Skip to main content
Erschienen in: Cancer and Metastasis Reviews 4/2018

14.12.2018

Mitochondrial polymorphisms contribute to aging phenotypes in MNX mouse models

verfasst von: Carolyn J. Vivian, Travis M. Hagedorn, Roy A. Jensen, Amanda E. Brinker, Danny R. Welch

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Many inbred strains of mice develop spontaneous tumors as they age. Recent awareness of the impacts of mitochondrial DNA (mtDNA) on cancer and aging has inspired developing a mitochondrial-nuclear exchange (MNX) mouse model in which nuclear DNA is paired with mitochondrial genomes from other strains of mouse. MNX mice exhibit mtDNA influences on tumorigenicity and metastasis upon mating with transgenic mice. However, we also wanted to investigate spontaneous tumor phenotypes as MNX mice age. Utilizing FVB/NJ, C57BL/6J, C3H/HeN, and BALB/cJ wild-type inbred strains, previously documented phenotypes were observed as expected in MNX mice with the same nuclear background. However, aging nuclear matched MNX mice exhibited decreased occurrence of mammary tumors in C3H/HeN mice containing C57BL/6J mitochondria compared to wild-type C3H/HeN mice. Although aging tumor phenotypes appear to be driven by nuclear genes, evidence suggesting that some differences are modified by the mitochondrial genome is presented.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Dragani, T. A. (2003). 10 years of mouse cancer modifier loci: human relevance. Cancer Research, 63(12), 3011–3018.PubMed Dragani, T. A. (2003). 10 years of mouse cancer modifier loci: human relevance. Cancer Research, 63(12), 3011–3018.PubMed
2.
Zurück zum Zitat Altman, P. L., & Katz, D. D. (1979). Inbred and genetically defined strains of laboratory animals. Part 2. Hamster, guinea pig, rabbit and chicken (Vol. 1). Bethesda: Federation of American Societies for Experimental Biology. Altman, P. L., & Katz, D. D. (1979). Inbred and genetically defined strains of laboratory animals. Part 2. Hamster, guinea pig, rabbit and chicken (Vol. 1). Bethesda: Federation of American Societies for Experimental Biology.
3.
Zurück zum Zitat Altman, P. L., & Katz, D. D. (1979). Inbred and genetically defined strains of laboratory animals. Part 1. Mouse and rat (Vol. 1). Bethesda: Federation of American Societies for Experimental Biology. Altman, P. L., & Katz, D. D. (1979). Inbred and genetically defined strains of laboratory animals. Part 1. Mouse and rat (Vol. 1). Bethesda: Federation of American Societies for Experimental Biology.
4.
Zurück zum Zitat Stern, M. C., & Conti, C. J. (1996). Genetic susceptibility to tumor progression in mouse skin carcinogenesis. Progress in Clinical and Biological Research, 395, 47–55.PubMed Stern, M. C., & Conti, C. J. (1996). Genetic susceptibility to tumor progression in mouse skin carcinogenesis. Progress in Clinical and Biological Research, 395, 47–55.PubMed
6.
Zurück zum Zitat Heston, W. E., & Vlahakis, G. (1971). Mammary tumors, plaques, and hyperplastic alveolar nodules in various combinations of mouse inbred strains and the different lines of the mammary tumor virus. International Journal of Cancer, 7(1), 141–148.CrossRefPubMed Heston, W. E., & Vlahakis, G. (1971). Mammary tumors, plaques, and hyperplastic alveolar nodules in various combinations of mouse inbred strains and the different lines of the mammary tumor virus. International Journal of Cancer, 7(1), 141–148.CrossRefPubMed
7.
Zurück zum Zitat Guy, C. T., Cardiff, R. D., & Muller, W. J. (1992). Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Molecular and Cellular Biology, 12(3), 954–961.CrossRefPubMedPubMedCentral Guy, C. T., Cardiff, R. D., & Muller, W. J. (1992). Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Molecular and Cellular Biology, 12(3), 954–961.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Cardiff, R. D., & Muller, W. J. (1993). Transgenic mouse models of mammary tumorigenesis. Cancer Surveys, 16, 97–113.PubMed Cardiff, R. D., & Muller, W. J. (1993). Transgenic mouse models of mammary tumorigenesis. Cancer Surveys, 16, 97–113.PubMed
9.
