Skip to main content
Erschienen in: BMC Medicine 1/2011

Open Access 01.12.2011 | Commentary

Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention?

verfasst von: Federica Sotgia, Ubaldo E Martinez-Outschoorn, Michael P Lisanti

Erschienen in: BMC Medicine | Ausgabe 1/2011

Abstract

The functional role of oxidative stress in cancer pathogenesis has long been a hotly debated topic. A study published this month in BMC Cancer by Goh et al., directly addresses this issue by using a molecular genetic approach, via an established mouse animal model of human breast cancer. More specifically, alleviation of mitochondrial oxidative stress, via transgenic over-expression of catalase (an anti-oxidant enzyme) targeted to mitochondria, was sufficient to lower tumor grade (from high-to-low) and to dramatically reduce metastatic tumor burden by >12-fold. Here, we discuss these new findings and place them in the context of several other recent studies showing that oxidative stress directly contributes to tumor progression and metastasis. These results have important clinical and translational significance, as most current chemo-therapeutic agents and radiation therapy increase oxidative stress, and, therefore, could help drive tumor recurrence and metastasis. Similarly, chemo- and radiation-therapy both increase the risk for developing a secondary malignancy, such as leukemia and/or lymphoma. To effectively reduce mitochondrial oxidative stress, medical oncologists should now re-consider the use of powerful anti-oxidants as a key component of patient therapy and cancer prevention.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1741-7015-9-62) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

FS, UEM-O and MPL all contributed equally to the writing and editing of this commentary. All authors read and approved the final manuscript.
Abkürzungen
HIF1
hypoxia-inducible factor 1
MMTV
mouse mammary tumor virus
PyMT
polyoma middle T antigen
ROS
reactive oxygen species
SOD2
superoxide dismutase 2, mitochondrial enzyme

Introduction

Mitochondrial oxidative stress has long been implicated in normal aging, and a host of human diseases, including cancer and neurodegenerative disorders, such as Alzheimer's disease. In support of this idea, vegetarians, who consume a diet rich in anti-oxidants, have reduced rates of cancer incidence, have longer life expectancies, and suffer less from dementia [13].
Similarly, breast cancer patients taking anti-oxidants showed reduced rates of recurrence, as well as less risk of mortality [4]. In fact, N-acetyl-cysteine (NAC), a powerful anti-oxidant, has anti-tumor properties, and has been recommended for melanoma chemo-prevention [5]. Finally, metformin therapy, a powerful anti-oxidant which reduces reactive oxygen species (ROS) production from mitochondrial complex I, has been associated with a lower risk of various epithelial cancers, in more than 11 studies [6, 7].
A simple PubMed search reveals that nearly 9,000 articles have been published linking oxidative stress with cancer pathogenesis. Thus, it is surprising that anti-oxidants are not routinely used as a component of cancer therapy and prevention.

Genetic reduction of mitochondrial oxidative stress reduces tumor grade and inhibits metastasis

This month in BMC Cancer, Goh and colleagues [8] use an established mouse model of breast cancer tumor formation and metastasis (MMTV-PyMT) to explore the role of mitochondrial oxidative stress in cancer pathogenesis. To reduce mitochondrial oxidative stress, they targeted a powerful anti-oxidant protein (catalase; which inactivates hydrogen peroxide) to mitochondria. This was achieved by modifying catalase with the addition of an N-terminal mitochondrial targeting signal and the deletion of a C-terminal peroxisome targeting sequence. Transgenic mice harboring mito-catalase have been previously shown to have an extended lifespan, consistent with the idea that mitochondrial oxidative stress directly contributes to normal aging [9].
Remarkably, MMTV-PyMT mice expressing mito-catalase showed a significant reduction in tumor grade (from high-grade to low-grade), and a dramatic reduction in lung metastatic tumor burden (>12-fold). Thus, it appears that genetic reductions in mitochondrial oxidative stress prevent i) normal aging, as well as ii) tumor progression, and iii) metastasis. Regardless of the exact mechanism, their results suggest that we should be treating cancer patients with powerful anti-oxidants, as a form of chemotherapy (either alone or following other therapies).
Previous studies evaluating the use of anti-oxidants in breast cancer patients have shown mixed results [4, 10, 11]. However, this may be because some studies are population-based without standardized treatments and/or only certain subtypes of breast cancer are sensitive to anti-oxidants. For example, breast cancers with a loss of stromal caveolin-1 (Cav-1) generate higher levels of reactive oxygen species (ROS) [1214], as compared to breast cancers expressing high levels of stromal Cav-1. Loss of stromal Cav-1 is predictive of recurrence, metastasis, and poor clinical outcome, and as such is a new biomarker for breast and prostate cancer [15, 16].

How does mitochondrial oxidative stress drive tumor growth and metastasis?

