Skip to main content
Erschienen in: Molecular Imaging and Biology 4/2020

01.08.2020 | Research Article

Modeling of [18F]FEOBV Pharmacokinetics in Rat Brain

verfasst von: Anna Schildt, Erik F.J. de Vries, Antoon T.M. Willemsen, Rodrigo Moraga-Amaro, Bruno Lima-Giacobbo, Jürgen W.A. Sijbesma, Vesna Sossi, Rudi A.J.O. Dierckx, Janine Doorduin

Erschienen in: Molecular Imaging and Biology | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose

[18F]Fluoroethoxybenzovesamicol ([18F]FEOBV) is a radioligand for the vesicular acetylcholine transporter (VAChT), a marker of the cholinergic system. We evaluated the quantification of [18F]FEOBV in rats in control conditions and after partial saturation of VAChT using plasma and reference tissue input models and test-retest reliability.

Procedure

Ninety-minute dynamic [18F]FEOBV PET scans with arterial blood sampling were performed in control rats and rats pretreated with 10 μg/kg FEOBV. Kinetic analyses were performed using one- (1TCM) and two-tissue compartmental models (2TCM), Logan and Patlak graphical analyses with metabolite-corrected plasma input, reference tissue Patlak with cerebellum as reference tissue, standard uptake value (SUV) and SUV ratio (SUVR) using 60- or 90-min acquisition. To assess test-retest reliability, two dynamic [18F]FEOBV scans were performed 1 week apart.

Results

The 1TCM did not fit the data. Time-activity curves were more reliably estimated by the irreversible than the reversible 2TCM for 60 and 90 min as the influx rate Ki showed a lower coefficient of variation (COV, 14–24 %) than the volume of distribution VT (16–108 %). Patlak graphical analysis showed a good fit to the data for both acquisition times with a COV (12–27 %) comparable to the irreversible 2TCM. For 60 min, Logan analysis performed comparably to both irreversible models (COV 14–32 %) but showed lower sensitivity to VAChT saturation. Partial saturation of VAChT did not affect model selection when using plasma input. However, poor correlations were found between irreversible 2TCM and SUV and SUVR in partially saturated VAChT states. Test-retest reliability and intraclass correlation for SUV were good.