Zurück zum Zitat Muller, W. J., Ho, J., & Siegel, P. M. (1998). Oncogenic activation of Neu/ErbB-2 in a transgenic mouse model for breast cancer. Biochemical Society Symposia, 63, 149–157. Muller, W. J., Ho, J., & Siegel, P. M. (1998). Oncogenic activation of Neu/ErbB-2 in a transgenic mouse model for breast cancer. Biochemical Society Symposia, 63, 149–157.
10.
Zurück zum Zitat Walrath, J. C., Hawes, J. J., Van Dyke, T., & Reilly, K. M. (2010). Genetically engineered mouse models in cancer research. Advances in Cancer Research, 106, 113–164.CrossRefPubMedPubMedCentral Walrath, J. C., Hawes, J. J., Van Dyke, T., & Reilly, K. M. (2010). Genetically engineered mouse models in cancer research. Advances in Cancer Research, 106, 113–164.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Walton, J. B., Farquharson, M., Mason, S., Port, J., Kruspig, B., Dowson, S., Stevenson, D., Murphy, D., Matzuk, M., Kim, J., Coffelt, S., Blyth, K., & McNeish, I. A. (2017). CRISPR/Cas9-derived models of ovarian high grade serous carcinoma targeting Brca1, Pten and Nf1, and correlation with platinum sensitivity. Scientific Reports, 7(1), 16827.CrossRefPubMedPubMedCentral Walton, J. B., Farquharson, M., Mason, S., Port, J., Kruspig, B., Dowson, S., Stevenson, D., Murphy, D., Matzuk, M., Kim, J., Coffelt, S., Blyth, K., & McNeish, I. A. (2017). CRISPR/Cas9-derived models of ovarian high grade serous carcinoma targeting Brca1, Pten and Nf1, and correlation with platinum sensitivity. Scientific Reports, 7(1), 16827.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Taketo, M., Schroeder, A. C., Mobraaten, L. E., Gunning, K. B., Hanten, G., Fox, R. R., Roderick, T. H., Stewart, C. L., Lilly, F., & Hansen, C. T. (1991). FVB/N: an inbred mouse strain preferable for transgenic analyses. Proceedings of the National Academy of Sciences of the United States of America, 88(6), 2065–2069.CrossRefPubMedPubMedCentral Taketo, M., Schroeder, A. C., Mobraaten, L. E., Gunning, K. B., Hanten, G., Fox, R. R., Roderick, T. H., Stewart, C. L., Lilly, F., & Hansen, C. T. (1991). FVB/N: an inbred mouse strain preferable for transgenic analyses. Proceedings of the National Academy of Sciences of the United States of America, 88(6), 2065–2069.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Mahler, J. F., Stokes, W., Mann, P. C., Takaoka, M., & Maronpot, R. R. (1996). Spontaneous lesions in aging FVB/N mice. Toxicologic Pathology, 24(6), 710–716.CrossRefPubMed Mahler, J. F., Stokes, W., Mann, P. C., Takaoka, M., & Maronpot, R. R. (1996). Spontaneous lesions in aging FVB/N mice. Toxicologic Pathology, 24(6), 710–716.CrossRefPubMed
15.
Zurück zum Zitat Fetterman, J. L., Zelickson, B. R., Johnson, L. W., Moellering, D. R., Westbrook, D. G., Pompilius, M., Sammy, M. J., Johnson, M., Dunham-Snary, K. J., Cao, X., Bradley, W. E., Zhang, J., Wei, C. C., Chacko, B., Schurr, T. G., Kesterson, R. A., Dell’italia, L. J., Darley-Usmar, V. M., Welch, D. R., & Ballinger, S. W. (2013). Mitochondrial genetic background modulates bioenergetics and susceptibility to acute cardiac volume overload. Biochemical Journal, 455(2), 157–167.CrossRefPubMed Fetterman, J. L., Zelickson, B. R., Johnson, L. W., Moellering, D. R., Westbrook, D. G., Pompilius, M., Sammy, M. J., Johnson, M., Dunham-Snary, K. J., Cao, X., Bradley, W. E., Zhang, J., Wei, C. C., Chacko, B., Schurr, T. G., Kesterson, R. A., Dell’italia, L. J., Darley-Usmar, V. M., Welch, D. R., & Ballinger, S. W. (2013). Mitochondrial genetic background modulates bioenergetics and susceptibility to acute cardiac volume overload. Biochemical Journal, 455(2), 157–167.CrossRefPubMed
16.