What are the possible mechanism(s) by which mitochondrial oxidative stress contributes to tumor initiation and progression? Since the transgenic over-expression of "mitochondrial" catalase in these experiments is targeted to the whole body, it remains unknown whether the findings of Goh et al. [8] are related to reductions in oxidative stress in epithelial cancer cells, in the surrounding stromal cells, or in both cellular compartments.
One possibility is that mitochondrial oxidative stress in epithelial cancer cells leads to ROS production and ensuing DNA damage, resulting in an increased mutation rate and tumor evolution, via the positive selection of tumor cell mutations that confer a growth advantage (Figure 1). In support of this notion, there is substantial evidence that another anti-oxidant enzyme, namely mitochondrial SOD2 (which de-activates super-oxide), behaves as a potent tumor suppressor protein [1719].
Another possibility is that mitochondrial oxidative stress in tumor stromal cells, such as cancer associated fibroblasts, may have genetic and metabolic consequences that promote tumor growth (Figure 1).
In fact, MMTV-PyMT mice require an activated tumor stroma for the development of metastasis. Cross-talk between macrophages and epithelial cells via CSF-1 and EGF ligands is needed for progression [20]. Similarly, activation of their fibroblastic stroma by deletion of the Cav-1 gene (thereby increasing oxidative stress [12]) significantly promotes lung metastasis (>4-fold) in MMTV-PyMT mice [21, 22].
More recent studies have shown that cancer cells induce oxidative stress in adjacent stromal fibroblasts, thereby conferring the cancer associated fibroblast phenotype [12, 23]. Oxidative stress (due to ROS over-production) in cancer associated fibroblasts then leads to genetic instability in adjacent cancer cells (DNA damage and aneuploidy) via a "bystander effect", driving tumor-stroma co-evolution [12]. ROS over-production in cancer associated fibroblasts also drives the onset of autophagy and mitophagy in these cells, resulting in aerobic glycolysis, with lactate and ketone production (the "Reverse Warburg Effect") [14]. Energy-rich metabolites (lactate, pyruvate, ketones, and glutamine) are then transferred to "hungry" cancer cells, promoting mitochondrial biogenesis and anabolic growth in these tumor cells [24]. This event, in turn, promotes tumor growth and protects these cancer cells against apoptosis [1214]. This new model of tumorigenesis has been termed "The Autophagic Tumor Stroma Model of Cancer Metabolism" [25, 26]. The in vivo relevance of this model for breast and prostate cancer has been confirmed using the new biomarker Cav-1 [15, 16, 27]. When stromal Cav-1 is lost in cancer associated fibroblasts (due to the onset of oxidative stress, hypoxia, and/or autophagy) [1214, 28, 29], this is highly predictive of tumor recurrence, metastasis, and drug-resistance [15]. For example, triple negative breast cancer patients with high stromal Cav-1 have a 12-year survival rate of >75% [30]. In contrast, triple negative breast cancer patients with a loss of stromal Cav-1 have a five-year survival rate of < 10% [30].
The association between loss of stromal Cav-1 and oxidative stress in the tumor stroma has also been confirmed by transcriptional profiling and bears a striking resemblance to the gene expression profiles of Alzheimer's disease (which is also directly linked to oxidative stress) [31, 32]. In fact, when the gene profile of Alzheimer's disease brain was intersected with the transcriptional profiles from the tumor stroma of patients with breast cancer, this was sufficient to identify which breast cancer patients would undergo metastasis [32]. Thus, oxidative stress is common to both of these biological processes (cancer and neuro-degeneration), and may underlie their pathogenesis [31, 32].
In order to further test the validity of this model and its dependence on mitochondrial oxidative stress, Capozza, Lisanti, and colleagues over-expressed mitochondrial SOD2 in cancer associated fibroblasts [33]. As predicted, over-expression of mitochondrial SOD2 in cancer associated fibroblasts was indeed sufficient to inhibit tumor growth by nearly two-fold [33]. These results indicate that mitochondrial SOD2 also behaves as a tumor suppressor in the stromal microenvironment [33]. Importantly, cytoplasmic SOD1 was ineffective in this stromal context, supporting a specific role for mitochondrial oxidative stress.
Similarly, oxidative stress is known to be sufficient to convert normal fibroblasts to myo-fibroblasts or cancer associated fibroblasts, via activation of two key transcription factors, namely HIF1-alpha and NFkB [12, 14, 3436]. Thus, one way to genetically pheno-copy the effects of oxidative stress is to over-express activated forms of HIF1-alpha or NFkB [34]. As such, fibroblasts expressing activated HIF1-alpha or NFkB are sufficient to promote tumor growth, up to three-fold [34]. Furthermore, activation of HIF-alpha or NFkB in fibroblasts drives a loss of stromal Cav-1 via lysosomal degradation, and activates the autophagic program resulting in mitophagy, a shift towards aerobic glycolysis, and lactate production [34]. Fibroblasts harboring activated HIF1-alpha or NFkB, then provide lactate and other recycled nutrients to feed cancer cells [34].
Additional lines of evidence also support the idea that oxidative stress in the tumor stroma plays a key role in cancer pathogenesis and tumor spreading. For example, there are numerous papers directly showing that local or systemic administration of purified anti-oxidant proteins (that is, catalase or SOD) is sufficient to block tumor recurrence and distant metastasis in multiple cancer models [3739].

