Cao Q, Mani R-S, Shankar S, Wang X, Ateeq B, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008;322(5908):1695–9.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, et al. The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 2008;14(11):1271–7.PubMedCrossRef Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, et al. The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 2008;14(11):1271–7.PubMedCrossRef
35.
Zurück zum Zitat Voulgari A, Pintzas A. Epithelial–mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. BBA Rev Cancer. 2009;1796(2):75–90. Voulgari A, Pintzas A. Epithelial–mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. BBA Rev Cancer. 2009;1796(2):75–90.
36.
Zurück zum Zitat Fuse M, Nohata N, Kojima S, Sakamoto S, Chiyomaru T, Kawakami K, et al. Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1. Int J Oncol. 2011;38(4):1093.PubMed Fuse M, Nohata N, Kojima S, Sakamoto S, Chiyomaru T, Kawakami K, et al. Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1. Int J Oncol. 2011;38(4):1093.PubMed
37.
Zurück zum Zitat Gandellini P, Giannoni E, Casamichele A, Taddei ML, Callari M, Valdagni R, et al. MiR-205 puts the brakes on the malignant interplay between prostate cancer cells and associated fibroblasts. Cancer Res. 2013;73(3 Supplement):B18-B.CrossRef Gandellini P, Giannoni E, Casamichele A, Taddei ML, Callari M, Valdagni R, et al. MiR-205 puts the brakes on the malignant interplay between prostate cancer cells and associated fibroblasts. Cancer Res. 2013;73(3 Supplement):B18-B.CrossRef
38.
Zurück zum Zitat Epis MR, Giles KM, Barker A, Kendrick TS, Leedman PJ. miR-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J Biol Chem. 2009;284(37):24696–704.PubMedPubMedCentralCrossRef Epis MR, Giles KM, Barker A, Kendrick TS, Leedman PJ. miR-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J Biol Chem. 2009;284(37):24696–704.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Noonan E, Place R, Pookot D, Basak S, Whitson J, Hirata H, et al. miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene. 2009;28(14):1714–24.PubMedCrossRef Noonan E, Place R, Pookot D, Basak S, Whitson J, Hirata H, et al. miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene. 2009;28(14):1714–24.PubMedCrossRef
40.
Zurück zum Zitat Noonan EJ, Place RF, Basak S, Pookot D, Li L-C. miR-449a causes Rb-dependent cell cycle arrest and senescence in prostate cancer cells. Oncotarget. 2010;1(5):349.PubMedPubMedCentral Noonan EJ, Place RF, Basak S, Pookot D, Li L-C. miR-449a causes Rb-dependent cell cycle arrest and senescence in prostate cancer cells. Oncotarget. 2010;1(5):349.PubMedPubMedCentral
42.
Zurück zum Zitat Zhang H, Qi S, Zhang T, Wang A, Liu R, Guo J, et al. miR-188-5p inhibits tumour growth and metastasis in prostate cancer by repressing LAPTM4B expression. Oncotarget. 2015;6(8):6092–104. Zhang H, Qi S, Zhang T, Wang A, Liu R, Guo J, et al. miR-188-5p inhibits tumour growth and metastasis in prostate cancer by repressing LAPTM4B expression. Oncotarget. 2015;6(8):6092–104.
43.
Zurück zum Zitat Kojima S, Chiyomaru T, Kawakami K, Yoshino H, Enokida H, Nohata N, et al. Tumour suppressors miR-1 and miR-133a target the oncogenic function of purine nucleoside phosphorylase (PNP) in prostate cancer. Br J Cancer. 2012;106(2):405–13.PubMedCrossRef Kojima S, Chiyomaru T, Kawakami K, Yoshino H, Enokida H, Nohata N, et al. Tumour suppressors miR-1 and miR-133a target the oncogenic function of purine nucleoside phosphorylase (PNP) in prostate cancer. Br J Cancer. 2012;106(2):405–13.PubMedCrossRef
44.
Zurück zum Zitat Ru P, Steele R, Newhall P, Phillips NJ, Toth K, Ray RB. miRNA-29b suppresses prostate cancer metastasis by regulating epithelial–mesenchymal transition signaling. Mol Cancer Ther. 2012;11(5):1166–73.PubMedCrossRef Ru P, Steele R, Newhall P, Phillips NJ, Toth K, Ray RB. miRNA-29b suppresses prostate cancer metastasis by regulating epithelial–mesenchymal transition signaling. Mol Cancer Ther. 2012;11(5):1166–73.PubMedCrossRef
45.
Zurück zum Zitat Steele R, Mott JL, Ray RB. MBP-1 upregulates miR-29b, which represses Mcl-1, collagens, and matrix metalloproteinase-2 in prostate cancer cells. Genes Cancer. 2010;1(4):381–7.PubMedPubMedCentralCrossRef Steele R, Mott JL, Ray RB. MBP-1 upregulates miR-29b, which represses Mcl-1, collagens, and matrix metalloproteinase-2 in prostate cancer cells. Genes Cancer. 2010;1(4):381–7.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Li X, Chen Y-T, Josson S, Mukhopadhyay NK, Kim J, Freeman MR, et al. MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells. PLoS One. 2013;8(8):e70987.PubMedPubMedCentralCrossRef Li X, Chen Y-T, Josson S, Mukhopadhyay NK, Kim J, Freeman MR, et al. MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells. PLoS One. 2013;8(8):e70987.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Zhang Q. Epigenetic regulation of miR-31 and miR-205 of apoptosis in prostate cancer. Cancer Res. 2014;74(19 Supplement):3535.CrossRef Zhang Q. Epigenetic regulation of miR-31 and miR-205 of apoptosis in prostate cancer. Cancer Res. 2014;74(19 Supplement):3535.CrossRef
49.
Zurück zum Zitat Nadiminty N, Tummala R, Lou W, Zhu Y, Zhang J, Chen X, et al. MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells. J Biol Chem. 2012;287(2):1527–37.PubMedCrossRef Nadiminty N, Tummala R, Lou W, Zhu Y, Zhang J, Chen X, et al. MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells. J Biol Chem. 2012;287(2):1527–37.PubMedCrossRef
50.
Zurück zum Zitat Zhang Y, Fan K-J, Sun Q, Chen A-Z, Shen W-L, Zhao Z-H, et al. Functional screening for miRNAs targeting Smad4 identified miR-199a as a negative regulator of TGF-β signalling pathway. Nucleic Acids Res. 2012;40(18):9286–97.PubMedPubMedCentralCrossRef Zhang Y, Fan K-J, Sun Q, Chen A-Z, Shen W-L, Zhao Z-H, et al. Functional screening for miRNAs targeting Smad4 identified miR-199a as a negative regulator of TGF-β signalling pathway. Nucleic Acids Res. 2012;40(18):9286–97.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Zhang J, Zhang D, Wu G-Q, Feng Z-Y, Zhu S-M. Propofol inhibits the adhesion of hepatocellular carcinoma cells by upregulating microRNA-199a and downregulating MMP-9 expression. Hepatobiliary Pancreat Dis Int. 2013;12(3):305–9.PubMedCrossRef Zhang J, Zhang D, Wu G-Q, Feng Z-Y, Zhu S-M. Propofol inhibits the adhesion of hepatocellular carcinoma cells by upregulating microRNA-199a and downregulating MMP-9 expression. Hepatobiliary Pancreat Dis Int. 2013;12(3):305–9.PubMedCrossRef
52.
Zurück zum Zitat Maugeri-Saccà M, Coppola V, Bonci D, De Maria R. MicroRNAs and prostate cancer: from preclinical research to translational oncology. Cancer J. 2012;18(3):253–61.PubMedCrossRef Maugeri-Saccà M, Coppola V, Bonci D, De Maria R. MicroRNAs and prostate cancer: from preclinical research to translational oncology. Cancer J. 2012;18(3):253–61.PubMedCrossRef
53.
