Skip to main content
Erschienen in: Inflammation 5/2018

30.06.2018 | REVIEW

Mitophagy Contributes to the Pathogenesis of Inflammatory Diseases

verfasst von: Yan Zhao, Shaohui Huang, Jie Liu, Ximing Wu, Shuai Zhou, Ke Dai, Yurong Kou

Erschienen in: Inflammation | Ausgabe 5/2018

Einloggen, um Zugang zu erhalten

Abstract

Mitophagy is a metabolic process to remove excessive or damaged mitochondria in eukaryotic cells. It is well-known that mitochondria are one of the major sources of reactive oxygen species (ROS). Mitochondrial ROS and damage-associated molecular patterns (DAMPs) can activate inflammasomes to induce inflammatory responses. Once the activation is regulated improperly, excessive inflammation will bring about various tissue injuries, resulting in a series of diseases. However, the selective mitochondrial autophagy can specifically eliminate dysfunctional mitochondria to maintain mitochondrial homeostasis and protect against the hyperinflammation induced by ROS and DAMPs. Recent studies demonstrated that a variety of internal and external factors regulate several inflammatory diseases via altering the level of mitophagy. In this review, we summarize the latest research progress of mitophagy and focus on the inflammatory responses regulated by mitophagy, aiming to illuminate the role of mitophagy in inflammation and provide clues to the diagnosis and therapy of inflammatory diseases.
Literatur
3.
Zurück zum Zitat Lemasters, J.J. 2005. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Research 8 (1): 3–5.CrossRefPubMed Lemasters, J.J. 2005. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Research 8 (1): 3–5.CrossRefPubMed
6.
10.
Zurück zum Zitat Liu, L., D. Feng, G. Chen, M. Chen, Q. Zheng, P. Song, Q. Ma, C. Zhu, R. Wang, W. Qi, L. Huang, P. Xue, B. Li, X. Wang, H. Jin, J. Wang, F. Yang, P. Liu, Y. Zhu, S. Sui, and Q. Chen. 2012. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nature Cell Biology 14 (2): 177–185. https://doi.org/10.1038/ncb2422. CrossRefPubMed Liu, L., D. Feng, G. Chen, M. Chen, Q. Zheng, P. Song, Q. Ma, C. Zhu, R. Wang, W. Qi, L. Huang, P. Xue, B. Li, X. Wang, H. Jin, J. Wang, F. Yang, P. Liu, Y. Zhu, S. Sui, and Q. Chen. 2012. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nature Cell Biology 14 (2): 177–185. https://​doi.​org/​10.​1038/​ncb2422.​ CrossRefPubMed
12.
13.
Zurück zum Zitat Valente, E.M., P.M. Abou-Sleiman, V. Caputo, M.M. Muqit, K. Harvey, S. Gispert, Z. Ali, D. del Turco, A.R. Bentivoglio, D.G. Healy, A. Albanese, R. Nussbaum, R. González-Maldonado, T. Deller, S. Salvi, P. Cortelli, W.P. Gilks, D.S. Latchman, R.J. Harvey, B. Dallapiccola, G. Auburger, and N.W. Wood. 2004. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304 (5674): 1158–1160. https://doi.org/10.1126/science.1096284. CrossRefPubMed Valente, E.M., P.M. Abou-Sleiman, V. Caputo, M.M. Muqit, K. Harvey, S. Gispert, Z. Ali, D. del Turco, A.R. Bentivoglio, D.G. Healy, A. Albanese, R. Nussbaum, R. González-Maldonado, T. Deller, S. Salvi, P. Cortelli, W.P. Gilks, D.S. Latchman, R.J. Harvey, B. Dallapiccola, G. Auburger, and N.W. Wood. 2004. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304 (5674): 1158–1160. https://​doi.​org/​10.​1126/​science.​1096284.​ CrossRefPubMed
17.
Zurück zum Zitat Matsuda, N., S. Sato, K. Shiba, K. Okatsu, K. Saisho, C.A. Gautier, Y.S. Sou, S. Saiki, S. Kawajiri, F. Sato, M. Kimura, M. Komatsu, N. Hattori, and K. Tanaka. 2010. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. The Journal of Cell Biology 189 (2): 211–221. https://doi.org/10.1083/jcb.200910140. CrossRefPubMedPubMedCentral Matsuda, N., S. Sato, K. Shiba, K. Okatsu, K. Saisho, C.A. Gautier, Y.S. Sou, S. Saiki, S. Kawajiri, F. Sato, M. Kimura, M. Komatsu, N. Hattori, and K. Tanaka. 2010. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. The Journal of Cell Biology 189 (2): 211–221. https://​doi.​org/​10.​1083/​jcb.​200910140.​ CrossRefPubMedPubMedCentral