Conclusions

In order to maximize treatment benefits, we will need to develop new biomarkers (like stromal Cav-1) to predict which cancer patients will respond best to anti-oxidant therapy. Unfortunately, most medical oncologists now recommend against taking anti-oxidants during cancer therapy, as it "may reduce the effectiveness of chemotherapies", which are largely based on increasing oxidative stress [4]. However, in direct contradiction of this recommendation, a recent breast cancer study directly shows that anti-oxidant therapy significantly reduces breast cancer recurrence and mortality [4].
Thus, reductions in mitochondrial oxidative stress in both cancer cells and their surrounding tumor stroma may be beneficial for preventing tumor progression and metastasis. Ultimately, this "new concept" could radically change how we treat cancer patients, and stimulate new anti-oxidant strategies for cancer prevention.

Acknowledgements

FS and her laboratory were supported by grants from the W.W. Smith Charitable Trust, the Breast Cancer Alliance (BCA), and a Research Scholar Grant from the American Cancer Society (ACS). M.P.L. was supported by grants from the NIH/NCI (R01-CA-080250; R01-CA-098779; R01-CA-120876; R01-AR-055660), and the Susan G. Komen Breast Cancer Foundation. Funds were also contributed by the Margaret Q. Landenberger Research Foundation (to M.P.L.).
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