Zurück zum Zitat Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H, et al. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell–cell junctions. Nucleic Acids Res. 2005;33(20):6566–78.PubMedPubMedCentralCrossRef Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H, et al. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell–cell junctions. Nucleic Acids Res. 2005;33(20):6566–78.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Ding X, Park SI, McCauley LK, Wang C-Y. Signaling between transforming growth factor β (TGF-β) and transcription factor SNAI2 represses expression of microRNA miR-203 to promote epithelial-mesenchymal transition and tumor metastasis. J Biol Chem. 2013;288(15):10241–53.PubMedPubMedCentralCrossRef Ding X, Park SI, McCauley LK, Wang C-Y. Signaling between transforming growth factor β (TGF-β) and transcription factor SNAI2 represses expression of microRNA miR-203 to promote epithelial-mesenchymal transition and tumor metastasis. J Biol Chem. 2013;288(15):10241–53.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601.PubMedCrossRef Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601.PubMedCrossRef
56.
Zurück zum Zitat Rajendiran B. Post-transcriptional and epigenetic regulation of MIEN1 in prostate cancer. 2014. Rajendiran B. Post-transcriptional and epigenetic regulation of MIEN1 in prostate cancer. 2014.
57.
Zurück zum Zitat Formosa A, Lena A, Markert E, Cortelli S, Miano R, Mauriello A, et al. DNA methylation silences miR-132 in prostate cancer. Oncogene. 2013;32(1):127–34.PubMedCrossRef Formosa A, Lena A, Markert E, Cortelli S, Miano R, Mauriello A, et al. DNA methylation silences miR-132 in prostate cancer. Oncogene. 2013;32(1):127–34.PubMedCrossRef
58.
Zurück zum Zitat Liu H, Yin J, Wang H, Jiang G, Deng M, Zhang G, et al. FOXO3a modulates WNT/β-catenin signaling and suppresses epithelial-to-mesenchymal transition in prostate cancer cells. Cell Signal. 2015;27(3):510–18. Liu H, Yin J, Wang H, Jiang G, Deng M, Zhang G, et al. FOXO3a modulates WNT/β-catenin signaling and suppresses epithelial-to-mesenchymal transition in prostate cancer cells. Cell Signal. 2015;27(3):510–18.
59.
Zurück zum Zitat Guo Y, Ying L, Tian Y, Yang P, Zhu Y, Wang Z, et al. miR‐144 downregulation increases bladder cancer cell proliferation by targeting EZH2 and regulating Wnt signaling. FEBS J. 2013;280(18):4531–8.PubMedCrossRef Guo Y, Ying L, Tian Y, Yang P, Zhu Y, Wang Z, et al. miR‐144 downregulation increases bladder cancer cell proliferation by targeting EZH2 and regulating Wnt signaling. FEBS J. 2013;280(18):4531–8.PubMedCrossRef
60.
Zurück zum Zitat Zhang L-Y, Lee VH-F, Wong AMG, Kwong DL-W, Zhu Y-H, Dong S-S, et al. MicroRNA-144 promotes cell proliferation, migration and invasion in nasopharyngeal carcinoma through repression of PTEN. Carcinogenesis. Zhang L-Y, Lee VH-F, Wong AMG, Kwong DL-W, Zhu Y-H, Dong S-S, et al. MicroRNA-144 promotes cell proliferation, migration and invasion in nasopharyngeal carcinoma through repression of PTEN. Carcinogenesis.
61.
62.
Zurück zum Zitat Lal A, Pan Y, Navarro F, Dykxhoorn DM, Moreau L, Meire E, et al. miR-24–mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol. 2009;16(5):492–8.PubMedPubMedCentralCrossRef Lal A, Pan Y, Navarro F, Dykxhoorn DM, Moreau L, Meire E, et al. miR-24–mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol. 2009;16(5):492–8.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Hu H, Du L, Nagabayashi G, Seeger RC, Gatti RA. ATM is down-regulated by N-Myc–regulated microRNA-421. Proc Natl Acad Sci. 2010;107(4):1506–11.PubMedPubMedCentralCrossRef Hu H, Du L, Nagabayashi G, Seeger RC, Gatti RA. ATM is down-regulated by N-Myc–regulated microRNA-421. Proc Natl Acad Sci. 2010;107(4):1506–11.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Grosso S, Doyen J, Parks S, Bertero T, Paye A, Cardinaud B, et al. MiR-210 promotes a hypoxic phenotype and increases radioresistance in human lung cancer cell lines. Cell Death Dis. 2013;4(3):e544.PubMedPubMedCentralCrossRef Grosso S, Doyen J, Parks S, Bertero T, Paye A, Cardinaud B, et al. MiR-210 promotes a hypoxic phenotype and increases radioresistance in human lung cancer cell lines. Cell Death Dis. 2013;4(3):e544.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Jin M, Zhang T, Liu C. MicroRNA-128 suppresses prostate cancer by inhibiting BMI-1. Cancer Res. 2014;74(15):4183–95. Jin M, Zhang T, Liu C. MicroRNA-128 suppresses prostate cancer by inhibiting BMI-1. Cancer Res. 2014;74(15):4183–95.
66.
Zurück zum Zitat Xue G, Ren Z, Chen Y, Zhu J, Du Y, Pan D, et al. A feedback regulation between miR-145 and DNA methyltransferase 3b in prostate cancer cell and their responses to irradiation. Cancer Lett. 2015. doi:10.1016/j.canlet.2015.02.046. Xue G, Ren Z, Chen Y, Zhu J, Du Y, Pan D, et al. A feedback regulation between miR-145 and DNA methyltransferase 3b in prostate cancer cell and their responses to irradiation. Cancer Lett. 2015. doi:10.​1016/​j.​canlet.​2015.​02.​046.
67.
Zurück zum Zitat Li T, Li D, Sha J, Sun P, Huang Y. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun. 2009;383(3):280–5.PubMedCrossRef Li T, Li D, Sha J, Sun P, Huang Y. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun. 2009;383(3):280–5.PubMedCrossRef
68.
Zurück zum Zitat Liu L-Z, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y, et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS One. 2011;6(4):e19139.PubMedPubMedCentralCrossRef Liu L-Z, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y, et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS One. 2011;6(4):e19139.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Amir S, Ma A-H, Shi X-B, Xue L, Kung H-J, de Vere White RW. Oncomir miR-125b suppresses p14ARF to modulate p53-dependent and p53-independent apoptosis in prostate cancer. PLoS One. 2013;8(4):e61064.PubMedPubMedCentralCrossRef Amir S, Ma A-H, Shi X-B, Xue L, Kung H-J, de Vere White RW. Oncomir miR-125b suppresses p14ARF to modulate p53-dependent and p53-independent apoptosis in prostate cancer. PLoS One. 2013;8(4):e61064.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Scaravilli M, Porkka KP, Brofeldt A, Annala M, Tammela TL, Jenster GW, et al. MiR-1247-5p is overexpressed in castration resistant prostate cancer and targets MYCBP2. Prostate. 2015. doi:10.1002/pros.22961.PubMed Scaravilli M, Porkka KP, Brofeldt A, Annala M, Tammela TL, Jenster GW, et al. MiR-1247-5p is overexpressed in castration resistant prostate cancer and targets MYCBP2. Prostate. 2015. doi:10.​1002/​pros.​22961.PubMed
71.
Zurück zum Zitat Wang C, Tao W, Ni S, Chen Q, Zhao Z, Ma L, et al. Tumor-suppressive microRNA-145 induces growth arrest by targeting SENP1 in human prostate cancer cells. Cancer Sci. 2015. doi:10.1111/cas.12626. Wang C, Tao W, Ni S, Chen Q, Zhao Z, Ma L, et al. Tumor-suppressive microRNA-145 induces growth arrest by targeting SENP1 in human prostate cancer cells. Cancer Sci. 2015. doi:10.​1111/​cas.​12626.
72.