Conclusion

[18F]FEOBV is best modeled using the irreversible 2TCM or Patlak graphical analysis. SUV should only be used if blood sampling is not possible.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Geula C, Mesulam MM (1996) Systematic regional variations in the loss of cortical cholinergic fibers in Alzheimer’s disease. Cereb Cortex 6:165–177CrossRef Geula C, Mesulam MM (1996) Systematic regional variations in the loss of cortical cholinergic fibers in Alzheimer’s disease. Cereb Cortex 6:165–177CrossRef
2.
Zurück zum Zitat Kuhl DE, Minoshima S, Fessler JA, Frey KA, Foster NL, Ficaro EP, Wieland DM, Koeppe RA (1996) In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol 40:399–410CrossRef Kuhl DE, Minoshima S, Fessler JA, Frey KA, Foster NL, Ficaro EP, Wieland DM, Koeppe RA (1996) In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol 40:399–410CrossRef
3.
Zurück zum Zitat Whitehouse PJ, Hedreen JC, White CL, Price DL (1983) Basal forebrain neurons in the dementia of Parkinson disease. Ann Neurol 13:243–248CrossRef Whitehouse PJ, Hedreen JC, White CL, Price DL (1983) Basal forebrain neurons in the dementia of Parkinson disease. Ann Neurol 13:243–248CrossRef
4.
Zurück zum Zitat Gilmor ML, Erickson JD, Varoqui H, Hersh LB, Bennett DA, Cochran EJ, Mufson EJ, Levey AI (1999) Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol 411:693–704CrossRef Gilmor ML, Erickson JD, Varoqui H, Hersh LB, Bennett DA, Cochran EJ, Mufson EJ, Levey AI (1999) Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol 411:693–704CrossRef
5.
Zurück zum Zitat Mulholland GK, Wieland DM, Kilbourn MR, Frey KA, Sherman PS, Carey JE, Kuhl DE (1998) [18F]fluoroethoxy-benzovesamicol, a PET radiotracer for the vesicular acetylcholine transporter and cholinergic synapses. Synapse 30:263–274CrossRef Mulholland GK, Wieland DM, Kilbourn MR, Frey KA, Sherman PS, Carey JE, Kuhl DE (1998) [18F]fluoroethoxy-benzovesamicol, a PET radiotracer for the vesicular acetylcholine transporter and cholinergic synapses. Synapse 30:263–274CrossRef
6.
Zurück zum Zitat Kilbourn MR, Hockley B, Lee L, Sherman P, Quesada C, Frey KA, Koeppe RA (2009) Positron emission tomography imaging of (2R,3R)-5-[18F]fluoroethoxybenzovesamicol in rat and monkey brain: a radioligand for the vesicular acetylcholine transporter. Nucl Med Biol 36:489–493CrossRef Kilbourn MR, Hockley B, Lee L, Sherman P, Quesada C, Frey KA, Koeppe RA (2009) Positron emission tomography imaging of (2R,3R)-5-[18F]fluoroethoxybenzovesamicol in rat and monkey brain: a radioligand for the vesicular acetylcholine transporter. Nucl Med Biol 36:489–493CrossRef
7.
Zurück zum Zitat Petrou M, Frey KA, Kilbourn MR, Scott PJ, Raffel DM, Bohnen NI, Müller ML, Albin RL, Koeppe RA (2014) In vivo imaging of human cholinergic nerve terminals with (−)-5-18F-Fluoroethoxybenzovesamicol: biodistribution, Dosimetry, and tracer kinetic analyses. J Nucl Med 55:396–404CrossRef Petrou M, Frey KA, Kilbourn MR, Scott PJ, Raffel DM, Bohnen NI, Müller ML, Albin RL, Koeppe RA (2014) In vivo imaging of human cholinergic nerve terminals with (−)-5-18F-Fluoroethoxybenzovesamicol: biodistribution, Dosimetry, and tracer kinetic analyses. J Nucl Med 55:396–404CrossRef
8.
Zurück zum Zitat Parent M, Bedard M-AA, Aliaga A et al (2012) PET imaging of cholinergic deficits in rats using [18F]fluoroethoxybenzovesamicol ([18F]FEOBV). Neuroimage 62:555–561CrossRef Parent M, Bedard M-AA, Aliaga A et al (2012) PET imaging of cholinergic deficits in rats using [18F]fluoroethoxybenzovesamicol ([18F]FEOBV). Neuroimage 62:555–561CrossRef
9.
Zurück zum Zitat Alves IL, Vállez García D, Parente A et al (2017) Pharmacokinetic modeling of [11C]flumazenil kinetics in the rat brain. EJNMMI Res 7:17CrossRef Alves IL, Vállez García D, Parente A et al (2017) Pharmacokinetic modeling of [11C]flumazenil kinetics in the rat brain. EJNMMI Res 7:17CrossRef
10.
Zurück zum Zitat Willson JE, Brown DE, Timmens EK (1965) A toxicologic study of dimethyl sulfoxide. Toxicol Appl Pharmacol 7:104–112CrossRef Willson JE, Brown DE, Timmens EK (1965) A toxicologic study of dimethyl sulfoxide. Toxicol Appl Pharmacol 7:104–112CrossRef
11.
Zurück zum Zitat Mulholland GK, Jung Y-W, Wieland DM et al (1993) Synthesis of [18F]Fluoroethoxy-benzovesamicol, a radiotracer for cholinergic neurons. J Label Compd Radiopharm 33:583–591CrossRef Mulholland GK, Jung Y-W, Wieland DM et al (1993) Synthesis of [18F]Fluoroethoxy-benzovesamicol, a radiotracer for cholinergic neurons. J Label Compd Radiopharm 33:583–591CrossRef
12.
