Skip to main content
Erschienen in:

01.06.2019 | Research Article

Modeling the effects of medial olivocochlear efferent stimulation at the level of the inferior colliculus

verfasst von: T. J. M. Kwan, M. S. A. Zilany, E. Davies-Venn, Ahmad Khairi Abdul Wahab

Erschienen in: Experimental Brain Research | Ausgabe 6/2019

Einloggen, um Zugang zu erhalten

Abstract

Various studies on medial olivocochlear (MOC) efferents have implicated it in multiple roles in the auditory system (e.g., dynamic range adaptation, masking reduction, and selective attention). This study presents a systematic simulation of inferior colliculus (IC) responses with and without electrical stimulation of the MOC. Phenomenological models of the responses of auditory nerve (AN) fibers and IC neurons were used to this end. The simulated responses were highly consistent with physiological data (replicated 3 of the 4 known rate-level responses all MOC effects—shifts, high stimulus level reduction and enhancement). Complex MOC efferent effects which were previously thought to require integration from different characteristic frequency (CF) neurons were simulated using the same frequency inhibition excitation circuitry. MOC-induced enhancing effects were found only in neurons with a CF range from 750 Hz to 2 kHz. This limited effect is indicative of the role of MOC activation on the AN responses at the stimulus offset.
Literatur
Zurück zum Zitat Brown GJ, Ferry RT, Meddis R (2010) A computer model of auditory efferent suppression: implications for the recognition of speech in noise. J Acoust Soc Am 127:943–954CrossRefPubMed Brown GJ, Ferry RT, Meddis R (2010) A computer model of auditory efferent suppression: implications for the recognition of speech in noise. J Acoust Soc Am 127:943–954CrossRefPubMed
Zurück zum Zitat Bruce IC, Sachs MB, Young ED (2003) An auditory-periphery model of the effects of acoustic trauma on auditory nerve responses. J Acoust Soc Am 113:369–388CrossRefPubMed Bruce IC, Sachs MB, Young ED (2003) An auditory-periphery model of the effects of acoustic trauma on auditory nerve responses. J Acoust Soc Am 113:369–388CrossRefPubMed
Zurück zum Zitat Carney LH (1993) A model for the responses of low-frequency auditory-nerve fibers in cat. J Acoust Soc Am 93:401–417CrossRefPubMed Carney LH (1993) A model for the responses of low-frequency auditory-nerve fibers in cat. J Acoust Soc Am 93:401–417CrossRefPubMed
Zurück zum Zitat Chintanpalli A, Jennings SG, Heinz MG, Strickland EA (2012) Modeling the anti-masking effects of the olivocochlear reflex in auditory nerve responses to tones in sustained noise. J Assoc Res Otolaryngol 13:219–235CrossRefPubMedPubMedCentral Chintanpalli A, Jennings SG, Heinz MG, Strickland EA (2012) Modeling the anti-masking effects of the olivocochlear reflex in auditory nerve responses to tones in sustained noise. J Assoc Res Otolaryngol 13:219–235CrossRefPubMedPubMedCentral
Zurück zum Zitat Fant G (1973) Speech sounds and features. The MIT Press, Cambridge Fant G (1973) Speech sounds and features. The MIT Press, Cambridge
Zurück zum Zitat Ferry RT, Meddis R (2007) A computer model of medial efferent suppression in the mammalian auditory system. J Acoust Soc Am 122:3519–3526CrossRefPubMed Ferry RT, Meddis R (2007) A computer model of medial efferent suppression in the mammalian auditory system. J Acoust Soc Am 122:3519–3526CrossRefPubMed
Zurück zum Zitat Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605CrossRefPubMed Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605CrossRefPubMed
Zurück zum Zitat Guinan JJ (2006) Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hearing 27:589–607CrossRefPubMed Guinan JJ (2006) Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hearing 27:589–607CrossRefPubMed
Zurück zum Zitat Guinan JJ, Warr WB, Norris BE (1984) Topographic organization of the olivocochlear projections from the lateral and medial zones of the superior olivary complex. J Comp Neurol 226:21–27CrossRefPubMed Guinan JJ, Warr WB, Norris BE (1984) Topographic organization of the olivocochlear projections from the lateral and medial zones of the superior olivary complex. J Comp Neurol 226:21–27CrossRefPubMed