FS, UEM-O and MPL all contributed equally to the writing and editing of this commentary. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Giem P, Beeson WL, Fraser GE: The incidence of dementia and intake of animal products: preliminary findings from the Adventist Health Study. Neuroepidemiology. 1993, 12: 28-36. 10.1159/000110296.CrossRefPubMed Giem P, Beeson WL, Fraser GE: The incidence of dementia and intake of animal products: preliminary findings from the Adventist Health Study. Neuroepidemiology. 1993, 12: 28-36. 10.1159/000110296.CrossRefPubMed
2.
Zurück zum Zitat Singh PN, Sabate J, Fraser GE: Does low meat consumption increase life expectancy in humans?. Am J Clin Nutr. 2003, 78: 526S-532S.PubMed Singh PN, Sabate J, Fraser GE: Does low meat consumption increase life expectancy in humans?. Am J Clin Nutr. 2003, 78: 526S-532S.PubMed
3.
Zurück zum Zitat Fraser GE: Vegetarian diets: what do we know of their effects on common chronic diseases?. Am J Clin Nutr. 2009, 89: 1607S-1612S. 10.3945/ajcn.2009.26736K.CrossRefPubMedPubMedCentral Fraser GE: Vegetarian diets: what do we know of their effects on common chronic diseases?. Am J Clin Nutr. 2009, 89: 1607S-1612S. 10.3945/ajcn.2009.26736K.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Nechuta S, Lu W, Chen Z, Zheng Y, Gu K, Cai H, Zheng W, Shu XO: Vitamin supplement use during breast cancer treatment and survival: a prospective cohort study. Cancer Epidemiol Biomarkers Prev. 2011, 20: 262-271. 10.1158/1055-9965.EPI-10-1072.CrossRefPubMed Nechuta S, Lu W, Chen Z, Zheng Y, Gu K, Cai H, Zheng W, Shu XO: Vitamin supplement use during breast cancer treatment and survival: a prospective cohort study. Cancer Epidemiol Biomarkers Prev. 2011, 20: 262-271. 10.1158/1055-9965.EPI-10-1072.CrossRefPubMed
5.
Zurück zum Zitat Goodson AG, Cotter MA, Cassidy P, Wade M, Florell SR, Liu T, Boucher KM, Grossman D: Use of oral N-acetylcysteine for protection of melanocytic nevi against UV-induced oxidative stress: towards a novel paradigm for melanoma chemoprevention. Clin Cancer Res. 2009, 15: 7434-7440. 10.1158/1078-0432.CCR-09-1890.CrossRefPubMedPubMedCentral Goodson AG, Cotter MA, Cassidy P, Wade M, Florell SR, Liu T, Boucher KM, Grossman D: Use of oral N-acetylcysteine for protection of melanocytic nevi against UV-induced oxidative stress: towards a novel paradigm for melanoma chemoprevention. Clin Cancer Res. 2009, 15: 7434-7440. 10.1158/1078-0432.CCR-09-1890.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Bosco JL, Antonsen S, Sorensen HT, Pedersen L, Lash TL: Metformin and incident breast cancer among diabetic women: a population-based case-control study in Denmark. Cancer Epidemiol Biomarkers Prev. 2011, 20: 101-111. 10.1158/1055-9965.EPI-10-0817.CrossRefPubMed Bosco JL, Antonsen S, Sorensen HT, Pedersen L, Lash TL: Metformin and incident breast cancer among diabetic women: a population-based case-control study in Denmark. Cancer Epidemiol Biomarkers Prev. 2011, 20: 101-111. 10.1158/1055-9965.EPI-10-0817.CrossRefPubMed
7.
Zurück zum Zitat Decensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B, Gandini S: Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res (Phila). 2010, 3: 1451-1461. 10.1158/1940-6207.CAPR-10-0157.CrossRef Decensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B, Gandini S: Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res (Phila). 2010, 3: 1451-1461. 10.1158/1940-6207.CAPR-10-0157.CrossRef
8.
Zurück zum Zitat Goh J, Enns L, Fatemie S, Hopkins H, Morton J, Pettan-Brewer C, Ladiges W: Mitochondrial targeted catalase suppresses invasive breast cancer in mice. BMC Cancer. 2011. Goh J, Enns L, Fatemie S, Hopkins H, Morton J, Pettan-Brewer C, Ladiges W: Mitochondrial targeted catalase suppresses invasive breast cancer in mice. BMC Cancer. 2011.
9.
Zurück zum Zitat Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS: Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 2005, 308: 1909-1911. 10.1126/science.1106653.CrossRefPubMed Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS: Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 2005, 308: 1909-1911. 10.1126/science.1106653.CrossRefPubMed
10.
Zurück zum Zitat Lesperance ML, Olivotto IA, Forde N, Zhao Y, Speers C, Foster H, Tsao M, MacPherson N, Hoffer A: Mega-dose vitamins and minerals in the treatment of non-metastatic breast cancer: an historical cohort study. Breast Cancer Res Treat. 2002, 76: 137-143. 10.1023/A:1020552501345.CrossRefPubMed Lesperance ML, Olivotto IA, Forde N, Zhao Y, Speers C, Foster H, Tsao M, MacPherson N, Hoffer A: Mega-dose vitamins and minerals in the treatment of non-metastatic breast cancer: an historical cohort study. Breast Cancer Res Treat. 2002, 76: 137-143. 10.1023/A:1020552501345.CrossRefPubMed