Zurück zum Zitat Zheng, Q. Y., Johnson, K. R., & Erway, L. C. (1999). Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hearing Research, 130(1–2), 94–107.CrossRefPubMedPubMedCentral Zheng, Q. Y., Johnson, K. R., & Erway, L. C. (1999). Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hearing Research, 130(1–2), 94–107.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Bult, C. J., Krupke, D. M., Begley, D. A., Richardson, J. E., Neuhauser, S. B., Sundberg, J. P., & Eppig, J. T. (2015). Mouse tumor biology (MTB): a database of mouse models for human cancer. Nucleic Acids Research, 43(Database issue), D818–D824.CrossRefPubMed Bult, C. J., Krupke, D. M., Begley, D. A., Richardson, J. E., Neuhauser, S. B., Sundberg, J. P., & Eppig, J. T. (2015). Mouse tumor biology (MTB): a database of mouse models for human cancer. Nucleic Acids Research, 43(Database issue), D818–D824.CrossRefPubMed
18.
Zurück zum Zitat Smith, C. L., Blake, J. A., Kadin, J. A., Richardson, J. E., Bult, C. J., & Mouse Genome Database, G. (2018). Mouse genome database (MGD)-2018: knowledgebase for the laboratory mouse. Nucleic Acids Research, 46(D1), D836–D842.CrossRefPubMed Smith, C. L., Blake, J. A., Kadin, J. A., Richardson, J. E., Bult, C. J., & Mouse Genome Database, G. (2018). Mouse genome database (MGD)-2018: knowledgebase for the laboratory mouse. Nucleic Acids Research, 46(D1), D836–D842.CrossRefPubMed
19.
Zurück zum Zitat Bagg, H. J. (1936). Functional activity of the mammary gland in relation to extra-chromosomal influence in the incidence of mammary tumors. Science, 83(2155), 374–375.CrossRefPubMed Bagg, H. J. (1936). Functional activity of the mammary gland in relation to extra-chromosomal influence in the incidence of mammary tumors. Science, 83(2155), 374–375.CrossRefPubMed
20.
Zurück zum Zitat Adair, F. E., & Bagg, H. J. (1931). Experimental and clinical studies on the treatment of cancer by dichlorethylsulphide mustard gas. Annals of Surgery, 93(1), 190–199.CrossRefPubMedPubMedCentral Adair, F. E., & Bagg, H. J. (1931). Experimental and clinical studies on the treatment of cancer by dichlorethylsulphide mustard gas. Annals of Surgery, 93(1), 190–199.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Ebbesen, P. (1971). Reticulosarcoma and amyloid development in BALB/c mice inoculated with syngeneic cells from young and old donors. Journal of the National Cancer Institute, 47(6), 1241–1245.PubMed Ebbesen, P. (1971). Reticulosarcoma and amyloid development in BALB/c mice inoculated with syngeneic cells from young and old donors. Journal of the National Cancer Institute, 47(6), 1241–1245.PubMed
22.
Zurück zum Zitat Myers, D. D., Meier, H., & Huebner, R. J. (1970). Prevalence of murine C-type RNA virus group specific antigen in inbred strains of mice. Life Sciences. Part 2: Biochemistry, General and Molecular Biology, 9(18), 1071–1080.CrossRef Myers, D. D., Meier, H., & Huebner, R. J. (1970). Prevalence of murine C-type RNA virus group specific antigen in inbred strains of mice. Life Sciences. Part 2: Biochemistry, General and Molecular Biology, 9(18), 1071–1080.CrossRef
23.
Zurück zum Zitat Hoag, W. G. (1963). Spontaneous cancer in mice. Annals of the New York Academy of Sciences, 108, 805–831.CrossRefPubMed Hoag, W. G. (1963). Spontaneous cancer in mice. Annals of the New York Academy of Sciences, 108, 805–831.CrossRefPubMed
24.