Zurück zum Zitat Guinan JJ, Lin T, Cheng H, Cooper NP (2006) Medial Olivocochlear efferent effects on basilar-membrane and auditory-nerve responses to clicks: evidence for a new motion within the cochlea. In: Nuttall AL, Ren T, Gillespie P, Grosh K, de Boer E (eds)Auditory mechanisms: processes and models. World Scientific, Singapore, pp 3–16. https://doi.org/10.1142/9789812773456_0001 CrossRef Guinan JJ, Lin T, Cheng H, Cooper NP (2006) Medial Olivocochlear efferent effects on basilar-membrane and auditory-nerve responses to clicks: evidence for a new motion within the cochlea. In: Nuttall AL, Ren T, Gillespie P, Grosh K, de Boer E (eds)Auditory mechanisms: processes and models. World Scientific, Singapore, pp 3–16. https://​doi.​org/​10.​1142/​9789812773456_​0001 CrossRef
Zurück zum Zitat Ibrahim RA, Bruce IC (2010) Effects of peripheral tuning on the auditory nerve’s representation of speech envelope and temporal fine structure cues. In: Lopez-Poveda E, Palmer A, Meddis R (eds) The neurophysiological bases of auditory perception. Springer, Berlin, pp 429–438 CrossRef Ibrahim RA, Bruce IC (2010) Effects of peripheral tuning on the auditory nerve’s representation of speech envelope and temporal fine structure cues. In: Lopez-Poveda E, Palmer A, Meddis R (eds) The neurophysiological bases of auditory perception. Springer, Berlin, pp 429–438  CrossRef
Zurück zum Zitat Krishna BS, Semple MN (2000) Auditory temporal processing: responses to sinusoidally amplitude-modulated tones in the inferior colliculus. J Neurophysiol 84:255–273CrossRefPubMed Krishna BS, Semple MN (2000) Auditory temporal processing: responses to sinusoidally amplitude-modulated tones in the inferior colliculus. J Neurophysiol 84:255–273CrossRefPubMed
Zurück zum Zitat Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea: quantitative analysis with light and electron microscopy. J Comp Neurol 301:443–460CrossRefPubMed Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea: quantitative analysis with light and electron microscopy. J Comp Neurol 301:443–460CrossRefPubMed
Zurück zum Zitat Mao JW, Carney LH (2015) Tone-in-noise detection using envelope cues: comparison of signal-processing-based and physiological models. J Assoc Res Otolaryngol 16:121–133CrossRefPubMed Mao JW, Carney LH (2015) Tone-in-noise detection using envelope cues: comparison of signal-processing-based and physiological models. J Assoc Res Otolaryngol 16:121–133CrossRefPubMed
Zurück zum Zitat Nelson PC, Carney LH (2004) A phenomenological model of peripheral and central neural responses to amplitude-modulated tones. J Acoust Soc Am 116:2173–2186CrossRefPubMedPubMedCentral Nelson PC, Carney LH (2004) A phenomenological model of peripheral and central neural responses to amplitude-modulated tones. J Acoust Soc Am 116:2173–2186CrossRefPubMedPubMedCentral
Zurück zum Zitat Nelson PC, Carney LH (2007) Neural rate and timing cues for detection and discrimination of amplitude-modulated tones in the awake rabbit inferior colliculus. J Neurophysiol 97:522–539CrossRefPubMed Nelson PC, Carney LH (2007) Neural rate and timing cues for detection and discrimination of amplitude-modulated tones in the awake rabbit inferior colliculus. J Neurophysiol 97:522–539CrossRefPubMed
Zurück zum Zitat Pascal J, Bourgeade A, Lagier M, Legros C (1998) Linear and nonlinear model of the human middle ear. J Acoust Soc Am 104:1509–1516CrossRefPubMed Pascal J, Bourgeade A, Lagier M, Legros C (1998) Linear and nonlinear model of the human middle ear. J Acoust Soc Am 104:1509–1516CrossRefPubMed
Zurück zum Zitat Rees A, Palmer AR (1988) Rate-intensity functions and their modification by broadband noise for neurons in the guinea pig inferior colliculus. J Acoust Soc Am 83:1488–1498CrossRefPubMed Rees A, Palmer AR (1988) Rate-intensity functions and their modification by broadband noise for neurons in the guinea pig inferior colliculus. J Acoust Soc Am 83:1488–1498CrossRefPubMed
Zurück zum Zitat Salimi N, Zilany MSA, Carney LH (2017) Modeling responses in the superior paraolivary nucleus: implications for forward masking in the inferior colliculus. J Assoc Res Otolaryngol 18(3):441–456CrossRefPubMedPubMedCentral Salimi N, Zilany MSA, Carney LH (2017) Modeling responses in the superior paraolivary nucleus: implications for forward masking in the inferior colliculus. J Assoc Res Otolaryngol 18(3):441–456CrossRefPubMedPubMedCentral
Zurück zum Zitat Seluakumaran K, Mulders WHAM, Robertson D (2008) Effects of medial olivocochlear efferent stimulation on the activity of neurons in the auditory midbrain. Exp Brain Res 186:161–174CrossRefPubMed Seluakumaran K, Mulders WHAM, Robertson D (2008) Effects of medial olivocochlear efferent stimulation on the activity of neurons in the auditory midbrain. Exp Brain Res 186:161–174CrossRefPubMed