21.
28.
Zurück zum Zitat Zhu, Y., S. Massen, M. Terenzio, V. Lang, S. Chen-Lindner, R. Eils, I. Novak, I. Dikic, A. Hamacher-Brady, and N.R. Brady. 2013. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. The Journal of Biological Chemistry 288 (2): 1099–1113. https://doi.org/10.1074/jbc.M112.399345.CrossRefPubMed Zhu, Y., S. Massen, M. Terenzio, V. Lang, S. Chen-Lindner, R. Eils, I. Novak, I. Dikic, A. Hamacher-Brady, and N.R. Brady. 2013. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. The Journal of Biological Chemistry 288 (2): 1099–1113. https://​doi.​org/​10.​1074/​jbc.​M112.​399345.CrossRefPubMed
35.
Zurück zum Zitat Bulua, Ariel C., Anna Simon, Ravikanth Maddipati, Martin Pelletier, Heiyoung Park, Kye-Young Kim, Michael N. Sack, Daniel L. Kastner, and Richard M. Siegel. 2011. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). The Journal of Experimental Medicine 208 (3): 519–533. https://doi.org/10.1084/jem.20102049.CrossRefPubMedPubMedCentral Bulua, Ariel C., Anna Simon, Ravikanth Maddipati, Martin Pelletier, Heiyoung Park, Kye-Young Kim, Michael N. Sack, Daniel L. Kastner, and Richard M. Siegel. 2011. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). The Journal of Experimental Medicine 208 (3): 519–533. https://​doi.​org/​10.​1084/​jem.​20102049.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Picca, A., A. M. S. Lezza, C. Leeuwenburgh, V. Pesce, R. Calvani, F. Landi, R. Bernabei, and E. Marzetti. 2017. Fueling inflamm-aging through mitochondrial dysfunction: mechanisms and molecular targets. International Journal of Molecular Sciences 18 (5): doi: 10.3390/ijms18050933. Picca, A., A. M. S. Lezza, C. Leeuwenburgh, V. Pesce, R. Calvani, F. Landi, R. Bernabei, and E. Marzetti. 2017. Fueling inflamm-aging through mitochondrial dysfunction: mechanisms and molecular targets. International Journal of Molecular Sciences 18 (5): doi: 10.3390/ijms18050933.
43.
Zurück zum Zitat Nakahira, K., J.A. Haspel, V.A. Rathinam, S.J. Lee, T. Dolinay, H.C. Lam, J.A. Englert, et al. 2011. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunology 12 (3): 222–230. https://doi.org/10.1038/ni.1980. CrossRefPubMed Nakahira, K., J.A. Haspel, V.A. Rathinam, S.J. Lee, T. Dolinay, H.C. Lam, J.A. Englert, et al. 2011. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunology 12 (3): 222–230. https://​doi.​org/​10.​1038/​ni.​1980.​ CrossRefPubMed
54.
Zurück zum Zitat Nakahira, K., S.Y. Kyung, A.J. Rogers, L. Gazourian, S. Youn, A.F. Massaro, C. Quintana, J.C. Osorio, Z. Wang, Y. Zhao, L.A. Lawler, J.D. Christie, N.J. Meyer, F.R.M. Causland, S.S. Waikar, A.B. Waxman, R.T. Chung, R. Bueno, I.O. Rosas, L.E. Fredenburgh, R.M. Baron, D.C. Christiani, G.M. Hunninghake, and A.M.K. Choi. 2013. Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation. PLoS Medicine 10 (12): e1001577; discussion e1001577. https://doi.org/10.1371/journal.pmed.1001577.CrossRefPubMedPubMedCentral Nakahira, K., S.Y. Kyung, A.J. Rogers, L. Gazourian, S. Youn, A.F. Massaro, C. Quintana, J.C. Osorio, Z. Wang, Y. Zhao, L.A. Lawler, J.D. Christie, N.J. Meyer, F.R.M. Causland, S.S. Waikar, A.B. Waxman, R.T. Chung, R. Bueno, I.O. Rosas, L.E. Fredenburgh, R.M. Baron, D.C. Christiani, G.M. Hunninghake, and A.M.K. Choi. 2013. Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation. PLoS Medicine 10 (12): e1001577; discussion e1001577. https://​doi.​org/​10.​1371/​journal.​pmed.​1001577.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Han, J., X. Wang, Y. Jiang, R.J. Ulevitch, and S. Lin. 1997. Identification and characterization of a predominant isoform of human MKK3. FEBS Letters 403 (1): 19–22.CrossRefPubMed Han, J., X. Wang, Y. Jiang, R.J. Ulevitch, and S. Lin. 1997. Identification and characterization of a predominant isoform of human MKK3. FEBS Letters 403 (1): 19–22.CrossRefPubMed