Zurück zum Zitat Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F, et al. An E2F/miR-20a autoregulatory feedback loop. J Biol Chem. 2007;282(4):2135–43.PubMedCrossRef Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F, et al. An E2F/miR-20a autoregulatory feedback loop. J Biol Chem. 2007;282(4):2135–43.PubMedCrossRef
73.
Zurück zum Zitat Qin W, Shi Y, Zhao B, Yao C, Jin L, Ma J, et al. miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS One. 2010;5(2):e9429.PubMedPubMedCentralCrossRef Qin W, Shi Y, Zhao B, Yao C, Jin L, Ma J, et al. miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS One. 2010;5(2):e9429.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Jalava S, Urbanucci A, Latonen L, Waltering K, Sahu B, Jänne O, et al. Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene. 2012;31(41):4460–71.PubMedCrossRef Jalava S, Urbanucci A, Latonen L, Waltering K, Sahu B, Jänne O, et al. Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene. 2012;31(41):4460–71.PubMedCrossRef
75.
Zurück zum Zitat Emmrich S, Rasche M, Schöning J, Reimer C, Keihani S, Maroz A, et al. miR-99a/100∼125b tricistrons regulate hematopoietic stem and progenitor cell homeostasis by shifting the balance between TGFβ and Wnt signaling. Genes Dev. 2014;28(8):858–74.PubMedPubMedCentralCrossRef Emmrich S, Rasche M, Schöning J, Reimer C, Keihani S, Maroz A, et al. miR-99a/100∼125b tricistrons regulate hematopoietic stem and progenitor cell homeostasis by shifting the balance between TGFβ and Wnt signaling. Genes Dev. 2014;28(8):858–74.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Ishteiwy RA, Ward TM, Dykxhoorn DM, Burnstein KL. The microRNA-23b/-27b cluster suppresses the metastatic phenotype of castration-resistant prostate cancer cells. PLoS One. 2012;7(12):e52106.PubMedPubMedCentralCrossRef Ishteiwy RA, Ward TM, Dykxhoorn DM, Burnstein KL. The microRNA-23b/-27b cluster suppresses the metastatic phenotype of castration-resistant prostate cancer cells. PLoS One. 2012;7(12):e52106.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Aghaee-Bakhtiari SH, Arefian E, Naderi M, Noorbakhsh F, Nodouzi V, Asgari M, et al. MAPK and JAK/STAT pathways targeted by miR-23a and miR-23b in prostate cancer: computational and in vitro approaches. Tumor Biol. 2015;36(6):4203–12. Aghaee-Bakhtiari SH, Arefian E, Naderi M, Noorbakhsh F, Nodouzi V, Asgari M, et al. MAPK and JAK/STAT pathways targeted by miR-23a and miR-23b in prostate cancer: computational and in vitro approaches. Tumor Biol. 2015;36(6):4203–12.
78.
Zurück zum Zitat Wu Z, He B, He J, Mao X. Upregulation of miR‐153 promotes cell proliferation via downregulation of the PTEN tumor suppressor gene in human prostate cancer. Prostate. 2013;73(6):596–604.PubMedCrossRef Wu Z, He B, He J, Mao X. Upregulation of miR‐153 promotes cell proliferation via downregulation of the PTEN tumor suppressor gene in human prostate cancer. Prostate. 2013;73(6):596–604.PubMedCrossRef
79.
Zurück zum Zitat Xu J, Liao X, Wong C. Downregulations of B‐cell lymphoma 2 and myeloid cell leukemia sequence 1 by microRNA 153 induce apoptosis in a glioblastoma cell line DBTRG‐05MG. Int J Cancer. 2010;126(4):1029–35.PubMed Xu J, Liao X, Wong C. Downregulations of B‐cell lymphoma 2 and myeloid cell leukemia sequence 1 by microRNA 153 induce apoptosis in a glioblastoma cell line DBTRG‐05MG. Int J Cancer. 2010;126(4):1029–35.PubMed
81.
Zurück zum Zitat Biunno I, Cattaneo M, Orlandi R, Canton C, Biagiotti L, Ferrero S, et al. SEL1L a multifaceted protein playing a role in tumor progression. J Cell Physiol. 2006;208(1):23–38.PubMedCrossRef Biunno I, Cattaneo M, Orlandi R, Canton C, Biagiotti L, Ferrero S, et al. SEL1L a multifaceted protein playing a role in tumor progression. J Cell Physiol. 2006;208(1):23–38.PubMedCrossRef
83.
Zurück zum Zitat Gebert LF, Rebhan MA, Crivelli SE, Denzler R, Stoffel M, Hall J. Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res. 2014;42(1):609–21.PubMedCrossRef Gebert LF, Rebhan MA, Crivelli SE, Denzler R, Stoffel M, Hall J. Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res. 2014;42(1):609–21.PubMedCrossRef
84.
Zurück zum Zitat Leite KR, Reis ST, Viana N, Morais DR, Moura CM, Silva IA, et al. Controlling RECK miR21 promotes tumor cell invasion and is related to biochemical recurrence in prostate cancer. J Cancer. 2015;6(3):292–301.PubMedPubMedCentralCrossRef Leite KR, Reis ST, Viana N, Morais DR, Moura CM, Silva IA, et al. Controlling RECK miR21 promotes tumor cell invasion and is related to biochemical recurrence in prostate cancer. J Cancer. 2015;6(3):292–301.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Majid S, Dar AA, Saini S, Arora S, Shahryari V, Zaman MS, et al. miR-23b represses proto-oncogene Src kinase and functions as methylation-silenced tumor suppressor with diagnostic and prognostic significance in prostate cancer. Cancer Res. 2012;72(24):6435–46.PubMedPubMedCentralCrossRef Majid S, Dar AA, Saini S, Arora S, Shahryari V, Zaman MS, et al. miR-23b represses proto-oncogene Src kinase and functions as methylation-silenced tumor suppressor with diagnostic and prognostic significance in prostate cancer. Cancer Res. 2012;72(24):6435–46.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Anand SS, Gill BS. Breakthroughs in epigenetics. PharmaTutor. 2015;3(7):16–24. Anand SS, Gill BS. Breakthroughs in epigenetics. PharmaTutor. 2015;3(7):16–24.
87.
Zurück zum Zitat Ngo TH, Barnard RJ, Cohen P, Freedland S, Tran C, Elshimali YI, et al. Effect of isocaloric low-fat diet on human LAPC-4 prostate cancer xenografts in severe combined immunodeficient mice and the insulin-like growth factor axis. Clin Cancer Res. 2003;9(7):2734–43.PubMed Ngo TH, Barnard RJ, Cohen P, Freedland S, Tran C, Elshimali YI, et al. Effect of isocaloric low-fat diet on human LAPC-4 prostate cancer xenografts in severe combined immunodeficient mice and the insulin-like growth factor axis. Clin Cancer Res. 2003;9(7):2734–43.PubMed
88.
Zurück zum Zitat Sonn GA, Aronson W, Litwin M. Impact of diet on prostate cancer: a review. Prostate Cancer Prostatic Dis. 2005;8(4):304–10.PubMedCrossRef Sonn GA, Aronson W, Litwin M. Impact of diet on prostate cancer: a review. Prostate Cancer Prostatic Dis. 2005;8(4):304–10.PubMedCrossRef
90.
Zurück zum Zitat Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.PubMedCrossRef Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.PubMedCrossRef
91.
Zurück zum Zitat Brase JC, Johannes M, Schlomm T, Fälth M, Haese A, Steuber T, et al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer. 2011;128(3):608–16.PubMedCrossRef Brase JC, Johannes M, Schlomm T, Fälth M, Haese A, Steuber T, et al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer. 2011;128(3):608–16.PubMedCrossRef
93.