11.
Zurück zum Zitat Israel L, Hajji O, Grefft-Alami A, Desmoulins D, Succari M, Cals MJ, Miocque M, Breau JL, Morere JF: [Vitamin A augmentation of the effects of chemotherapy in metastatic breast cancers after menopause. Randomized trial in 100 patients]. Ann Med Interne (Paris). 1985, 136: 551-554. Israel L, Hajji O, Grefft-Alami A, Desmoulins D, Succari M, Cals MJ, Miocque M, Breau JL, Morere JF: [Vitamin A augmentation of the effects of chemotherapy in metastatic breast cancers after menopause. Randomized trial in 100 patients]. Ann Med Interne (Paris). 1985, 136: 551-554.
12.
Zurück zum Zitat Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang C, Whitaker-Menezes D, Daumer KM, Lin Z, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Knudsen ES, Sotgia F, Lisanti MP: Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect, and genomic instability in cancer cells. Cell Cycle. 2010, 9: 3256-3276. 10.4161/cc.9.16.12553.PubMedPubMedCentral Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang C, Whitaker-Menezes D, Daumer KM, Lin Z, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Knudsen ES, Sotgia F, Lisanti MP: Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect, and genomic instability in cancer cells. Cell Cycle. 2010, 9: 3256-3276. 10.4161/cc.9.16.12553.PubMedPubMedCentral
13.
Zurück zum Zitat Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D, Daumer KM, Milliman JN, Chiavarina B, Migneco G, Witkiewicz AK, Martinez-Cantarin MP, Flomenberg N, Howell A, Pestell RG, Lisanti MP, Sotgia F: Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle. 2010, 9: 2423-2433. 10.4161/cc.9.12.12048.CrossRefPubMed Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D, Daumer KM, Milliman JN, Chiavarina B, Migneco G, Witkiewicz AK, Martinez-Cantarin MP, Flomenberg N, Howell A, Pestell RG, Lisanti MP, Sotgia F: Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle. 2010, 9: 2423-2433. 10.4161/cc.9.12.12048.CrossRefPubMed
14.
Zurück zum Zitat Martinez-Outschoorn UE, Trimmer C, Lin Z, Whitaker-Menezes D, Chiavarina B, Zhou J, Wang C, Pavlides S, Martinez-Cantarin MP, Capozza F, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Caro J, Lisanti MP, Sotgia F: Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction, and NFkB activation in the tumor stromal microenvironment. Cell Cycle. 2010, 9: 3515-3533. 10.4161/cc.9.17.12928.CrossRefPubMedPubMedCentral Martinez-Outschoorn UE, Trimmer C, Lin Z, Whitaker-Menezes D, Chiavarina B, Zhou J, Wang C, Pavlides S, Martinez-Cantarin MP, Capozza F, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Caro J, Lisanti MP, Sotgia F: Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction, and NFkB activation in the tumor stromal microenvironment. Cell Cycle. 2010, 9: 3515-3533. 10.4161/cc.9.17.12928.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Witkiewicz AK, Dasgupta A, Sotgia F, Mercier I, Pestell RG, Sabel M, Kleer CG, Brody JR, Lisanti MP: An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol. 2009, 174: 2023-2034. 10.2353/ajpath.2009.080873.CrossRefPubMedPubMedCentral Witkiewicz AK, Dasgupta A, Sotgia F, Mercier I, Pestell RG, Sabel M, Kleer CG, Brody JR, Lisanti MP: An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol. 2009, 174: 2023-2034. 10.2353/ajpath.2009.080873.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Di Vizio D, Morello M, Sotgia F, Pestell RG, Freeman MR, Lisanti MP: An absence of stromal caveolin-1 is associated with advanced prostate cancer, metastatic disease and epithelial Akt activation. Cell Cycle. 2009, 8: 2420-2424. 10.4161/cc.8.15.9116.CrossRefPubMedPubMedCentral Di Vizio D, Morello M, Sotgia F, Pestell RG, Freeman MR, Lisanti MP: An absence of stromal caveolin-1 is associated with advanced prostate cancer, metastatic disease and epithelial Akt activation. Cell Cycle. 2009, 8: 2420-2424. 10.4161/cc.8.15.9116.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Bravard A, Sabatier L, Hoffschir F, Ricoul M, Luccioni C, Dutrillaux B: SOD2: a new type of tumor-suppressor gene?. Int J Cancer. 1992, 51: 476-480. 10.1002/ijc.2910510323.CrossRefPubMed Bravard A, Sabatier L, Hoffschir F, Ricoul M, Luccioni C, Dutrillaux B: SOD2: a new type of tumor-suppressor gene?. Int J Cancer. 1992, 51: 476-480. 10.1002/ijc.2910510323.CrossRefPubMed
18.