Zurück zum Zitat Cunliffe-Beamer, T. L., & Feldman, D. B. (1976). Vaginal septa in mice: incidence, inheritance, and effect on reproductive, performance. Laboratory Animal Science, 26(6 Pt 1), 895–898.PubMed Cunliffe-Beamer, T. L., & Feldman, D. B. (1976). Vaginal septa in mice: incidence, inheritance, and effect on reproductive, performance. Laboratory Animal Science, 26(6 Pt 1), 895–898.PubMed
26.
Zurück zum Zitat Braunschweiger, P. G., Poulakos, L., & Schiffer, L. M. (1977). Cell kinetics in vivo and in vitro for C3H/He spontaneous mammary tumors. Journal of the National Cancer Institute, 59(4), 1197–1204.CrossRefPubMed Braunschweiger, P. G., Poulakos, L., & Schiffer, L. M. (1977). Cell kinetics in vivo and in vitro for C3H/He spontaneous mammary tumors. Journal of the National Cancer Institute, 59(4), 1197–1204.CrossRefPubMed
27.
Zurück zum Zitat Lacour, F., Delage, G., & Chianale, C. (1975). Reduced incidence of spontaneous mammary tumors in C3H/He mice after treatment with polyadenylate-polyuridylate. Science, 187(4173), 256–257.CrossRefPubMed Lacour, F., Delage, G., & Chianale, C. (1975). Reduced incidence of spontaneous mammary tumors in C3H/He mice after treatment with polyadenylate-polyuridylate. Science, 187(4173), 256–257.CrossRefPubMed
28.
Zurück zum Zitat Manenti, G., Binelli, G., Gariboldi, M., Canzian, F., De Gregorio, L., Falvella, F. S., et al. (1994). Multiple loci affect genetic predisposition to hepatocarcinogenesis in mice. Genomics, 23(1), 118–124.CrossRefPubMed Manenti, G., Binelli, G., Gariboldi, M., Canzian, F., De Gregorio, L., Falvella, F. S., et al. (1994). Multiple loci affect genetic predisposition to hepatocarcinogenesis in mice. Genomics, 23(1), 118–124.CrossRefPubMed
29.
Zurück zum Zitat Sidman, R. L., & Green, M. C. (1965). Retinal degeneration in the mouse: location of the Rd locus in linkage group Xvii. Journal of Heredity, 56, 23–29.CrossRefPubMed Sidman, R. L., & Green, M. C. (1965). Retinal degeneration in the mouse: location of the Rd locus in linkage group Xvii. Journal of Heredity, 56, 23–29.CrossRefPubMed
30.
Zurück zum Zitat Abiola, O., Angel, J. M., Avner, P., Bachmanov, A. A., Belknap, J. K., Bennett, B., Blankenhorn, E. P., Blizard, D. A., Bolivar, V., Brockmann, G. A., Buck, K. J., Bureau, J. F., Casley, W. L., Chesler, E. J., Cheverud, J. M., Churchill, G. A., Cook, M., Crabbe, J. C., Crusio, W. E., Darvasi, A., de Haan, G., Dermant, P., Doerge, R. W., Elliot, R. W., Farber, C. R., Flaherty, L., Flint, J., Gershenfeld, H., Gibson, J. P., Gu, J., Gu, W., Himmelbauer, H., Hitzemann, R., Hsu, H. C., Hunter, K., Iraqi, F. F., Jansen, R. C., Johnson, T. E., Jones, B. C., Kempermann, G., Lammert, F., Lu, L., Manly, K. F., Matthews, D. B., Medrano, J. F., Mehrabian, M., Mittlemann, G., Mock, B. A., Mogil, J. S., Montagutelli, X., Morahan, G., Mountz, J. D., Nagase, H., Nowakowski, R. S., O'Hara, B. F., Osadchuk, A. V., Paigen, B., Palmer, A. A., Peirce, J. L., Pomp, D., Rosemann, M., Rosen, G. D., Schalkwyk, L. C., Seltzer, Z., Settle, S., Shimomura, K., Shou, S., Sikela, J. M., Siracusa, L. D., Spearow, J. L., Teuscher, C., Threadgill, D. W., Toth, L. A., Toye, A. A., Vadasz, C., van