Zurück zum Zitat Shi X-B, Xue L, Yang J, Ma A-H, Zhao J, Xu M, et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci. 2007;104(50):19983–8.PubMedPubMedCentralCrossRef Shi X-B, Xue L, Yang J, Ma A-H, Zhao J, Xu M, et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci. 2007;104(50):19983–8.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Ma S, Chan YP, Kwan PS, Lee TK, Yan M, Tang KH, et al. MicroRNA-616 induces androgen-independent growth of prostate cancer cells by suppressing expression of tissue factor pathway inhibitor TFPI-2. Cancer Res. 2011;71(2):583–92.PubMedCrossRef Ma S, Chan YP, Kwan PS, Lee TK, Yan M, Tang KH, et al. MicroRNA-616 induces androgen-independent growth of prostate cancer cells by suppressing expression of tissue factor pathway inhibitor TFPI-2. Cancer Res. 2011;71(2):583–92.PubMedCrossRef
95.
Zurück zum Zitat Sun T, Yang M, Chen S, Balk S, Pomerantz M, Hsieh CL, et al. The altered expression of MiR‐221/‐222 and MiR‐23b/‐27b is associated with the development of human castration resistant prostate cancer. Prostate. 2012;72(10):1093–103.PubMedCrossRef Sun T, Yang M, Chen S, Balk S, Pomerantz M, Hsieh CL, et al. The altered expression of MiR‐221/‐222 and MiR‐23b/‐27b is associated with the development of human castration resistant prostate cancer. Prostate. 2012;72(10):1093–103.PubMedCrossRef
96.
Zurück zum Zitat Mo W, Zhang J, Li X, Meng D, Gao Y, Yang S, et al. Identification of novel AR-targeted microRNAs mediating androgen signalling through critical pathways to regulate cell viability in prostate cancer. PLoS One. 2013;8(2):e56592.PubMedPubMedCentralCrossRef Mo W, Zhang J, Li X, Meng D, Gao Y, Yang S, et al. Identification of novel AR-targeted microRNAs mediating androgen signalling through critical pathways to regulate cell viability in prostate cancer. PLoS One. 2013;8(2):e56592.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat McCabe MT, Brandes JC, Vertino PM. Cancer DNA methylation: molecular mechanisms and clinical implications. Clin Cancer Res. 2009;15(12):3927–37.PubMedPubMedCentralCrossRef McCabe MT, Brandes JC, Vertino PM. Cancer DNA methylation: molecular mechanisms and clinical implications. Clin Cancer Res. 2009;15(12):3927–37.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Lujambio A. CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle. 2007;6(12):1454–8.CrossRef Lujambio A. CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle. 2007;6(12):1454–8.CrossRef
99.
Zurück zum Zitat Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S, et al. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One. 2010;5(1):e8697.PubMedPubMedCentralCrossRef Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S, et al. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One. 2010;5(1):e8697.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, et al. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res. 2008;68(11):4123–32.PubMedCrossRef Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, et al. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res. 2008;68(11):4123–32.PubMedCrossRef
101.
Zurück zum Zitat Suh SO, Chen Y, Zaman MS, Hirata H, Yamamura S, Shahryari V, et al. MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis. 2011;32(5):772–8.PubMedPubMedCentralCrossRef Suh SO, Chen Y, Zaman MS, Hirata H, Yamamura S, Shahryari V, et al. MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis. 2011;32(5):772–8.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci. 2009;106(9):3207–12.PubMedPubMedCentralCrossRef Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci. 2009;106(9):3207–12.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Gu W, Gao T, Shen J, Sun Y, Zheng X, Wang J, et al. MicroRNA-183 inhibits apoptosis and promotes proliferation and invasion of gastric cancer cells by targeting PDCD4. Int J Clin Exp Med. 2014;7(9):2519.PubMedPubMedCentral Gu W, Gao T, Shen J, Sun Y, Zheng X, Wang J, et al. MicroRNA-183 inhibits apoptosis and promotes proliferation and invasion of gastric cancer cells by targeting PDCD4. Int J Clin Exp Med. 2014;7(9):2519.PubMedPubMedCentral
104.
Zurück zum Zitat Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58.PubMedPubMedCentralCrossRef Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Gill BS, Sharma P, Kumar R, Kumar S. Misconstrued versatility of Ganoderma lucidum: a key player in multi-targeted cellular signaling. Tumor Biol. 2015. p. 1–16. Gill BS, Sharma P, Kumar R, Kumar S. Misconstrued versatility of Ganoderma lucidum: a key player in multi-targeted cellular signaling. Tumor Biol. 2015. p. 1–16.
106.
Zurück zum Zitat Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci. 2005;102(39):13944–9.PubMedPubMedCentralCrossRef Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci. 2005;102(39):13944–9.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Porkka KP, Ogg EL, Saramäki OR, Vessella RL, Pukkila H, Lähdesmäki H, et al. The miR‐15a‐miR‐16‐1 locus is homozygously deleted in a subset of prostate cancers. Genes Chromosomes Cancer. 2011;50(7):499–509.PubMedCrossRef Porkka KP, Ogg EL, Saramäki OR, Vessella RL, Pukkila H, Lähdesmäki H, et al. The miR‐15a‐miR‐16‐1 locus is homozygously deleted in a subset of prostate cancers. Genes Chromosomes Cancer. 2011;50(7):499–509.PubMedCrossRef
108.
Zurück zum Zitat Se C, Tian J, Chen S, Zhang X, Zhang Y. Role of miR‐34c in ketamine‐induced neurotoxicity in neonatal mice hippocampus. Cell Biol Int. 2015;39(2):164–8.CrossRef Se C, Tian J, Chen S, Zhang X, Zhang Y. Role of miR‐34c in ketamine‐induced neurotoxicity in neonatal mice hippocampus. Cell Biol Int. 2015;39(2):164–8.CrossRef
109.
Zurück zum Zitat Gong J, Zhang J, Li B, Zeng C, You K, Chen M, et al. MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R. Oncogene. 2013;32(25):3071–9.PubMedCrossRef Gong J, Zhang J, Li B, Zeng C, You K, Chen M, et al. MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R. Oncogene. 2013;32(25):3071–9.PubMedCrossRef
110.
Zurück zum Zitat Hersh EM, Metch BS, Muggia FM, Brown TD, Whitehead RP, Budd GT, et al. Phase II studies of recombinant human tumor necrosis factor alpha in patients with malignant disease: a summary of the Southwest Oncology Group experience. J Immunother. 1991;10(6):426–31.PubMedCrossRef Hersh EM, Metch BS, Muggia FM, Brown TD, Whitehead RP, Budd GT, et al. Phase II studies of recombinant human tumor necrosis factor alpha in patients with malignant disease: a summary of the Southwest Oncology Group experience. J Immunother. 1991;10(6):426–31.PubMedCrossRef
111.
Zurück zum Zitat Garofalo M, Quintavalle C, Di Leva G, Zanca C, Romano G, Taccioli C, et al. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene. 2008;27(27):3845–55.PubMedCrossRef Garofalo M, Quintavalle C, Di Leva G, Zanca C, Romano G, Taccioli C, et al. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene. 2008;27(27):3845–55.PubMedCrossRef
112.
Zurück zum Zitat Ovcharenko D, Kelnar K, Johnson C, Leng N, Brown D. Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway. Cancer Res. 2007;67(22):10782–8.PubMedCrossRef Ovcharenko D, Kelnar K, Johnson C, Leng N, Brown D. Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway. Cancer Res. 2007;67(22):10782–8.PubMedCrossRef
113.
Zurück zum Zitat Yamamura S, Saini S, Majid S, Hirata H, Ueno K, Deng G, et al. MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells. PLoS One. 2012;7(1):e29722.PubMedPubMedCentralCrossRef Yamamura S, Saini S, Majid S, Hirata H, Ueno K, Deng G, et al. MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells. PLoS One. 2012;7(1):e29722.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Li X, Pan J-H, Song B, Xiong E-Q, Chen Z-W, Zhou Z-S, et al. Suppression of CX43 expression by miR-20a in the progression of human prostate cancer. Cancer Biol Ther. 2012;13(10):890–8.PubMedCrossRef Li X, Pan J-H, Song B, Xiong E-Q, Chen Z-W, Zhou Z-S, et al. Suppression of CX43 expression by miR-20a in the progression of human prostate cancer. Cancer Biol Ther. 2012;13(10):890–8.PubMedCrossRef
115.