57.
Zurück zum Zitat Mannam, P., A.S. Shinn, A. Srivastava, R.F. Neamu, W.E. Walker, M. Bohanon, J. Merkel, M.J. Kang, C.S.D. Cruz, A.M. Ahasic, M.A. Pisani, M. Trentalange, A.P. West, G.S. Shadel, J.A. Elias, and P.J. Lee. 2014. MKK3 regulates mitochondrial biogenesis and mitophagy in sepsis-induced lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 306 (7): L604–L619. https://doi.org/10.1152/ajplung.00272.2013. CrossRefPubMedPubMedCentral Mannam, P., A.S. Shinn, A. Srivastava, R.F. Neamu, W.E. Walker, M. Bohanon, J. Merkel, M.J. Kang, C.S.D. Cruz, A.M. Ahasic, M.A. Pisani, M. Trentalange, A.P. West, G.S. Shadel, J.A. Elias, and P.J. Lee. 2014. MKK3 regulates mitochondrial biogenesis and mitophagy in sepsis-induced lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 306 (7): L604–L619. https://​doi.​org/​10.​1152/​ajplung.​00272.​2013.​ CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Barnes, P.J., S.D. Shapiro, and R.A. Pauwels. 2003. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. The European Respiratory Journal 22 (4): 672–688.CrossRefPubMed Barnes, P.J., S.D. Shapiro, and R.A. Pauwels. 2003. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. The European Respiratory Journal 22 (4): 672–688.CrossRefPubMed
61.
Zurück zum Zitat Heijink, I.H., S.D. Pouwels, C. Leijendekker, H.G. de Bruin, G.J. Zijlstra, H. van der Vaart, N.H. ten Hacken, A.J. van Oosterhout, M.C. Nawijn, and M. van der Toorn. 2015. Cigarette smoke-induced damage-associated molecular pattern release from necrotic neutrophils triggers proinflammatory mediator release. American Journal of Respiratory Cell and Molecular Biology 52 (5): 554–562. https://doi.org/10.1165/rcmb.2013-0505OC.CrossRefPubMed Heijink, I.H., S.D. Pouwels, C. Leijendekker, H.G. de Bruin, G.J. Zijlstra, H. van der Vaart, N.H. ten Hacken, A.J. van Oosterhout, M.C. Nawijn, and M. van der Toorn. 2015. Cigarette smoke-induced damage-associated molecular pattern release from necrotic neutrophils triggers proinflammatory mediator release. American Journal of Respiratory Cell and Molecular Biology 52 (5): 554–562. https://​doi.​org/​10.​1165/​rcmb.​2013-0505OC.CrossRefPubMed
67.
Zurück zum Zitat Li, H., W. Miao, J. Ma, Z. Xv, H. Bo, J. Li, Y. Zhang, and L.L. Ji. 2016. Acute exercise-induced mitochondrial stress triggers an inflammatory response in the myocardium via NLRP3 inflammasome activation with mitophagy. Oxidative Medicine and Cellular Longevity 2016: 1987149. https://doi.org/10.1155/2016/1987149.PubMedCrossRef Li, H., W. Miao, J. Ma, Z. Xv, H. Bo, J. Li, Y. Zhang, and L.L. Ji. 2016. Acute exercise-induced mitochondrial stress triggers an inflammatory response in the myocardium via NLRP3 inflammasome activation with mitophagy. Oxidative Medicine and Cellular Longevity 2016: 1987149. https://​doi.​org/​10.​1155/​2016/​1987149.PubMedCrossRef
68.