Zant, G., Wakeland, E., Williams, R. W., Zhang, H. G., Zou, F., & Complex Trait Consortium. (2003). The nature and identification of quantitative trait loci: a community’s view. Nature Reviews Genetics, 4(11), 911–916.CrossRefPubMed Abiola, O., Angel, J. M., Avner, P., Bachmanov, A. A., Belknap, J. K., Bennett, B., Blankenhorn, E. P., Blizard, D. A., Bolivar, V., Brockmann, G. A., Buck, K. J., Bureau, J. F., Casley, W. L., Chesler, E. J., Cheverud, J. M., Churchill, G. A., Cook, M., Crabbe, J. C., Crusio, W. E., Darvasi, A., de Haan, G., Dermant, P., Doerge, R. W., Elliot, R. W., Farber, C. R., Flaherty, L., Flint, J., Gershenfeld, H., Gibson, J. P., Gu, J., Gu, W., Himmelbauer, H., Hitzemann, R., Hsu, H. C., Hunter, K., Iraqi, F. F., Jansen, R. C., Johnson, T. E., Jones, B. C., Kempermann, G., Lammert, F., Lu, L., Manly, K. F., Matthews, D. B., Medrano, J. F., Mehrabian, M., Mittlemann, G., Mock, B. A., Mogil, J. S., Montagutelli, X., Morahan, G., Mountz, J. D., Nagase, H., Nowakowski, R. S., O'Hara, B. F., Osadchuk, A. V., Paigen, B., Palmer, A. A., Peirce, J. L., Pomp, D., Rosemann, M., Rosen, G. D., Schalkwyk, L. C., Seltzer, Z., Settle, S., Shimomura, K., Shou, S., Sikela, J. M., Siracusa, L. D., Spearow, J. L., Teuscher, C., Threadgill, D. W., Toth, L. A., Toye, A. A., Vadasz, C., van Zant, G., Wakeland, E., Williams, R. W., Zhang, H. G., Zou, F., & Complex Trait Consortium. (2003). The nature and identification of quantitative trait loci: a community’s view. Nature Reviews Genetics, 4(11), 911–916.CrossRefPubMed
31.
Zurück zum Zitat Little, C. C., & Tyzzer, E. E. (1916). Further experimental studies on the inheritance of susceptibility to a transplantable tumor, carcinoma (J. W. A.) of the Japanese waltzing mouse. Journal of Medical Research, 33(3), 393–453.PubMed Little, C. C., & Tyzzer, E. E. (1916). Further experimental studies on the inheritance of susceptibility to a transplantable tumor, carcinoma (J. W. A.) of the Japanese waltzing mouse. Journal of Medical Research, 33(3), 393–453.PubMed
32.
Zurück zum Zitat Albert, F. W., & Kruglyak, L. (2015). The role of regulatory variation in complex traits and disease. Nature Reviews Genetics, 16(4), 197–212.CrossRefPubMed Albert, F. W., & Kruglyak, L. (2015). The role of regulatory variation in complex traits and disease. Nature Reviews Genetics, 16(4), 197–212.CrossRefPubMed
33.
Zurück zum Zitat Mackay, T. F. C. (2014). Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nature Reviews Genetics, 15(1), 22–33.CrossRefPubMed Mackay, T. F. C. (2014). Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nature Reviews Genetics, 15(1), 22–33.CrossRefPubMed
35.
Zurück zum Zitat Plomin, R., Haworth, C. M., & Davis, O. S. (2009). Common disorders are quantitative traits. Nature Reviews Genetics, 10(12), 872–878.CrossRefPubMed Plomin, R., Haworth, C. M., & Davis, O. S. (2009). Common disorders are quantitative traits. Nature Reviews Genetics, 10(12), 872–878.CrossRefPubMed
37.