Zurück zum Zitat Williams SA, Singh P, Isaacs JT, Denmeade SR. Does PSA play a role as a promoting agent during the initiation and/or progression of prostate cancer? Prostate. 2007;67(3):312–29.PubMedCrossRef Williams SA, Singh P, Isaacs JT, Denmeade SR. Does PSA play a role as a promoting agent during the initiation and/or progression of prostate cancer? Prostate. 2007;67(3):312–29.PubMedCrossRef
116.
Zurück zum Zitat Saini S, Majid S, Yamamura S, Tabatabai L, Suh SO, Shahryari V, et al. Regulatory role of miR-203 in prostate cancer progression and metastasis. Clin Cancer Res. 2011;17(16):5287–98.PubMedCrossRef Saini S, Majid S, Yamamura S, Tabatabai L, Suh SO, Shahryari V, et al. Regulatory role of miR-203 in prostate cancer progression and metastasis. Clin Cancer Res. 2011;17(16):5287–98.PubMedCrossRef
117.
Zurück zum Zitat Davis JN, Wojno KJ, Daignault S, Hofer MD, Kuefer R, Rubin MA, et al. Elevated E2F1 inhibits transcription of the androgen receptor in metastatic hormone-resistant prostate cancer. Cancer Res. 2006;66(24):11897–906.PubMedCrossRef Davis JN, Wojno KJ, Daignault S, Hofer MD, Kuefer R, Rubin MA, et al. Elevated E2F1 inhibits transcription of the androgen receptor in metastatic hormone-resistant prostate cancer. Cancer Res. 2006;66(24):11897–906.PubMedCrossRef
118.
Zurück zum Zitat Gill BS, Kumar S. Differential algorithms-assisted molecular modeling-based identification of mechanistic binding of ganoderic acids. Med Chem Res. 2015;24(9):3483–93.CrossRef Gill BS, Kumar S. Differential algorithms-assisted molecular modeling-based identification of mechanistic binding of ganoderic acids. Med Chem Res. 2015;24(9):3483–93.CrossRef
119.
Zurück zum Zitat Christoffersen NR, Silahtaroglu A, Ørom UA, Kauppinen S, Lund AH. miR-200b mediates post-transcriptional repression of ZFHX1B. RNA. 2007;13(8):1172–8.PubMedPubMedCentralCrossRef Christoffersen NR, Silahtaroglu A, Ørom UA, Kauppinen S, Lund AH. miR-200b mediates post-transcriptional repression of ZFHX1B. RNA. 2007;13(8):1172–8.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Karolina DS, Armugam A, Tavintharan S, Wong MT, Lim SC, Sum CF, et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One. 2011;6(8):e22839.PubMedPubMedCentralCrossRef Karolina DS, Armugam A, Tavintharan S, Wong MT, Lim SC, Sum CF, et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One. 2011;6(8):e22839.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Qi W, Chan H, Teng L, Li L, Chuai S, Zhang R, et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci. 2012;109(52):21360–5.PubMedPubMedCentralCrossRef Qi W, Chan H, Teng L, Li L, Chuai S, Zhang R, et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci. 2012;109(52):21360–5.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Heldin C-H, Moustakas A. Role of Smads in TGFβ signaling. Cell Tissue Res. 2012;347(1):21–36.PubMedCrossRef Heldin C-H, Moustakas A. Role of Smads in TGFβ signaling. Cell Tissue Res. 2012;347(1):21–36.PubMedCrossRef
125.
Zurück zum Zitat Fleming NI, Jorissen RN, Mouradov D, Christie M, Sakthianandeswaren A, Palmieri M, et al. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res. 2013;73(2):725–35.PubMedCrossRef Fleming NI, Jorissen RN, Mouradov D, Christie M, Sakthianandeswaren A, Palmieri M, et al. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res. 2013;73(2):725–35.PubMedCrossRef
126.
Zurück zum Zitat Kim S-J, Im Y-H, Markowitz S, Bang Y-J. Molecular mechanisms of inactivation of TGF-β receptors during carcinogenesis. Cytokine Growth Factor Rev. 2000;11(1):159–68.PubMedCrossRef Kim S-J, Im Y-H, Markowitz S, Bang Y-J. Molecular mechanisms of inactivation of TGF-β receptors during carcinogenesis. Cytokine Growth Factor Rev. 2000;11(1):159–68.PubMedCrossRef
127.
Zurück zum Zitat Wikström P, Damber JE, Bergh A. Role of transforming growth factor‐β1 in prostate cancer. Microsc Res Tech. 2001;52(4):411–9.PubMedCrossRef Wikström P, Damber JE, Bergh A. Role of transforming growth factor‐β1 in prostate cancer. Microsc Res Tech. 2001;52(4):411–9.PubMedCrossRef
128.
Zurück zum Zitat Davis-Dusenbery BN, Chan MC, Reno KE, Weisman AS, Layne MD, Lagna G, et al. Down-regulation of Krüppel-like Factor-4 (KLF4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-β and bone morphogenetic protein 4. J Biol Chem. 2011;286(32):28097–110.PubMedPubMedCentralCrossRef Davis-Dusenbery BN, Chan MC, Reno KE, Weisman AS, Layne MD, Lagna G, et al. Down-regulation of Krüppel-like Factor-4 (KLF4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-β and bone morphogenetic protein 4. J Biol Chem. 2011;286(32):28097–110.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Zhang H, Cai X, Wang Y, Tang H, Tong D, Ji F. microRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2. Oncol Rep. 2010;24(5):1363–9.PubMed Zhang H, Cai X, Wang Y, Tang H, Tong D, Ji F. microRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2. Oncol Rep. 2010;24(5):1363–9.PubMed
130.
Zurück zum Zitat Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene. 2009;28(10):1385–92.PubMedCrossRef Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene. 2009;28(10):1385–92.PubMedCrossRef
131.
Zurück zum Zitat Wu G-S, Song Y-L, Yin Z-Q, Guo J-J, Wang S-P, Zhao W-W, et al. Ganoderiol A-enriched extract suppresses migration and adhesion of MDA-MB-231 cells by inhibiting FAK-SRC-paxillin cascade pathway. PLoS One. 2013;8(10):e76620.PubMedPubMedCentralCrossRef Wu G-S, Song Y-L, Yin Z-Q, Guo J-J, Wang S-P, Zhao W-W, et al. Ganoderiol A-enriched extract suppresses migration and adhesion of MDA-MB-231 cells by inhibiting FAK-SRC-paxillin cascade pathway. PLoS One. 2013;8(10):e76620.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Liu Z, Lu C-L, Cui L-P, Hu Y-L, Yu Q, Jiang Y, et al. MicroRNA-146a modulates TGF-β1-induced phenotypic differentiation in human dermal fibroblasts by targeting SMAD4. Arch Dermatol Res. 2012;304(3):195–202.PubMedCrossRef Liu Z, Lu C-L, Cui L-P, Hu Y-L, Yu Q, Jiang Y, et al. MicroRNA-146a modulates TGF-β1-induced phenotypic differentiation in human dermal fibroblasts by targeting SMAD4. Arch Dermatol Res. 2012;304(3):195–202.PubMedCrossRef
133.
Zurück zum Zitat Geraldo M, Yamashita A, Kimura E. MicroRNA miR-146b-5p regulates signal transduction of TGF-β by repressing SMAD4 in thyroid cancer. Oncogene. 2011;31(15):1910–22.PubMedCrossRef Geraldo M, Yamashita A, Kimura E. MicroRNA miR-146b-5p regulates signal transduction of TGF-β by repressing SMAD4 in thyroid cancer. Oncogene. 2011;31(15):1910–22.PubMedCrossRef
134.