Zurück zum Zitat Behrend L, Mohr A, Dick T, Zwacka RM: Manganese superoxide dismutase induces p53-dependent senescence in colorectal cancer cells. Mol Cell Biol. 2005, 25: 7758-7769. 10.1128/MCB.25.17.7758-7769.2005.CrossRefPubMedPubMedCentral Behrend L, Mohr A, Dick T, Zwacka RM: Manganese superoxide dismutase induces p53-dependent senescence in colorectal cancer cells. Mol Cell Biol. 2005, 25: 7758-7769. 10.1128/MCB.25.17.7758-7769.2005.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat St Clair D, Zhao Y, Chaiswing L, Oberley T: Modulation of skin tumorigenesis by SOD. Biomed Pharmacother. 2005, 59: 209-214. 10.1016/j.biopha.2005.03.004.CrossRefPubMed St Clair D, Zhao Y, Chaiswing L, Oberley T: Modulation of skin tumorigenesis by SOD. Biomed Pharmacother. 2005, 59: 209-214. 10.1016/j.biopha.2005.03.004.CrossRefPubMed
20.
Zurück zum Zitat Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, Graf T, Pollard JW, Segall J, Condeelis J: A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 2004, 64: 7022-7029. 10.1158/0008-5472.CAN-04-1449.CrossRefPubMed Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, Graf T, Pollard JW, Segall J, Condeelis J: A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 2004, 64: 7022-7029. 10.1158/0008-5472.CAN-04-1449.CrossRefPubMed
21.
Zurück zum Zitat Williams TM, Medina F, Badano I, Hazan RB, Hutchinson J, Muller WJ, Chopra NG, Scherer PE, Pestell RG, Lisanti MP: Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo: Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. J Biol Chem. 2004, 279: 51630-51646. 10.1074/jbc.M409214200.CrossRefPubMed Williams TM, Medina F, Badano I, Hazan RB, Hutchinson J, Muller WJ, Chopra NG, Scherer PE, Pestell RG, Lisanti MP: Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo: Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. J Biol Chem. 2004, 279: 51630-51646. 10.1074/jbc.M409214200.CrossRefPubMed
22.
Zurück zum Zitat Williams TM, Sotgia F, Lee H, Hassan G, Di Vizio D, Bonuccelli G, Capozza F, Mercier I, Rui H, Pestell RG, Lisanti MP: Stromal and epithelial caveolin-1 both confer a protective effect against mammary hyperplasia and tumorigenesis: caveolin-1 antagonizes cyclin D1 function in mammary epithelial cells. Am J Pathol. 2006, 169: 1784-1801. 10.2353/ajpath.2006.060590.CrossRefPubMedPubMedCentral Williams TM, Sotgia F, Lee H, Hassan G, Di Vizio D, Bonuccelli G, Capozza F, Mercier I, Rui H, Pestell RG, Lisanti MP: Stromal and epithelial caveolin-1 both confer a protective effect against mammary hyperplasia and tumorigenesis: caveolin-1 antagonizes cyclin D1 function in mammary epithelial cells. Am J Pathol. 2006, 169: 1784-1801. 10.2353/ajpath.2006.060590.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP: The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009, 8: 3984-4001. 10.4161/cc.8.23.10238.CrossRefPubMed Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP: The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009, 8: 3984-4001. 10.4161/cc.8.23.10238.CrossRefPubMed
24.
Zurück zum Zitat Pavlides S, Tsirigos A, Migneco G, Whitaker-Menezes D, Chiavarina B, Flomenberg N, Frank PG, Casimiro MC, Wang C, Pestell RG, Martinez-Outschoorn UE, Howell A, Sotgia F, Lisanti MP: The autophagic tumor stroma model of cancer: role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle. 2010, 9: 3485-3505. 10.4161/cc.9.17.12721.CrossRefPubMedPubMedCentral Pavlides S, Tsirigos A, Migneco G, Whitaker-Menezes D, Chiavarina B, Flomenberg N, Frank PG, Casimiro MC, Wang C, Pestell RG, Martinez-Outschoorn UE, Howell A, Sotgia F, Lisanti MP: The autophagic tumor stroma model of cancer: role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle. 2010, 9: 3485-3505. 10.4161/cc.9.17.12721.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Martinez-Outschoorn UE, Whitaker-Menezes D, Pavlides S, Chiavarina B, Bonuccelli G, Casey T, Tsirigos A, Migneco G, Witkiewicz A, Balliet R, Mercier I, Wang C, Flomenberg N, Howell A, Lin Z, Caro J, Pestell RG, Sotgia F, Lisanti MP: The autophagic tumor stroma model of cancer or "battery-operated tumor growth": a simple solution to the autophagy paradox. Cell Cycle. 2010, 9: 4297-4306. 10.4161/cc.9.21.13817.CrossRefPubMedPubMedCentral Martinez-Outschoorn UE, Whitaker-Menezes D, Pavlides S, Chiavarina B, Bonuccelli G, Casey T, Tsirigos A, Migneco G, Witkiewicz A, Balliet R, Mercier I, Wang C, Flomenberg N, Howell A, Lin Z, Caro J, Pestell RG, Sotgia F, Lisanti MP: The autophagic tumor stroma model of cancer or "battery-operated tumor growth": a simple solution to the autophagy paradox. Cell Cycle. 2010, 9: 4297-4306. 10.4161/cc.9.21.13817.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Lisanti MP, Martinez-Outschoorn UE, Chiavarina B, Pavlides S, Whitaker-Menezes D, Tsirigos A, Witkiewicz A, Lin Z, Balliet R, Howell A, Sotgia F: Understanding the "lethal" drivers of tumor-stroma co-evolution: emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment. Cancer Biol Ther. 2010, 10: 537-542. 