Zurück zum Zitat Shera CA, Guinan JJ, Oxenham AJ (2002) Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc Natl Acad Sci 99:3318–3323CrossRefPubMed Shera CA, Guinan JJ, Oxenham AJ (2002) Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc Natl Acad Sci 99:3318–3323CrossRefPubMed
Zurück zum Zitat Smalt CJ, Heinz MG, Strickland EA (2014) Modeling the time-varying and level-dependent effects of the medial olivocochlear reflex in auditory nerve responses. J Assoc Res Otolaryngol 15:159–173CrossRefPubMed Smalt CJ, Heinz MG, Strickland EA (2014) Modeling the time-varying and level-dependent effects of the medial olivocochlear reflex in auditory nerve responses. J Assoc Res Otolaryngol 15:159–173CrossRefPubMed
Zurück zum Zitat Warr WB, Guinan JJ (1979) Efferent innervation of the organ of Corti: two separate systems. Brain Res 173:152–155CrossRefPubMed Warr WB, Guinan JJ (1979) Efferent innervation of the organ of Corti: two separate systems. Brain Res 173:152–155CrossRefPubMed
Zurück zum Zitat Wiederhold M, Kiang N (1970) Effects of electric stimulation of the crossed olivocochlear bundle on single auditory-nerve fibers in the cat. J Acoust Soc Am 48:950–965CrossRefPubMed Wiederhold M, Kiang N (1970) Effects of electric stimulation of the crossed olivocochlear bundle on single auditory-nerve fibers in the cat. J Acoust Soc Am 48:950–965CrossRefPubMed
Zurück zum Zitat Zhang X, Heinz MG, Bruce IC, Carney LH (2001) A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. J Acoust Soc Am 109:648–670CrossRefPubMed Zhang X, Heinz MG, Bruce IC, Carney LH (2001) A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. J Acoust Soc Am 109:648–670CrossRefPubMed
Zurück zum Zitat Zilany MSA, Bruce IC (2006) Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. J Acoust Soc Am 120:1446–1466CrossRefPubMed Zilany MSA, Bruce IC (2006) Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. J Acoust Soc Am 120:1446–1466CrossRefPubMed
Zurück zum Zitat Zilany MSA, Bruce IC (2007) Representation of the vowel (epsilon) in normal and impaired auditory nerve fibers: model predictions of responses in cats. J Acoust Soc Am 122:402–417CrossRefPubMed Zilany MSA, Bruce IC (2007) Representation of the vowel (epsilon) in normal and impaired auditory nerve fibers: model predictions of responses in cats. J Acoust Soc Am 122:402–417CrossRefPubMed
Zurück zum Zitat Zilany MSA, Bruce IC, Nelson PC, Carney LH (2009) A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. J Acoust Soc Am 126:2390–2412CrossRefPubMedPubMedCentral Zilany MSA, Bruce IC, Nelson PC, Carney LH (2009) A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. J Acoust Soc Am 126:2390–2412CrossRefPubMedPubMedCentral
Zurück zum Zitat Zilany MSA, Bruce IC, Carney LH (2014) Updated parameters and expanded simulation options for a model of the auditory periphery. J Acoust Soc Am 135:283–286CrossRefPubMedPubMedCentral Zilany MSA, Bruce IC, Carney LH (2014) Updated parameters and expanded simulation options for a model of the auditory periphery. J Acoust Soc Am 135:283–286CrossRefPubMedPubMedCentral
Metadaten
Titel
Modeling the effects of medial olivocochlear efferent stimulation at the level of the inferior colliculus
verfasst von
T. J. M. Kwan
M. S. A. Zilany
E. Davies-Venn
Ahmad Khairi Abdul Wahab
Publikationsdatum
01.06.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Experimental Brain Research / Ausgabe 6/2019
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-019-05511-4

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

Kaum Vorteile durch intraarterielle Lyse während Thrombektomie

Nach der Thrombektomie kleinere Fragmente über eine intraarterielle Lyse auflösen – dies könnte die Schlaganfalltherapie verbessern. Zwei aktuelle Studien ergeben für die periprozedurale Lyse jedoch keine großen Vorteile. Die Frage, wie viel sie nützt, bleibt weiter offen.

Nasenstimulation lindert chronische Migräne

Wird die Naseninnenseite durch Vibrationen stimuliert, kann dies offenbar die Zahl der Migränetage von Menschen mit chronischer Migräne deutlich senken. Darauf deuten die Resultate einer randomisiert-kontrollierten deutsch-finnischen Untersuchung.

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.