Zurück zum Zitat Fornari F, Milazzo M, Chieco P, Negrini M, Calin GA, Grazi GL, et al. MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 2010;70(12):5184–93.PubMedCrossRef Fornari F, Milazzo M, Chieco P, Negrini M, Calin GA, Grazi GL, et al. MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 2010;70(12):5184–93.PubMedCrossRef
135.
Zurück zum Zitat Ueno K, Hirata H, Shahryari V, Deng G, Tanaka Y, Tabatabai Z, et al. microRNA-183 is an oncogene targeting Dkk-3 and SMAD4 in prostate cancer. Br J Cancer. 2013;108(8):1659–67.PubMedPubMedCentralCrossRef Ueno K, Hirata H, Shahryari V, Deng G, Tanaka Y, Tabatabai Z, et al. microRNA-183 is an oncogene targeting Dkk-3 and SMAD4 in prostate cancer. Br J Cancer. 2013;108(8):1659–67.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Mishra S, Deng J, Gowda P, Rao M, Lin C, Chen C, et al. Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II (TGFBR2) expression in prostate cancer. Oncogene. 2014;33(31):4097–106.PubMedCrossRef Mishra S, Deng J, Gowda P, Rao M, Lin C, Chen C, et al. Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II (TGFBR2) expression in prostate cancer. Oncogene. 2014;33(31):4097–106.PubMedCrossRef
137.
Zurück zum Zitat Xu B, Niu X, Zhang X, Tao J, Wu D, Wang Z, et al. miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem. 2011;350(1-2):207–13.PubMedCrossRef Xu B, Niu X, Zhang X, Tao J, Wu D, Wang Z, et al. miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem. 2011;350(1-2):207–13.PubMedCrossRef
138.
Zurück zum Zitat Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase—AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501.PubMedCrossRef Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase—AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501.PubMedCrossRef
139.
Zurück zum Zitat Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell. 2003;4(4):257–62.PubMedCrossRef Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell. 2003;4(4):257–62.PubMedCrossRef
140.
Zurück zum Zitat Sun D, Lee YS, Malhotra A, Kim HK, Matecic M, Evans C, et al. miR-99 family of MicroRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res. 2011;71(4):1313–24.PubMedPubMedCentralCrossRef Sun D, Lee YS, Malhotra A, Kim HK, Matecic M, Evans C, et al. miR-99 family of MicroRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res. 2011;71(4):1313–24.PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Saini S, Majid S, Shahryari V, Arora S, Yamamura S, Chang I, et al. miRNA-708 control of CD44+ prostate cancer–initiating cells. Cancer Res. 2012;72(14):3618–30.PubMedCrossRef Saini S, Majid S, Shahryari V, Arora S, Yamamura S, Chang I, et al. miRNA-708 control of CD44+ prostate cancer–initiating cells. Cancer Res. 2012;72(14):3618–30.PubMedCrossRef
142.
Zurück zum Zitat Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18(1):11–22.PubMedPubMedCentralCrossRef Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18(1):11–22.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Rasheed SAK, Teo CR, Beillard EJ, Voorhoeve PM, Casey PJ. MicroRNA-182 and microRNA-200a control G-protein subunit α-13 (GNA13) expression and cell invasion synergistically in prostate cancer cells. J Biol Chem. 2013;288(11):7986–95.PubMedPubMedCentralCrossRef Rasheed SAK, Teo CR, Beillard EJ, Voorhoeve PM, Casey PJ. MicroRNA-182 and microRNA-200a control G-protein subunit α-13 (GNA13) expression and cell invasion synergistically in prostate cancer cells. J Biol Chem. 2013;288(11):7986–95.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat LeRoy G, Loyola A, Lane WS, Reinberg D. Purification and characterization of a human factor that assembles and remodels chromatin. J Biol Chem. 2000;275(20):14787–90.PubMedCrossRef LeRoy G, Loyola A, Lane WS, Reinberg D. Purification and characterization of a human factor that assembles and remodels chromatin. J Biol Chem. 2000;275(20):14787–90.PubMedCrossRef
145.
Zurück zum Zitat Gregory PA, Bracken CP, Bert AG, Goodall GJ. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle. 2008;7(20):3112–7.PubMedCrossRef Gregory PA, Bracken CP, Bert AG, Goodall GJ. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle. 2008;7(20):3112–7.PubMedCrossRef
148.
Zurück zum Zitat Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 2001;7(6):1267–78.PubMedCrossRef Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 2001;7(6):1267–78.PubMedCrossRef
149.
Zurück zum Zitat Gonzales JC, Fink LM, Goodman Jr OB, Symanowski JT, Vogelzang NJ, Ward DC. Comparison of circulating MicroRNA 141 to circulating tumor cells, lactate dehydrogenase, and prostate-specific antigen for determining treatment response in patients with metastatic prostate cancer. Clin Genitourin Cancer. 2011;9(1):39–45.PubMedCrossRef Gonzales JC, Fink LM, Goodman Jr OB, Symanowski JT, Vogelzang NJ, Ward DC. Comparison of circulating MicroRNA 141 to circulating tumor cells, lactate dehydrogenase, and prostate-specific antigen for determining treatment response in patients with metastatic prostate cancer. Clin Genitourin Cancer. 2011;9(1):39–45.PubMedCrossRef
150.
Zurück zum Zitat Li Y, VandenBoom TG, Kong D, Wang Z, Ali S, Philip PA, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 2009;69(16):6704–12.PubMedPubMedCentralCrossRef Li Y, VandenBoom TG, Kong D, Wang Z, Ali S, Philip PA, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 2009;69(16):6704–12.PubMedPubMedCentralCrossRef
151.
Zurück zum Zitat Takeshita F, Patrawala L, Osaki M, Takahashi R-U, Yamamoto Y, Kosaka N, et al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther. 2010;18(1):181–7.PubMedCrossRef Takeshita F, Patrawala L, Osaki M, Takahashi R-U, Yamamoto Y, Kosaka N, et al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther. 2010;18(1):181–7.PubMedCrossRef
152.
Zurück zum Zitat Cole MD, Cowling VH. Transcription-independent functions of MYC: regulation of translation and DNA replication. Nat Rev Mol Cell Biol. 2008;9(10):810–5.PubMedCrossRef Cole MD, Cowling VH. Transcription-independent functions of MYC: regulation of translation and DNA replication. Nat Rev Mol Cell Biol. 2008;9(10):810–5.PubMedCrossRef
153.
Zurück zum Zitat Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ. Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol. 1998;161(6):2833–40.PubMed Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ. Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol. 1998;161(6):2833–40.PubMed
154.
Zurück zum Zitat Zaman MS, Chen Y, Deng G, Shahryari V, Suh S, Saini S, et al. The functional significance of microRNA-145 in prostate cancer. Br J Cancer. 2010;103(2):256–64.PubMedPubMedCentralCrossRef Zaman MS, Chen Y, Deng G, Shahryari V, Suh S, Saini S, et al. The functional significance of microRNA-145 in prostate cancer. Br J Cancer. 2010;103(2):256–64.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Liu C, Kelnar K, Vlassov AV, Brown D, Wang J, Tang DG. Distinct microRNA expression profiles in prostate cancer stem/progenitor cells and tumor-suppressive functions of let-7. Cancer Res. 2012;72(13):3393–404.PubMedCrossRef Liu C, Kelnar K, Vlassov AV, Brown D, Wang J, Tang DG. Distinct microRNA expression profiles in prostate cancer stem/progenitor cells and tumor-suppressive functions of let-7. Cancer Res. 2012;72(13):3393–404.PubMedCrossRef
156.
Zurück zum Zitat Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS, et al. miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways. Clin Cancer Res. 2013;19(1):73–84.PubMedCrossRef Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS, et al. miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways. Clin Cancer Res. 2013;19(1):73–84.PubMedCrossRef
158.