Zurück zum Zitat Brinker, A. E., Vivian, C. J., Koestler, D. C., Tsue, T. T., Jensen, R. A., & Welch, D. R. (2017). Mitochondrial haplotype alters mammary cancer tumorigenicity and metastasis in an oncogenic driver-dependent manner. Cancer Research, 77(24), 6941–6949.CrossRefPubMedPubMedCentral Brinker, A. E., Vivian, C. J., Koestler, D. C., Tsue, T. T., Jensen, R. A., & Welch, D. R. (2017). Mitochondrial haplotype alters mammary cancer tumorigenicity and metastasis in an oncogenic driver-dependent manner. Cancer Research, 77(24), 6941–6949.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Vivian, C. J., Brinker, A. E., Graw, S., Koestler, D. C., Legendre, C., Gooden, G. C., Salhia, B., & Welch, D. R. (2017). Mitochondrial genomic backgrounds affect nuclear DNA methylation and gene expression. Cancer Research, 77(22), 6202–6214.CrossRefPubMedPubMedCentral Vivian, C. J., Brinker, A. E., Graw, S., Koestler, D. C., Legendre, C., Gooden, G. C., Salhia, B., & Welch, D. R. (2017). Mitochondrial genomic backgrounds affect nuclear DNA methylation and gene expression. Cancer Research, 77(22), 6202–6214.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Feeley, K. P., Bray, A. W., Westbrook, D. G., Johnson, L. W., Kesterson, R. A., Ballinger, S. W., & Welch, D. R. (2015). Mitochondrial genetics regulate breast cancer tumorigenicity and metastatic potential. Cancer Research, 75(20), 4429–4436.CrossRefPubMedPubMedCentral Feeley, K. P., Bray, A. W., Westbrook, D. G., Johnson, L. W., Kesterson, R. A., Ballinger, S. W., & Welch, D. R. (2015). Mitochondrial genetics regulate breast cancer tumorigenicity and metastatic potential. Cancer Research, 75(20), 4429–4436.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Gorman, G. S., Chinnery, P. F., DiMauro, S., Hirano, M., Koga, Y., McFarland, R., Suomalainen, A., Thorburn, D. R., Zeviani, M., & Turnbull, D. M. (2016). Mitochondrial diseases. Nature Reviews Disease Primers, 2, 16080.CrossRefPubMed Gorman, G. S., Chinnery, P. F., DiMauro, S., Hirano, M., Koga, Y., McFarland, R., Suomalainen, A., Thorburn, D. R., Zeviani, M., & Turnbull, D. M. (2016). Mitochondrial diseases. Nature Reviews Disease Primers, 2, 16080.CrossRefPubMed
41.
Zurück zum Zitat Wallace, D. C., & Chalkia, D. (2013). Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harbor Perspectives in Biology, 5(11), a021220.CrossRefPubMedPubMedCentral Wallace, D. C., & Chalkia, D. (2013). Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harbor Perspectives in Biology, 5(11), a021220.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Wallace, D. C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annual Review of Genetics, 39, 359–407.CrossRefPubMedPubMedCentral Wallace, D. C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annual Review of Genetics, 39, 359–407.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Wallace, D. C., & Fan, W. (2010). Energetics, epigenetics, mitochondrial genetics. Mitochondrion, 10(1), 12–31.CrossRefPubMed Wallace, D. C., & Fan, W. (2010). Energetics, epigenetics, mitochondrial genetics. Mitochondrion, 10(1), 12–31.CrossRefPubMed
44.
Zurück zum Zitat Picard, M., Zhang, J., Hancock, S., Derbeneva, O., Golhar, R., Golik, P., O'Hearn, S., Levy, S., Potluri, P., Lvova, M., Davila, A., Lin, C. S., Perin, J. C., Rappaport, E. F., Hakonarson, H., Trounce, I. A., Procaccio, V., & Wallace, D. C. (2014). Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. Proceedings of the National Academy of Sciences of the United States of America, 111(38), E4033–E4042.CrossRefPubMedPubMedCentral Picard, M., Zhang, J., Hancock, S., Derbeneva, O., Golhar, R., Golik, P., O'Hearn, S., Levy, S., Potluri, P., Lvova, M., Davila, A., Lin, C. S., Perin, J. C., Rappaport, E. F., Hakonarson, H., Trounce, I. A., Procaccio, V., & Wallace, D. C. (2014). Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. Proceedings of the National Academy of Sciences of the United States of America, 111(38), E4033–E4042.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Wallace, D. C. (2016). Genetics: Mitochondrial DNA in evolution and disease. Nature, 535(7613), 498–500.CrossRefPubMed Wallace, D. C. (2016). Genetics: Mitochondrial DNA in evolution and disease. Nature, 535(7613), 498–500.CrossRefPubMed
46.