10.4161/cbt.10.6.13370.CrossRefPubMedPubMedCentral Lisanti MP, Martinez-Outschoorn UE, Chiavarina B, Pavlides S, Whitaker-Menezes D, Tsirigos A, Witkiewicz A, Lin Z, Balliet R, Howell A, Sotgia F: Understanding the "lethal" drivers of tumor-stroma co-evolution: emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment. Cancer Biol Ther. 2010, 10: 537-542. 10.4161/cbt.10.6.13370.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Sloan EK, Ciocca D, Pouliot N, Natoli A, Restall C, Henderson M, Fanelli M, Cuello-Carrión F, Gago F, Anderson R: Stromal cell expression of caveolin-1 predicts outcome in breast cancer. Am J Pathol. 2009, 174: 2035-2043. 10.2353/ajpath.2009.080924.CrossRefPubMedPubMedCentral Sloan EK, Ciocca D, Pouliot N, Natoli A, Restall C, Henderson M, Fanelli M, Cuello-Carrión F, Gago F, Anderson R: Stromal cell expression of caveolin-1 predicts outcome in breast cancer. Am J Pathol. 2009, 174: 2035-2043. 10.2353/ajpath.2009.080924.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Sotgia F, Del Galdo F, Casimiro MC, Bonuccelli G, Mercier I, Whitaker-Menezes D, Daumer KM, Zhou J, Wang C, Katiyar S, Xu H, Bosco E, Quong AA, Aronow B, Witkiewicz AK, Minetti C, Frank PG, Jimenez SA, Knudsen ES, Pestell RG, Lisanti MP: Caveolin-1-/- null mammary stromal fibroblasts share characteristics with human breast cancer-associated fibroblasts. Am J Pathol. 2009, 174: 746-761. 10.2353/ajpath.2009.080658.CrossRefPubMedPubMedCentral Sotgia F, Del Galdo F, Casimiro MC, Bonuccelli G, Mercier I, Whitaker-Menezes D, Daumer KM, Zhou J, Wang C, Katiyar S, Xu H, Bosco E, Quong AA, Aronow B, Witkiewicz AK, Minetti C, Frank PG, Jimenez SA, Knudsen ES, Pestell RG, Lisanti MP: Caveolin-1-/- null mammary stromal fibroblasts share characteristics with human breast cancer-associated fibroblasts. Am J Pathol. 2009, 174: 746-761. 10.2353/ajpath.2009.080658.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Mercier I, Casimiro MC, Wang C, Rosenberg AL, Quong J, Allen KG, Danilo C, Sotgia F, Bonnucelli G, Jasmin JF, et al: Human breast cancer-associated fibroblasts (CAFs) show caveolin-1 down-regulation and RB tumor suppressor functional inactivation: implications for the response to hormonal therapy. Cancer Biol Ther. 2008, 7: 1212-1225. 10.4161/cbt.7.8.6220.CrossRefPubMed Mercier I, Casimiro MC, Wang C, Rosenberg AL, Quong J, Allen KG, Danilo C, Sotgia F, Bonnucelli G, Jasmin JF, et al: Human breast cancer-associated fibroblasts (CAFs) show caveolin-1 down-regulation and RB tumor suppressor functional inactivation: implications for the response to hormonal therapy. Cancer Biol Ther. 2008, 7: 1212-1225. 10.4161/cbt.7.8.6220.CrossRefPubMed
30.
Zurück zum Zitat Witkiewicz AK, Dasgupta A, Sammons S, Er O, Potoczek MB, Guiles F, Sotgia F, Brody JR, Mitchell EP, Lisanti MP: Loss of stromal caveolin-1 expression predicts poor clinical outcome in triple negative and basal-like breast cancers. Cancer BiolTher. 2010, 10: 135-143. Witkiewicz AK, Dasgupta A, Sammons S, Er O, Potoczek MB, Guiles F, Sotgia F, Brody JR, Mitchell EP, Lisanti MP: Loss of stromal caveolin-1 expression predicts poor clinical outcome in triple negative and basal-like breast cancers. Cancer BiolTher. 2010, 10: 135-143.
31.
Zurück zum Zitat Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP: Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia, and drives inflammation in the tumor microenvironment, conferring the "Reverse Warburg Effect": a transcriptional informatics analysis with validation. Cell Cycle. 2010, 9: 2201-2219. 10.4161/cc.9.11.11848.CrossRefPubMed Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP: Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia, and drives inflammation in the tumor microenvironment, conferring the "Reverse Warburg Effect": a transcriptional informatics analysis with validation. Cell Cycle. 2010, 9: 2201-2219. 10.4161/cc.9.11.11848.CrossRefPubMed
32.
Zurück zum Zitat Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC, Wang C, Pestell RG, Martinez-Outschoorn UE, Howell A, Sotgia F, Lisanti MP: Transcriptional evidence for the "Reverse Warburg Effect" in human breast cancer tumor stroma and metastasis: similarities with oxidative stress, inflammation, Alzheimer's disease, and "Neuron-Glia Metabolic Coupling". Aging (Albany NY). 2010, 2: 185-199.CrossRef Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC, Wang C, Pestell RG, Martinez-Outschoorn UE, Howell A, Sotgia F, Lisanti MP: Transcriptional evidence for the "Reverse Warburg Effect" in human breast cancer tumor stroma and metastasis: similarities with oxidative stress, inflammation, Alzheimer's disease, and "Neuron-Glia Metabolic Coupling". Aging (Albany NY). 2010, 2: 185-199.CrossRef
33.