Zurück zum Zitat Seidegård J, Ekström G. The role of human glutathione transferases and epoxide hydrolases in the metabolism of xenobiotics. Environ Health Perspect. 1997;105 Suppl 4:791.PubMedPubMedCentralCrossRef Seidegård J, Ekström G. The role of human glutathione transferases and epoxide hydrolases in the metabolism of xenobiotics. Environ Health Perspect. 1997;105 Suppl 4:791.PubMedPubMedCentralCrossRef
159.
Zurück zum Zitat Singh S, Shukla GC, Gupta S. MicroRNA regulating glutathione S-transferase P1 in prostate cancer. Curr Pharmacol Rep. 2015;1(2):79–88. Singh S, Shukla GC, Gupta S. MicroRNA regulating glutathione S-transferase P1 in prostate cancer. Curr Pharmacol Rep. 2015;1(2):79–88.
160.
Zurück zum Zitat Tao J, Wu D, Xu B, Qian W, Li P, Lu Q, et al. microRNA-133 inhibits cell proliferation, migration and invasion in prostate cancer cells by targeting the epidermal growth factor receptor. Oncol Rep. 2012;27(6):1967.PubMed Tao J, Wu D, Xu B, Qian W, Li P, Lu Q, et al. microRNA-133 inhibits cell proliferation, migration and invasion in prostate cancer cells by targeting the epidermal growth factor receptor. Oncol Rep. 2012;27(6):1967.PubMed
161.
Zurück zum Zitat Uchida Y, Chiyomaru T, Enokida H, Kawakami K, Tatarano S, Kawahara K, et al., editors. MiR-133a induces apoptosis through direct regulation of GSTP1 in bladder cancer cell lines. Urol Oncol: Semin Ori. 2013;13(1):115–23. Uchida Y, Chiyomaru T, Enokida H, Kawakami K, Tatarano S, Kawahara K, et al., editors. MiR-133a induces apoptosis through direct regulation of GSTP1 in bladder cancer cell lines. Urol Oncol: Semin Ori. 2013;13(1):115–23.
162.
Zurück zum Zitat Negi A, Gill B. Success stories of enolate form of drugs. PharmaTutor. 2013;1(2):45–53. Negi A, Gill B. Success stories of enolate form of drugs. PharmaTutor. 2013;1(2):45–53.
163.
Zurück zum Zitat Petersen M, Nielsen CB, Nielsen KE, Jensen GA, Bondensgaard K, Singh SK, et al. The conformations of locked nucleic acids (LNA). J Mol Recognit. 2000;13(1):44–53.PubMedCrossRef Petersen M, Nielsen CB, Nielsen KE, Jensen GA, Bondensgaard K, Singh SK, et al. The conformations of locked nucleic acids (LNA). J Mol Recognit. 2000;13(1):44–53.PubMedCrossRef
164.
Zurück zum Zitat Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010;70(14):5923–30.PubMedPubMedCentralCrossRef Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010;70(14):5923–30.PubMedPubMedCentralCrossRef
165.
Zurück zum Zitat Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One. 2009;4(8):e6816.PubMedPubMedCentralCrossRef Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One. 2009;4(8):e6816.PubMedPubMedCentralCrossRef
166.
167.
Zurück zum Zitat Zhang W, Winder T, Ning Y, Pohl A, Yang D, Kahn M, et al. A let-7 microRNA-binding site polymorphism in 3′-untranslated region of KRAS gene predicts response in wild-type KRAS patients with metastatic colorectal cancer treated with cetuximab monotherapy. Ann Oncol. 2011;22(1):104–9.PubMedCrossRef Zhang W, Winder T, Ning Y, Pohl A, Yang D, Kahn M, et al. A let-7 microRNA-binding site polymorphism in 3′-untranslated region of KRAS gene predicts response in wild-type KRAS patients with metastatic colorectal cancer treated with cetuximab monotherapy. Ann Oncol. 2011;22(1):104–9.PubMedCrossRef
168.
Zurück zum Zitat van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316(5824):575–9.PubMedCrossRef van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316(5824):575–9.PubMedCrossRef
169.
Zurück zum Zitat Nana‐Sinkam S, Croce C. Clinical applications for microRNAs in cancer. Clin Pharmacol Ther. 2013;93(1):98–104.PubMedCrossRef Nana‐Sinkam S, Croce C. Clinical applications for microRNAs in cancer. Clin Pharmacol Ther. 2013;93(1):98–104.PubMedCrossRef
170.
Zurück zum Zitat Saini S, Majid S, Shahryari V, Tabatabai ZL, Arora S, Yamamura S, et al. Regulation of SRC kinases by microRNA-3607 located in a frequently deleted locus in prostate cancer. Mol Cancer Ther. 2014;13(7):1952–63.PubMedPubMedCentralCrossRef Saini S, Majid S, Shahryari V, Tabatabai ZL, Arora S, Yamamura S, et al. Regulation of SRC kinases by microRNA-3607 located in a frequently deleted locus in prostate cancer. Mol Cancer Ther. 2014;13(7):1952–63.PubMedPubMedCentralCrossRef
171.
Zurück zum Zitat Kogo R, Mimori K, Tanaka F, Komune S, Mori M. Clinical significance of miR-146a in gastric cancer cases. Clin Cancer Res. 2011;17(13):4277–84.PubMedCrossRef Kogo R, Mimori K, Tanaka F, Komune S, Mori M. Clinical significance of miR-146a in gastric cancer cases. Clin Cancer Res. 2011;17(13):4277–84.PubMedCrossRef
172.
Zurück zum Zitat Hennessy EJ, Moore KJ. Using microRNA as an alternative treatment for hyperlipidemia and cardiovascular disease: cardio-miRs in the pipeline. J Cardiovasc Pharmacol. 2013;62(3):247.PubMedPubMedCentralCrossRef Hennessy EJ, Moore KJ. Using microRNA as an alternative treatment for hyperlipidemia and cardiovascular disease: cardio-miRs in the pipeline. J Cardiovasc Pharmacol. 2013;62(3):247.PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Tomimaru Y, Eguchi H, Nagano H, Wada H, Kobayashi S, Marubashi S, et al. Circulating microRNA-21 as a novel biomarker for hepatocellular carcinoma. J Hepatol. 2012;56(1):167–75.PubMedCrossRef Tomimaru Y, Eguchi H, Nagano H, Wada H, Kobayashi S, Marubashi S, et al. Circulating microRNA-21 as a novel biomarker for hepatocellular carcinoma. J Hepatol. 2012;56(1):167–75.PubMedCrossRef
174.
Zurück zum Zitat Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S, et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest. 2011;121(7):2921.PubMedPubMedCentralCrossRef Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S, et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest. 2011;121(7):2921.PubMedPubMedCentralCrossRef
175.
Zurück zum Zitat Negi A, Gill B, Anand S. Tilling: versatile reverse genetic tool. PharmaTutor. 2014;2(1):26–32. Negi A, Gill B, Anand S. Tilling: versatile reverse genetic tool. PharmaTutor. 2014;2(1):26–32.
176.
Zurück zum Zitat Taneja SS. A multidisciplinary approach to the management of hormone-refractory prostate cancer. Rev Urol. 2003;5 Suppl 2:S53.PubMedPubMedCentral Taneja SS. A multidisciplinary approach to the management of hormone-refractory prostate cancer. Rev Urol. 2003;5 Suppl 2:S53.PubMedPubMedCentral
177.
Zurück zum Zitat Knudsen KE, Scher HI. Starving the addiction: new opportunities for durable suppression of AR signaling in prostate cancer. Clin Cancer Res. 2009;15(15):4792–8.PubMedPubMedCentralCrossRef Knudsen KE, Scher HI. Starving the addiction: new opportunities for durable suppression of AR signaling in prostate cancer. Clin Cancer Res. 2009;15(15):4792–8.PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer. 2001;1(1):34–45.PubMedCrossRef Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer. 2001;1(1):34–45.PubMedCrossRef
179.
180.