Zurück zum Zitat Mishmar, D., Ruiz-Pesini, E., Golik, P., Macaulay, V., Clark, A. G., Hosseini, S., Brandon, M., Easley, K., Chen, E., Brown, M. D., Sukernik, R. I., Olckers, A., & Wallace, D. C. (2003). Natural selection shaped regional mtDNA variation in humans. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 171–176.CrossRefPubMed Mishmar, D., Ruiz-Pesini, E., Golik, P., Macaulay, V., Clark, A. G., Hosseini, S., Brandon, M., Easley, K., Chen, E., Brown, M. D., Sukernik, R. I., Olckers, A., & Wallace, D. C. (2003). Natural selection shaped regional mtDNA variation in humans. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 171–176.CrossRefPubMed
47.
Zurück zum Zitat Takibuchi, G., Imanishi, H., Morimoto, M., Ishikawa, K., Nakada, K., Toyama-Sorimachi, N., Kikkawa, Y., Takenaga, K., & Hayashi, J. I. (2013). Polymorphic mutations in mouse mitochondrial DNA regulate a tumor phenotype. Mitochondrion, 13(6), 881–887.CrossRefPubMed Takibuchi, G., Imanishi, H., Morimoto, M., Ishikawa, K., Nakada, K., Toyama-Sorimachi, N., Kikkawa, Y., Takenaga, K., & Hayashi, J. I. (2013). Polymorphic mutations in mouse mitochondrial DNA regulate a tumor phenotype. Mitochondrion, 13(6), 881–887.CrossRefPubMed
48.
Zurück zum Zitat Goios, A., Gusmao, L., Rocha, A. M., Fonseca, A., Pereira, L., Bogue, M., et al. (2008). Identification of mouse inbred strains through mitochondrial DNA single-nucleotide extension. Electrophoresis, 29(23), 4795–4802.CrossRefPubMed Goios, A., Gusmao, L., Rocha, A. M., Fonseca, A., Pereira, L., Bogue, M., et al. (2008). Identification of mouse inbred strains through mitochondrial DNA single-nucleotide extension. Electrophoresis, 29(23), 4795–4802.CrossRefPubMed
49.
Zurück zum Zitat Sflomos, G., Dormoy, V., Metsalu, T., Jeitziner, R., Battista, L., Scabia, V., Raffoul, W., Delaloye, J. F., Treboux, A., Fiche, M., Vilo, J., Ayyanan, A., & Brisken, C. (2016). A preclinical model for ERalpha-positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. Cancer Cell, 29(3), 407–422.CrossRefPubMed Sflomos, G., Dormoy, V., Metsalu, T., Jeitziner, R., Battista, L., Scabia, V., Raffoul, W., Delaloye, J. F., Treboux, A., Fiche, M., Vilo, J., Ayyanan, A., & Brisken, C. (2016). A preclinical model for ERalpha-positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. Cancer Cell, 29(3), 407–422.CrossRefPubMed
50.
Zurück zum Zitat Goios, A., Pereira, L., Bogue, M., Macaulay, V., & Amorim, A. (2007). mtDNA phylogeny and evolution of laboratory mouse strains. Genome Research, 17(3), 293–298.CrossRefPubMedPubMedCentral Goios, A., Pereira, L., Bogue, M., Macaulay, V., & Amorim, A. (2007). mtDNA phylogeny and evolution of laboratory mouse strains. Genome Research, 17(3), 293–298.CrossRefPubMedPubMedCentral
51.
52.
Zurück zum Zitat Roubertoux, P. L., Sluyter, F., Carlier, M., Marcet, B., Maarouf-Veray, F., Cherif, C., et al. (2003). Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nature Genetics, 35(1), 65–69.CrossRefPubMed Roubertoux, P. L., Sluyter, F., Carlier, M., Marcet, B., Maarouf-Veray, F., Cherif, C., et al. (2003). Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nature Genetics, 35(1), 65–69.CrossRefPubMed
53.
Zurück zum Zitat Bussard, K. M., & Siracusa, L. D. (2017). Understanding mitochondrial polymorphisms in cancer. Cancer Research, 77(22), 6051–6059.CrossRefPubMed Bussard, K. M., & Siracusa, L. D. (2017). Understanding mitochondrial polymorphisms in cancer. Cancer Research, 77(22), 6051–6059.CrossRefPubMed
54.