Zurück zum Zitat Ashrafian, H., L. Docherty, V. Leo, C. Towlson, M. Neilan, V. Steeples, C.A. Lygate, T. Hough, S. Townsend, D. Williams, S. Wells, D. Norris, S. Glyn-Jones, J. Land, I. Barbaric, Z. Lalanne, P. Denny, D. Szumska, S. Bhattacharya, J.L. Griffin, I. Hargreaves, N. Fernandez-Fuentes, M. Cheeseman, H. Watkins, and T.N. Dear. 2010. A mutation in the mitochondrial fission gene Dnm1l leads to cardiomyopathy. PLoS Genetics 6 (6): e1001000. https://doi.org/10.1371/journal.pgen.1001000. CrossRefPubMedPubMedCentral Ashrafian, H., L. Docherty, V. Leo, C. Towlson, M. Neilan, V. Steeples, C.A. Lygate, T. Hough, S. Townsend, D. Williams, S. Wells, D. Norris, S. Glyn-Jones, J. Land, I. Barbaric, Z. Lalanne, P. Denny, D. Szumska, S. Bhattacharya, J.L. Griffin, I. Hargreaves, N. Fernandez-Fuentes, M. Cheeseman, H. Watkins, and T.N. Dear. 2010. A mutation in the mitochondrial fission gene Dnm1l leads to cardiomyopathy. PLoS Genetics 6 (6): e1001000. https://​doi.​org/​10.​1371/​journal.​pgen.​1001000.​ CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Cahill, T.J., V. Leo, M. Kelly, A. Stockenhuber, N.W. Kennedy, L. Bao, G. Cereghetti, A.R. Harper, G. Czibik, C. Lao, M. Bellahcene, V. Steeples, S. Ghaffari, A. Yavari, A. Mayer, J. Poulton, D.J.P. Ferguson, L. Scorrano, N.T. Hettiarachchi, C. Peers, J. Boyle, R.B. Hill, A. Simmons, H. Watkins, T.N. Dear, and H. Ashrafian. 2015. Resistance of dynamin-related protein 1 oligomers to disassembly impairs mitophagy, resulting in myocardial inflammation and heart failure. The Journal of Biological Chemistry 290 (43): 25907–25919. https://doi.org/10.1074/jbc.M115.665695.CrossRefPubMedPubMedCentral Cahill, T.J., V. Leo, M. Kelly, A. Stockenhuber, N.W. Kennedy, L. Bao, G. Cereghetti, A.R. Harper, G. Czibik, C. Lao, M. Bellahcene, V. Steeples, S. Ghaffari, A. Yavari, A. Mayer, J. Poulton, D.J.P. Ferguson, L. Scorrano, N.T. Hettiarachchi, C. Peers, J. Boyle, R.B. Hill, A. Simmons, H. Watkins, T.N. Dear, and H. Ashrafian. 2015. Resistance of dynamin-related protein 1 oligomers to disassembly impairs mitophagy, resulting in myocardial inflammation and heart failure. The Journal of Biological Chemistry 290 (43): 25907–25919. https://​doi.​org/​10.​1074/​jbc.​M115.​665695.CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat Torres-Odio, S., J. Key, H.H. Hoepken, J. Canet-Pons, L. Valek, B. Roller, M. Walter, B. Morales-Gordo, D. Meierhofer, P.N. Harter, M. Mittelbronn, I. Tegeder, S. Gispert, and G. Auburger. 2017. Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. Journal of Neuroinflammation 14 (1): 154. https://doi.org/10.1186/s12974-017-0928-0. CrossRefPubMedPubMedCentral Torres-Odio, S., J. Key, H.H. Hoepken, J. Canet-Pons, L. Valek, B. Roller, M. Walter, B. Morales-Gordo, D. Meierhofer, P.N. Harter, M. Mittelbronn, I. Tegeder, S. Gispert, and G. Auburger. 2017. Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. Journal of Neuroinflammation 14 (1): 154. https://​doi.​org/​10.​1186/​s12974-017-0928-0.​ CrossRefPubMedPubMedCentral
79.
Zurück zum Zitat Xu, X.H., D.F. Ding, H.J. Yong, C.L. Dong, N. You, X.L. Ye, M.L. Pan, J.H. Ma, Q. You, and Y.B. Lu. 2017. Resveratrol transcriptionally regulates miRNA-18a-5p expression ameliorating diabetic nephropathy via increasing autophagy. European Review for Medical and Pharmacological Sciences 21 (21): 4952–4965.PubMed Xu, X.H., D.F. Ding, H.J. Yong, C.L. Dong, N. You, X.L. Ye, M.L. Pan, J.H. Ma, Q. You, and Y.B. Lu. 2017. Resveratrol transcriptionally regulates miRNA-18a-5p expression ameliorating diabetic nephropathy via increasing autophagy. European Review for Medical and Pharmacological Sciences 21 (21): 4952–4965.PubMed
Metadaten
Titel
Mitophagy Contributes to the Pathogenesis of Inflammatory Diseases
verfasst von
Yan Zhao
Shaohui Huang
Jie Liu
Ximing Wu
Shuai Zhou
Ke Dai
Yurong Kou
Publikationsdatum
30.06.2018
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0835-2

Weitere Artikel der Ausgabe 5/2018

Inflammation 5/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.