Zurück zum Zitat Trimmer C, Sotgia F, Whitaker-Menezes D, Balliet R, Eaton G, Martinez-Outschoorn UE, Pavlides S, Howell A, Iozzo RV, Pestell RG, Scherer PE, Capozza F, Lisanti MP: Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment: A new genetically tractable model for human cancer associated fibroblasts. Cancer Biol Ther. 2011, 11: 383-394. 10.4161/cbt.11.4.14101.CrossRefPubMedPubMedCentral Trimmer C, Sotgia F, Whitaker-Menezes D, Balliet R, Eaton G, Martinez-Outschoorn UE, Pavlides S, Howell A, Iozzo RV, Pestell RG, Scherer PE, Capozza F, Lisanti MP: Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment: A new genetically tractable model for human cancer associated fibroblasts. Cancer Biol Ther. 2011, 11: 383-394. 10.4161/cbt.11.4.14101.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Chiavarina B, Whitaker-Menezes D, Migneco G, Martinez-Outschoorn UE, Pavlides S, Howell A, Tanowitz HB, Casimiro MC, Wang C, Pestell RG, Grieshaber P, Caro J, Sotgia F, Lisanti MP: HIF1-alpha functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells: autophagy drives compartment-specific oncogenesis. Cell Cycle. 2010, 9: 3534-3551. 10.4161/cc.9.17.12908.CrossRefPubMedPubMedCentral Chiavarina B, Whitaker-Menezes D, Migneco G, Martinez-Outschoorn UE, Pavlides S, Howell A, Tanowitz HB, Casimiro MC, Wang C, Pestell RG, Grieshaber P, Caro J, Sotgia F, Lisanti MP: HIF1-alpha functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells: autophagy drives compartment-specific oncogenesis. Cell Cycle. 2010, 9: 3534-3551. 10.4161/cc.9.17.12908.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Toullec A, Gerald D, Despouy G, Bourachot B, Cardon M, Lefort S, Richardson M, Rigaill G, Parrini MC, Lucchesi C, Bellanger D, Stern MH, Dubois T, Sastre-Garau X, Delattre O, Vincent-Salomon A, Mechta-Grigoriou F: Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Mol Med. 2010, 2: 211-230. 10.1002/emmm.201000073.CrossRefPubMedPubMedCentral Toullec A, Gerald D, Despouy G, Bourachot B, Cardon M, Lefort S, Richardson M, Rigaill G, Parrini MC, Lucchesi C, Bellanger D, Stern MH, Dubois T, Sastre-Garau X, Delattre O, Vincent-Salomon A, Mechta-Grigoriou F: Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Mol Med. 2010, 2: 211-230. 10.1002/emmm.201000073.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Erez N, Truitt M, Olson P, Arron ST, Hanahan D: Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell. 2010, 17: 135-147. 10.1016/j.ccr.2009.12.041.CrossRefPubMed Erez N, Truitt M, Olson P, Arron ST, Hanahan D: Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell. 2010, 17: 135-147. 10.1016/j.ccr.2009.12.041.CrossRefPubMed
37.
Zurück zum Zitat Nishikawa M, Hashida M, Takakura Y: Catalase delivery for inhibiting ROS-mediated tissue injury and tumor metastasis. Adv Drug Deliv Rev. 2009, 61: 319-326. 10.1016/j.addr.2009.01.001.CrossRefPubMed Nishikawa M, Hashida M, Takakura Y: Catalase delivery for inhibiting ROS-mediated tissue injury and tumor metastasis. Adv Drug Deliv Rev. 2009, 61: 319-326. 10.1016/j.addr.2009.01.001.CrossRefPubMed
38.
Zurück zum Zitat Hyoudou K, Nishikawa M, Ikemura M, Kobayashi Y, Mendelsohn A, Miyazaki N, Tabata Y, Yamashita F, Hashida M: Prevention of pulmonary metastasis from subcutaneous tumors by binary system-based sustained delivery of catalase. J Control Release. 2009, 137: 110-115. 10.1016/j.jconrel.2009.04.005.CrossRefPubMed Hyoudou K, Nishikawa M, Ikemura M, Kobayashi Y, Mendelsohn A, Miyazaki N, Tabata Y, Yamashita F, Hashida M: Prevention of pulmonary metastasis from subcutaneous tumors by binary system-based sustained delivery of catalase. J Control Release. 2009, 137: 110-115. 10.1016/j.jconrel.2009.04.005.CrossRefPubMed
39.
Zurück zum Zitat van Rossen ME, Sluiter W, Bonthuis F, Jeekel H, Marquet RL, van Eijck CH: Scavenging of reactive oxygen species leads to diminished peritoneal tumor recurrence. Cancer Res. 2000, 60: 5625-5629.PubMed van Rossen ME, Sluiter W, Bonthuis F, Jeekel H, Marquet RL, van Eijck CH: Scavenging of reactive oxygen species leads to diminished peritoneal tumor recurrence. Cancer Res. 2000, 60: 5625-5629.PubMed
Metadaten
Titel
Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention?
verfasst von
Federica Sotgia
Ubaldo E Martinez-Outschoorn
Michael P Lisanti
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
BMC Medicine / Ausgabe 1/2011
Elektronische ISSN: 1741-7015
DOI
https://doi.org/10.1186/1741-7015-9-62

Weitere Artikel der Ausgabe 1/2011

BMC Medicine 1/2011 Zur Ausgabe

Leitlinien kompakt für die Allgemeinmedizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Facharzt-Training Allgemeinmedizin

Die ideale Vorbereitung zur anstehenden Prüfung mit den ersten 24 von 100 klinischen Fallbeispielen verschiedener Themenfelder

Mehr erfahren

Update Allgemeinmedizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.