Zurück zum Zitat Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J. N., Rovio, A. T., Bruder, C. E., Bohlooly-Y, M., Gidlöf, S., Oldfors, A., Wibom, R., Törnell, J., Jacobs, H. T., & Larsson, N. G. (2004). Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature, 429(6990), 417–423.CrossRefPubMed Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J. N., Rovio, A. T., Bruder, C. E., Bohlooly-Y, M., Gidlöf, S., Oldfors, A., Wibom, R., Törnell, J., Jacobs, H. T., & Larsson, N. G. (2004). Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature, 429(6990), 417–423.CrossRefPubMed
55.
Zurück zum Zitat Chatterjee, A., Mambo, E., & Sidransky, D. (2006). Mitochondrial DNA mutations in human cancer. Oncogene, 25(34), 4663–4674.CrossRefPubMed Chatterjee, A., Mambo, E., & Sidransky, D. (2006). Mitochondrial DNA mutations in human cancer. Oncogene, 25(34), 4663–4674.CrossRefPubMed
56.
Zurück zum Zitat Park, C. B., & Larsson, N. G. (2011). Mitochondrial DNA mutations in disease and aging. Journal of Cell Biology, 193(5), 809–818.CrossRefPubMed Park, C. B., & Larsson, N. G. (2011). Mitochondrial DNA mutations in disease and aging. Journal of Cell Biology, 193(5), 809–818.CrossRefPubMed
57.
Zurück zum Zitat Asano, T., Yao, Y., Zhu, J., Li, D., Abbruzzese, J. L., & Reddy, S. A. (2004). The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-kappaB and c-Myc in pancreatic cancer cells. Oncogene, 23(53), 8571–8580.CrossRefPubMed Asano, T., Yao, Y., Zhu, J., Li, D., Abbruzzese, J. L., & Reddy, S. A. (2004). The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-kappaB and c-Myc in pancreatic cancer cells. Oncogene, 23(53), 8571–8580.CrossRefPubMed
58.
Zurück zum Zitat Stewart, J. B., Freyer, C., Elson, J. L., & Larsson, N. G. (2008). Purifying selection of mtDNA and its implications for understanding evolution and mitochondrial disease. Nature Reviews Genetics, 9(9), 657–662.CrossRefPubMed Stewart, J. B., Freyer, C., Elson, J. L., & Larsson, N. G. (2008). Purifying selection of mtDNA and its implications for understanding evolution and mitochondrial disease. Nature Reviews Genetics, 9(9), 657–662.CrossRefPubMed
60.
Zurück zum Zitat McCredie, J. A., Inch, W. R., & Sutherland, R. M. (1971). Differences in growth and morphology between the spontaneous C3H mammary carcinoma in the mouse and its syngeneic transplants. Cancer, 27(3), 635–642.CrossRefPubMed McCredie, J. A., Inch, W. R., & Sutherland, R. M. (1971). Differences in growth and morphology between the spontaneous C3H mammary carcinoma in the mouse and its syngeneic transplants. Cancer, 27(3), 635–642.CrossRefPubMed
61.
Zurück zum Zitat Pontual, E. V., Carvalho, B. E., Bezerra, R. S., Coelho, L. C., Napoleao, T. H., & Paiva, P. M. (2012). Caseinolytic and milk-clotting activities from Moringa oleifera flowers. Food Chemistry, 135(3), 1848–1854.CrossRefPubMed Pontual, E. V., Carvalho, B. E., Bezerra, R. S., Coelho, L. C., Napoleao, T. H., & Paiva, P. M. (2012). Caseinolytic and milk-clotting activities from Moringa oleifera flowers. Food Chemistry, 135(3), 1848–1854.CrossRefPubMed
Metadaten
Titel
Mitochondrial polymorphisms contribute to aging phenotypes in MNX mouse models
verfasst von
Carolyn J. Vivian
Travis M. Hagedorn
Roy A. Jensen
Amanda E. Brinker
Danny R. Welch
Publikationsdatum
14.12.2018
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 4/2018
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-018-9773-6

Weitere Artikel der Ausgabe 4/2018

Cancer and Metastasis Reviews 4/2018 Zur Ausgabe

EditorialNotes

Preface

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.