Zurück zum Zitat Vállez Garcia D, Casteels C, Schwarz AJ et al (2015) A standardized method for the construction of tracer specific PET and SPECT rat brain templates: validation and implementation of a toolbox. PLoS One 10:e0122363CrossRef Vállez Garcia D, Casteels C, Schwarz AJ et al (2015) A standardized method for the construction of tracer specific PET and SPECT rat brain templates: validation and implementation of a toolbox. PLoS One 10:e0122363CrossRef
13.
Zurück zum Zitat Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, MacGregor R, Hitzemann R, Bendriem B, Gatley SJ (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10:740–747CrossRef Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, MacGregor R, Hitzemann R, Bendriem B, Gatley SJ (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10:740–747CrossRef
14.
Zurück zum Zitat Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7CrossRef Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7CrossRef
15.
Zurück zum Zitat Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428CrossRef Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428CrossRef
16.
Zurück zum Zitat Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39(4):561–577CrossRef Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39(4):561–577CrossRef
17.
Zurück zum Zitat Albin RL, Bohnen NI, Muller MLTM, Dauer WT, Sarter M, Frey KA, Koeppe RA (2018) Regional vesicular acetylcholine transporter distribution in human brain: a [18F]fluoroethoxybenzovesamicol positron emission tomography study. J Comp Neurol 526:2884–2897CrossRef Albin RL, Bohnen NI, Muller MLTM, Dauer WT, Sarter M, Frey KA, Koeppe RA (2018) Regional vesicular acetylcholine transporter distribution in human brain: a [18F]fluoroethoxybenzovesamicol positron emission tomography study. J Comp Neurol 526:2884–2897CrossRef
18.
Zurück zum Zitat Herfert K, Mannheim JG, Kuebler L et al (2019) Quantitative rodent brain receptor imaging. Mol Imaging Biol:1–22 Herfert K, Mannheim JG, Kuebler L et al (2019) Quantitative rodent brain receptor imaging. Mol Imaging Biol:1–22
19.
Zurück zum Zitat Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations J Cereb Blood Flow Metab 5:584–590CrossRef Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations J Cereb Blood Flow Metab 5:584–590CrossRef
20.
Zurück zum Zitat Shichino T, Murakawa M, Adachi T, Nakao S, Shinomura T, Kurata J, Mori K (1997) Effects of isoflurane on in vivo release of acetylcholine in the rat cerebral cortex and striatum. Acta Anaesthesiol Scand 41:1335–1340CrossRef Shichino T, Murakawa M, Adachi T, Nakao S, Shinomura T, Kurata J, Mori K (1997) Effects of isoflurane on in vivo release of acetylcholine in the rat cerebral cortex and striatum. Acta Anaesthesiol Scand 41:1335–1340CrossRef
21.
Zurück zum Zitat Whittington RA, Virág L (2010) The differential effects of equipotent doses of isoflurane and desflurane on hippocampal acetylcholine levels in young and aged rats. Neurosci Lett 471:166–170CrossRef Whittington RA, Virág L (2010) The differential effects of equipotent doses of isoflurane and desflurane on hippocampal acetylcholine levels in young and aged rats. Neurosci Lett 471:166–170CrossRef
22.
Zurück zum Zitat Su D, Zhao Y, Wang B et al (2011) Isoflurane-induced spatial memory impairment in mice is prevented by the acetylcholinesterase inhibitor donepezil. PLoS One 6:e27632CrossRef Su D, Zhao Y, Wang B et al (2011) Isoflurane-induced spatial memory impairment in mice is prevented by the acetylcholinesterase inhibitor donepezil. PLoS One 6:e27632CrossRef
23.
Zurück zum Zitat Ni C, Tan G, Luo A, Qian M, Tang Y, Zhou Y, Wang J, Li M, Zhang Y, Jia D, Wu C, Guo X (2013) Melatonin premedication attenuates isoflurane anesthesia-induced β-amyloid generation and cholinergic dysfunction in the hippocampus of aged rats. Int J Neurosci 123:213–220CrossRef Ni C, Tan G, Luo A, Qian M, Tang Y, Zhou Y, Wang J, Li M, Zhang Y, Jia D, Wu C, Guo X (2013) Melatonin premedication attenuates isoflurane anesthesia-induced β-amyloid generation and cholinergic dysfunction in the hippocampus of aged rats. Int J Neurosci 123:213–220CrossRef
Metadaten
Titel
Modeling of [18F]FEOBV Pharmacokinetics in Rat Brain
verfasst von
Anna Schildt
Erik F.J. de Vries
Antoon T.M. Willemsen
Rodrigo Moraga-Amaro
Bruno Lima-Giacobbo
Jürgen W.A. Sijbesma
Vesna Sossi
Rudi A.J.O. Dierckx
Janine Doorduin
Publikationsdatum
01.08.2020
Verlag
Springer International Publishing
Erschienen in
Molecular Imaging and Biology / Ausgabe 4/2020
Print ISSN: 1536-1632
Elektronische ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-019-01466-8

Weitere Artikel der Ausgabe 4/2020

Molecular Imaging and Biology 4/2020 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.