Zurück zum Zitat Yang M, Mattes J. Discovery, biology and therapeutic potential of RNA interference, microRNA and antagomirs. Pharmacol Ther. 2008;117(1):94–104.PubMedCrossRef Yang M, Mattes J. Discovery, biology and therapeutic potential of RNA interference, microRNA and antagomirs. Pharmacol Ther. 2008;117(1):94–104.PubMedCrossRef
181.
Zurück zum Zitat Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4(9):721–6.PubMedCrossRef Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4(9):721–6.PubMedCrossRef
182.
Zurück zum Zitat Krützfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T, et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 2007;35(9):2885–92.PubMedPubMedCentralCrossRef Krützfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T, et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 2007;35(9):2885–92.PubMedPubMedCentralCrossRef
183.
Zurück zum Zitat Cortez MA, Valdecanas D, Zhang X, Zhan Y, Bhardwaj V, Calin GA, et al. Therapeutic delivery of miR-200c enhances radiosensitivity in lung cancer. Mol Ther. 2014;22(8):1494–503.PubMedPubMedCentralCrossRef Cortez MA, Valdecanas D, Zhang X, Zhan Y, Bhardwaj V, Calin GA, et al. Therapeutic delivery of miR-200c enhances radiosensitivity in lung cancer. Mol Ther. 2014;22(8):1494–503.PubMedPubMedCentralCrossRef
184.
Zurück zum Zitat Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211–5.PubMedPubMedCentralCrossRef Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211–5.PubMedPubMedCentralCrossRef
185.
Zurück zum Zitat Korpela E, Vesprini D, Liu S. MicroRNA in radiotherapy: miRage or miRador&quest. Br J Cancer. 2015;112:777–82. Korpela E, Vesprini D, Liu S. MicroRNA in radiotherapy: miRage or miRador&quest. Br J Cancer. 2015;112:777–82.
186.
Zurück zum Zitat Bentzen SM, Parliament M, Deasy JO, Dicker A, Curran WJ, Williams JP, et al. Biomarkers and surrogate endpoints for normal-tissue effects of radiation therapy: the importance of dose–volume effects. Int J Radiat Oncol Biol Phys. 2010;76(3):S145–50.PubMedPubMedCentralCrossRef Bentzen SM, Parliament M, Deasy JO, Dicker A, Curran WJ, Williams JP, et al. Biomarkers and surrogate endpoints for normal-tissue effects of radiation therapy: the importance of dose–volume effects. Int J Radiat Oncol Biol Phys. 2010;76(3):S145–50.PubMedPubMedCentralCrossRef
187.
Zurück zum Zitat Hamama S, Noman MZ, Gervaz P, Delanian S, Vozenin M-C. MiR-210: a potential therapeutic target against radiation-induced enteropathy. Radiother Oncol. 2014;111(2):219–21.PubMedCrossRef Hamama S, Noman MZ, Gervaz P, Delanian S, Vozenin M-C. MiR-210: a potential therapeutic target against radiation-induced enteropathy. Radiother Oncol. 2014;111(2):219–21.PubMedCrossRef
188.
Zurück zum Zitat Pan Y, Zhang Y, Jia T, Zhang K, Li J, Wang L. Development of a microRNA delivery system based on bacteriophage MS2 virus‐like particles. FEBS J. 2012;279(7):1198–208.PubMedCrossRef Pan Y, Zhang Y, Jia T, Zhang K, Li J, Wang L. Development of a microRNA delivery system based on bacteriophage MS2 virus‐like particles. FEBS J. 2012;279(7):1198–208.PubMedCrossRef
189.
Zurück zum Zitat Zhang X, Zhu S, Li Z, Yuan X, Cui Z, Yang X, et al. Multilayer modification on titanium surface for in situ delivery of MicroRNAs. Mater Lett. 2014;133:243–6.CrossRef Zhang X, Zhu S, Li Z, Yuan X, Cui Z, Yang X, et al. Multilayer modification on titanium surface for in situ delivery of MicroRNAs. Mater Lett. 2014;133:243–6.CrossRef
190.
Zurück zum Zitat Izzard L, Ye S, Jenkins K, Xia Y, Tizard M, Stambas J. miRNA modulation of SOCS1 using an influenza A virus delivery system. J Gen Virol. 2014;95(Pt 9):1880–5.PubMedCrossRef Izzard L, Ye S, Jenkins K, Xia Y, Tizard M, Stambas J. miRNA modulation of SOCS1 using an influenza A virus delivery system. J Gen Virol. 2014;95(Pt 9):1880–5.PubMedCrossRef
191.
Zurück zum Zitat Maier MA, Jayaraman M, Matsuda S, Liu J, Barros S, Querbes W, et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol Ther. 2013;21(8):1570–8.PubMedPubMedCentralCrossRef Maier MA, Jayaraman M, Matsuda S, Liu J, Barros S, Querbes W, et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol Ther. 2013;21(8):1570–8.PubMedPubMedCentralCrossRef
192.
Zurück zum Zitat Shi S, Han L, Deng L, Zhang Y, Shen H, Gong T, et al. Dual drugs (microRNA-34a and paclitaxel)-loaded functional solid lipid nanoparticles for synergistic cancer cell suppression. J Control Release. 2014;194:228–37.PubMedCrossRef Shi S, Han L, Deng L, Zhang Y, Shen H, Gong T, et al. Dual drugs (microRNA-34a and paclitaxel)-loaded functional solid lipid nanoparticles for synergistic cancer cell suppression. J Control Release. 2014;194:228–37.PubMedCrossRef
193.
Zurück zum Zitat Lin S-Y, Zhao W-Y, Tsai H-C, Hsu W-H, Lo C-L, Hsiue G-H. Sterically polymer-based liposomal complexes with dual-shell structure for enhancing the siRNA delivery. Biomacromolecules. 2012;13(3):664–75.PubMedCrossRef Lin S-Y, Zhao W-Y, Tsai H-C, Hsu W-H, Lo C-L, Hsiue G-H. Sterically polymer-based liposomal complexes with dual-shell structure for enhancing the siRNA delivery. Biomacromolecules. 2012;13(3):664–75.PubMedCrossRef
194.
Zurück zum Zitat Wong SC, Klein JJ, Hamilton HL, Chu Q, Frey CL, Trubetskoy VS, et al. Co-injection of a targeted, reversibly masked endosomolytic polymer dramatically improves the efficacy of cholesterol-conjugated small interfering RNAs in vivo. Nucleic Acid Ther. 2012;22(6):380–90.PubMedPubMedCentral Wong SC, Klein JJ, Hamilton HL, Chu Q, Frey CL, Trubetskoy VS, et al. Co-injection of a targeted, reversibly masked endosomolytic polymer dramatically improves the efficacy of cholesterol-conjugated small interfering RNAs in vivo. Nucleic Acid Ther. 2012;22(6):380–90.PubMedPubMedCentral
195.
Zurück zum Zitat Hao Z, Fan W, Hao J, Wu X, Zeng GQ, Zhang LJ et al. Efficient delivery of micro RNA to bone-metastatic prostate tumors by using aptamer-conjugated atelocollagen in vitro and in vivo. Drug Deliv. 2014. p. 1-8. Hao Z, Fan W, Hao J, Wu X, Zeng GQ, Zhang LJ et al. Efficient delivery of micro RNA to bone-metastatic prostate tumors by using aptamer-conjugated atelocollagen in vitro and in vivo. Drug Deliv. 2014. p. 1-8.
196.
Zurück zum Zitat Peltier HJ, Latham GJ. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA. 2008;14(5):844–52.PubMedPubMedCentralCrossRef Peltier HJ, Latham GJ. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA. 2008;14(5):844–52.PubMedPubMedCentralCrossRef
Metadaten
Titel
Missing link between microRNA and prostate cancer
verfasst von
Balraj Singh Gill
Jimi Marin Alex
Navgeet
Sanjeev Kumar
Publikationsdatum
28.01.2016
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 5/2016
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-4900-x

Weitere Artikel der Ausgabe 5/2016

Tumor Biology 5/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.